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Abstract: Unique functional materials provide a platform as scaffolds for cell/tissue 

regeneration. Investigation of cell-materials’ chemical and biological interactions will 

enable the application of more functional materials in the area of bioengineering, which 

provides a pathway to the novel treatment for patients who suffer from tissue/organ 

damage and face the limitation of donation sources. Many studies have been made into 

tissue/organ regeneration. Development of new substrate materials as platforms for 

cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the 

investigation of novel ultrananocrystalline diamond (UNCD) films as substrate/scaffold 

materials for developmental biology. Specially designed quartz dishes have been coated 

with different types of UNCD films and cells were subsequently seeded on those films. 

Results showed the cells’ growth on UNCD-coated culture dishes are similar to cell culture 

dishes with little retardation, indicating that UNCD films have no or little inhibition on cell 
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proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms 

of cell adhesion on UNCD surfaces are proposed based on the experimental results. The 

comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated 

dishes with matrix-assisted laser desorption/ionization—time-of-flight mass spectroscopy 

(MALDI-TOF MS) and X-ray photoelectron spectroscopy (XPS) analyses provided 

valuable data to support the mechanisms proposed to explain the adhesion and proliferation 

of cells on the surface of the UNCD platform. 

Keywords: ultrananocrystalline diamond (UNCD); cell culture, biocompatibility; cell 

adhesion and proliferation 

 

1. Introduction 

Worldwide research is being performed to achieve regeneration of tissues and organs to repair 

diseased or damaged tissues and organs in the human body [1,2], which are in limited supply. This 

bioengineering approach provides treatment by growing regenerative tissue/organs on artificial 

substrates in vitro and implanting them back into the damaged areas of the body. Investigation of 

biomaterials as artificial platforms for cell growth and differentiation is one of the most important 

areas in regenerative medicine. Results from previous research suggest that it is possible to engineer 

growing tissue by presenting appropriate growth stimuli from the cell transplantation scaffolds and it is 

critical to promote the multiplication of transplanted cells if one is to engineer a growing tissue in vivo. 

A required growth stimulus for most mammalian cell types is needed for an appropriate adhesive 

substrate. Large-scale cell culture systems will be important to grow sufficient cells in vitro [3,4]. 

Therefore, materials used as adhesion substrates are a major area of study. Biomaterials used in  

tissue-engineering need to meet the nutritional and biological needs of the cells. They must have good 

mechanical characteristics and good geometries while the devices are fabricated so as to maintain the 

structure during new tissue formation.  

Most of the past research has focused on investigating several types of polymer biomaterials as 

scaffolds for bioengineering studies, namely: (a) natural materials such as collagen or alginate, which 

are biocompatible macromolecules that facilitate cell attachment or maintenance of differentiated 

function; and (b) synthetic materials such as lacticglycolic acid or polyacrylonitrile-polyvinyl chloride, 

that were used as templates for cells to form permanent new tissues [5]. However, the materials 

mentioned above may not interact with cells in a positive manner. The combination of the natural and 

synthetic materials uses critical amino acid sequences from natural polymers that are grafted onto 

synthetic polymers [6]. The microstructure and the surface chemistry of the materials are critical and 

need to be studied in detail, including investigation of issues such as producing a certain surface 

topography or porous microstructure that is similar to the extra-cellular matrix to get an engineered 

tissue response with the substrates [7]. Many materials [8] other than polymers have also been 

investigated such as carbon materials, including diamond-like carbon (DLC) [9–11], microcrystalline 

diamond, and nanocrystalline diamond [12–14].  
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Alternative to the materials mentioned above, in this paper we report our studies of cell growth on 

different types of UNCD surfaces as well as on diamond-powder-seeded surfaces. The difference 

between UNCD and other nanocrystalline diamond films is that UNCD films are synthesized using an 

Ar-rich/CH4 gas mixture [15,16] while other nanocrystalline diamond films are synthesized in a 

hydrogen-rich/CH4 gas mixture. UNCD films have unique microstructures that have a grain size of  

3–5 nm for undoped UNCD and larger grain sizes for H-doped and N-doped UNCD, depending on the 

doping percentage. Because of its excellent mechanical properties such as hardness, low friction, and 

high anti-wear rate, as well as chemical inertness, UNCD has potential application as a unique 

biomaterial for implantable biomedical devices. In this study, different types of UNCD thin films were 

synthesized. Cell culture cytotoxicity of these different types of UNCDs was investigated. Results 

showed that all types of UNCD thin films could support cell growth. The microstructures of different 

UNCD films were analyzed, cell growth on different types of UNCDs were observed, and the 

mechanisms of cell adhesion are proposed. Analysis using matrix-assisted laser 

desorption/ionization—time-of-flight mass spectroscopy (MALDI-TOF MS) and X-ray photoelectron 

spectroscopy (XPS) provided valuable information to support the mechanisms proposed to explain the 

cell-UNCD interaction.  

2. Experiments 

2.1. Synthesis of UNCD Films 

The substrates used to grow UNCD films were first seeded with ultrananocrystalline diamond 

powder dissolved in methanol in an ultrasonic bath. Different UNCD films were synthesized in a 

microwave plasma chemical vapor deposition (MPCVD) system on quartz plates that were heated to 

800 °C. Undoped UNCD films were grown using an Ar (99%)/CH4 (1%) gas mixture; H-doped UNCD 

films were grown using an Ar (97%)/CH4 (1%)/H2 (2%) gas mixture, and N-doped UNCD thin films 

were grown using an Ar/CH4/N2 gas mixture with N2 (10% and 20%). The UNCD films were exposed 

to H-plasmas to get H-terminated films: H-plasma-treated undoped UNCD and H-plasma-treated  

N-doped UNCD thin films. 

2.2. Cell Culture 

These UNCD-film-coated dished were sterilized with 70% ethanol followed by UV irradiation. 

Mouse embryonic fibroblasts (MEFs, Chemicon International) were first grown on normal culture 

flasks. When 80% confluency was reached, the cells were dissociated by Trypsin/EDTA and passaged 

onto quartz dishes (control), diamond-seeded dishes, and different UNCD-coated dishes at the same 

starting density of 8.0 × 103 cells/cm2. Cell culture vessels were incubated at 37 °C in a humidified 

atmosphere containing 5% CO2. Cell growth was monitored daily for four days using optical 

microscopy. The experiments were repeated three times.  
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3. Results 

3.1. Seeding 

The seeding procedure resulted in nanodiamond seeds being embedded on the substrate surfaces 

which induced the nucleation and subsequent growth of the UNCD films. Polishing seeding plus an 

ultrasonic seeding procedure introduced a higher density of the seeds on the surface compared with 

using one seeding method alone. Scanning electronic microscopy (SEM) images (Figure 1) show a 

layer of nanodiamond powder on the surface of the Si substrate after seeding. Scratches are observed 

on the surface of the Si from the seeding procedure.  

Figure 1. Scanning electronic microscopy (SEM) images of nanodiamond seeded on Si 

(left) and quartz (right) by mechanical seeding plus ultrasonic seeding procedures. 

 

3.2. Synthesis of UNCD Films 

Undoped UNCD, H-doped UNCD (1%), N-doped UNCD (10%), and N-doped UNCD (20%) thin 

films were synthesized. Scanning electronic microscopy (SEM) analysis images of these films are 

shown in Figure 2.  

Figure 2. SEM images of different ultrananocrystalline diamond (UNCD) films. 
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Compared with undoped UNCD thin films, 1% H-doped UNCD thin films are less conductive and 

showed more charging during the SEM analysis. This is because the hydrogen atoms were inserted 

into the grain boundaries, suppressing the formation of sp2-bonded carbon; and the hydrogen satisfied 

the dangling bonds and formed H-terminated surface. N-doped UNCD thin films are semi-metallically 

conductive, which has been widely studied [15], and also could be seen during the SEM analysis 

procedure. Unlike H-doped UNCD films, which still have a similar surface morphology to undoped 

UNCD, N-doped UNCD showed a more needle-like pattern on the surface. The larger the N-doping 

percentage in the gas mixture, the longer the needles. However, AFM and TEM studies showed that  

N-doped UNCD had nanograins similar to undoped UNCD, which will be reported later.  

The UNCD films were exposed to H-plasma to achieve H-terminated UNCD films and  

H-terminated N-doped UNCD films. H-plasma treatment on UNCD resulted in H atoms bonding on 

the surface and diamond surface H-terminated [15,17]. 

3.3. Cell Culture 

Cell growth on UNCD thin-film-coated and uncoated quartz dishes was observed daily. The three 

repeated samples showed similar results. Except for the quartz dishes, which showed cells that were 

almost totally detached from the dishes, all other substrate surfaces coated with UNCD films showed 

that cells attached to the surface and proliferated at different levels. 

Cells were attached to the surface of quartz (control) dishes at day one, but started to shrink and 

aggregate from day 2. At day 4, most of the cells retracted and detached from the quartz dish surface 

and underwent apoptosis. In contrast, quartz dish surfaces coated with nanodiamond powders showed 

cells attached well to the plate at day 1 (Figure 3) and started to shrink and aggregate. The width of the 

images of 10× is 0.695 mm and the width of the images of 4× is 1.738 mm. At day 4, most of the cells 

were still attached to the surfaces of quartz dishes coated with nanodiamond powders. 

Figure 3. Mouse embryonic fibroblasts (MEF) growth on quartz dished and  

diamond-powder-seeded quartz dishes. 
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Cell growth on undoped UNCD, H-plasma-treated UNCD, H-doped UNCD, N-doped UNCD 

(10%), H-plasma-treated N-doped UNCD (10%) thin films, N-doped UNCD (20%), and  

H-plasma-treated N-doped UNCD (20%) thin film coated dishes showed good cell attachment at the 

first day and started to proliferate normally. At day 4, cell growth reached confluency and cells were 

morphologically normal (Figure 4). 

Figure 4. Comparison of MEF growths on different UNCD films at day 4. 

 

Cells were dissociated at day 4 and the total numbers of cells from each growth condition were 

counted. The results are shown in Figure 5. Cell culture dishes had the highest densities, yet with the 

largest variation among three replicates of the cell culture dishes, quartz dishes, undoped UNCD 

dishes, and the H-plasma-treated undoped UNCD dishes. Quartz dishes had the lowest cell density. 

Diamond-seeded quartz dishes showed the second lowest densities. 10% and 20% N-doped UNCD 

thin film coated dishes had similar densities of cells. Different types of UNCD-coated dishes had 

different densities without significant differences. 

Figure 5. Comparison of cell densities at day 4. 
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3.4. Matrix-Assisted Laser Desorption/Ionization—Time-of-Flight Mass Spectrum (Maldi-Tof Ms) 

MALDI-TOF MS analyses were done on MEFs and MEFs on a UNCD surface. Results are shown 

in Figures 6 and 7. Analysis of the MEFs in Figure 6 showed that among the four major phospholipids 

predominating in the plasma membrane of many mammalian cells, phosphatidyl ethanolamine (PE), 

phosphatidyl serine (PS), phosphatidyl choline (PC), and sphingomyelin (SM), PE and PS are 

negatively charged while PC and SM are positively charged. Among the negatively charged 

biomolecules on the MEF membrane, phosphatidyl inositol (PI) has the largest intensity compared 

with PE and PS.  

PI is in the outer lipid monolayer of the plasma membrane. PI exposed at the external cell surface 

attaches only by a covalent linkage via a specific oligosaccharide to phosphatidylinositol. It plays a 

crucial role in the cell signaling. Of the positively charged biomolecules, both PC and SM have a large 

intensity. There are many other biomolecules that are also positively charged. Figure 7 shows the 

results of MEFs on UNCD. While the spectra of the blank UNCD film and the UNCD film exposed to 

the buffer solution are fairly similar, the UNCD film with the MEFs shows a series of strong peaks that 

should be interpreted as lipid ion peaks. These lipids most likely belong to the cell membranes. No 

high-mass proteins were detected due to the low amount of these species exposed to desorption and 

ionization by MALDI. 

Figure 6. Matrix-assisted laser desorption/ionization (MALDI) analysis on MEFs.  

(a) Negative ion mode analysis; (b) Positive ion mode analysis (mass: 700–840 m/z);  

(c) Positive ion mode analysis (mass: 2,000–15,500 m/z). 

 
(a) 
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Figure 6. Cont. 

 
(b) 

 
(c) 
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Figure 7. MALDI analysis of MEFs on UNCD. (a) UNCD; (b) UNCD in buffer; (c) MEFs 

on UNCD in buffer.  

 
(a) 

 
(b) 

 
(c) 
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3.5. X-Ray Photoelectron Spectroscopy (XPS) 

Similar results from XPS analysis are shown in Figure 8. While UNCD showed only carbon peaks, 

both nitrogen peaks and oxygen peaks were detected after MEFs grew on UNCD. These peaks came 

from the membrane of the cells. 

Figure 8. X-Ray Photoelectron Spectroscopy (XPS) analysis of cells on UCND. 

 
 

4. Discussion on Cell Attachment and Proliferation 

Cells did attach to the quartz dishes at day 1, however, after day 1 cells started to detach and 

aggregate. If cells cannot deposit their extra-cellular matrix (ECM) on the substrate surface within a 

short period of time (24–48 hours), they undergo apoptosis [18]. The ECM that MEFs secreted did not 

deposit on the quartz dishes and therefore cells on quartz dishes started to undergo apoptosis.  

All of the different types of UNCD thin films investigated could support cell attachment and 

proliferation. UNCD thin films have a polycrystalline structure with grains of 2–5 nm characterized by 

sp3 carbon bonds, and grain boundaries about 0.4 nm wide characterized by a mixture of sp2 and sp3. 

The particular nanostructure of UNCD films results in a high density of grain boundaries, which may 

play a critical role in promoting cell growth, because the sp2 bonds along the nanocrystalline 

boundaries are active and make the UNCD surface electron-negatively charged.  

This hypothesis is further supported by the cell growth on diamond-seeded quartz dishes. Cells 

attached to the dishes at day 1. Small amounts of cells started to detach and aggregate, which led to the 

death of these cells. Other cells proliferated on the seeded quartz surface, which suggests the diamond 

seeds provided the environment that cells could live on. But the cells on seeded quartz dishes did not 

reach the same confluency as on the other UNCD-thin-films-coated dishes. Diamond-seeded quartz 

dishes could be described as the non-continuous UNCD grains. Cells that attached and proliferated on 

these seeded quartz dishes showed that the grain boundaries did provide the binding sites for cells. 

Cells that partially detached and aggregated on these seeded dishes did so because the seeds were not 

as continuous as the UNCD thin films, and therefore the cells were exposed to the quartz surface, 

which led to the death of these cells.  
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Besides the special microstructure and bonding information around the grain boundaries, the 

surface chemistry of UNCD films provided the binding sites for cells. Immediately after the synthesis 

of UNCD films finished, there was a substantial number of dangling bonds that were unsatisfied. Once 

the chamber was vented to the atmosphere, the dangling bonds on the surface of the films reacted with 

oxygen in the air and formed C-O bonds. In addition, the fresh synthesized UNCD surfaces absorbed 

water molecules in the air, leading to the formation of carboxy groups confirmed by the XPS analysis. 

The extra-cellular matrix contained a variety of versatile proteins and polysaccharides that could 

anchor on top of UNCD. MALDI analysis of the membrane of the MEFs and the analysis of MEFs on 

UNCD gave further evidence in support of the mechanisms described here. A schematic of the cells’ 

adhesion mechanism on UNCD is presented in Figure 9. 

Figure 9. Schematic models of cell adhesion mechanisms to UNCD. 

 
 

The surface chemistry of UNCD films plays a critical role, as demonstrated by the comparison of 

the cell growth on UNCD-film-coated dishes. Among the UNCD-film-coated dishes, the N-doped 

showed the lowest cell density. H-plasma treated N-doped UNCD-coated dished showed the largest 

cell density among the UNCD-coated dishes. As mentioned earlier, H-plasma treatment generated the 

H-terminated surface, which provided the most inertness on the undoped UNCD surface. On the  

N-doped UNCD, H-plasma treatment also generated H-terminated surface, and therefore, in addition to 

C-H bonds, other bonds such as N-H, and NH2 could also be formed on the surface, providing more 

binding sites for cell attachment and resulting in a higher cell density. Undoped UNCD films grown on 

quartz dishes showed the second largest density. The H-plasma treated undoped UNCD-coated dishes 

showed a lower density compared with the undoped UNCD surface. 

5. Conclusions 

Undoped, H-doped, and N-doped UNCD films were synthesized and H-plasma treatment was 

introduced to these films. MEF cell growth occurred on these different UNCD-coated dishes as well as 

on diamond-seeded quartz dishes. Results showed all these different UNCD-film-coated dishes could 

support cell adhesion and proliferation. The H-plasma treated N-doped UNCD-coated dishes showed 

the largest cell density among all UNCD-coated dishes because the surface introduced the NH2 group 

and because the unique microstructure could promote cell attachment and growth. The results were 
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analyzed and the mechanisms of cell adhesion on the UNCD surfaces were proposed. The unique 

nanostructure of UNCD, with a high density of grain boundaries, plays a critical role in cell adhesion via 

chemical bonds such as hydrogen bonds, polar interactions, and electrostatic interactions between 

receptor molecules on the cell membrane and the chemical functional groups of the artificial substrates. 
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