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Abstract: Chronic wounds typically have excessive levels of matrix metalloproteinases 

(MMPs) and proinflammatory cytokines that impair healing. Reducing these detrimental 

proteins may be key to healing chronic wounds. Proprietary protease blends were 

formulated specifically to degrade excessive amounts of proinflammatory factors that 

could prevent wound healing. Applications of protease-containing wound dressings to 

acute and chronic wounds have been observed clinically to resolve inflammation and 

appear to aid healing. The purpose of this study was to test in vitro a deliberate blend of 

proteases for the ability to deactivate or activate known proteins associated with 

inflammation or healing. Purified human target proteins were incubated with test and 

control solutions and samples removed at various time points. Blinded samples were tested 

using a novel infrared protein multiplex sandwich-ELISA-type array technique. Many 

proinflammatory proteins such as MMPs, cytokines and chemokines were susceptible to 

degradation. Many proteins such as growth factors, cytokines and TIMP1 were resistant to 

degradation. Not all proinflammatory proteins were deactivated. Family protein structure 

did not appear to affect susceptibility to degradation or deactivation. These results suggest 

that specific protease containing wound dressings appear to reduce multiple detrimental 

components which may disrupt their deleterious effects on the wound bed and 

microenvironment. By improving the wound microenvironment through the use of 

definitive proteases, these novel wound dressings may help transition wounds into the 

subsequent phase of healing. 
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1. Introduction  

Current understanding of the physiology and immunology of wound healing has evolved from 

Winter’s observations of a moist wound environment, to a better understanding of the complexities of 

the wound microenvironment [1-3]. The microenvironment of wounds, burns and scars is a 

complicated mix of interdependent signaling pathways, cells, proteins, enzymes and resulting 

interactions that regulate and direct tissue repair and remodeling [2,4-7]. Within these pathways, each 

cell has multiple receptors that are constantly regulated by endocrine, paracrine, and autocrine signals 

resulting in up or down-regulation of cell function and protein secretion further contributing to the 

network of signals (i.e., cytokines, growth factors, hormones, etc.) [5,8,9]. Even in the most simplistic 

wound, the activities and functions of individual cellular and molecular items are intricately involved 

in the microenvironment [2,3,10,11]. 

In the normal healing process, redundant or backup signals allow healing to occur even if impairment 

exists in another signal pathway [2]. A balance between MMPs and TIMPs are tightly regulated as are 

the factors involved in the inflammatory and proliferative stages. Research on cytokines and transgenic 

knock-out mice has clearly shown that healing may be delayed by one dysfunctional component or 

gene, but very few components can prevent healing completely unless coupled with other dysfunctional 

components, genes, or pathways because of duplicate feedback loops [2,4,10,12-15]. Strength of 

redundant feedback loops is signal amplification which can be up-regulated or down-regulated within 

seconds because of the interactions between the signaling networks.  

In nonhealing chronic wounds, however, excessive signal amplification can become a detrimental 

weakness. When an imbalance in the regulation between MMPs and TIMPs develops, the physiological 

response becomes skewed and will continue indefinitely until counterbalanced signals can move the 

response back to more normal levels. An imbalance can be caused by a variety of substances such as 

age, injury, micro-organisms and their secretions, immune cells and their secretions, cytokines, 

chemokines, inflammatory factors, dead and apoptotic cells, and free radicals. To further complicate 

the matter, MMPs can not only self up-regulate their presence in a wound, but also signal for 

additional inflammation via proinflammatory cytokines and chemokines. Furthermore, MMPs can 

destroy growth factors, cytokines and extracellular matrix, all of which could act as counterbalances if 

allowed to persist in the wound [16-19]. Additional environmental proteases (i.e., neutrophil elastase) 

from self or micro-organisms can inactivate TIMPs allowing a surge in proMMP and active MMP 

activity levels [20]. This hostile microenvironment becomes a perpetual cycle of imbalance and the 

wound cannot close [16-19]. This imbalanced microenvironment has been clearly demonstrated in 

chronic wounds with excessive levels of MMPs and proinflammatory cytokines [16-19,21].  

In order to try and interrupt the imbalanced chronic wound cycle and start the healing, methods of 

debridement, growth factor therapy and chelation have been tried [22-24]. Past use of individual 

molecules and compounds to modify the healing process at a specific point has been met with limited 

success possibly because of imbalanced and redundant networks [23,25,26]. Debridement and 

preparing the wound bed to convert a chronic wound to a more acute type wound microenvironment is 

widely accepted [22].  

Based on the interdependencies of cells and signaling pathways as well as the pathophysiology of 

wounds, we began developing wound treatments that could impact multiple signaling factors. 
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Endopeptidases can act as catalysts to cleave specific internal peptide bonds in proteins and were a 

logical choice. The proteases in this project were formulated specifically to deactivate excessive 

amounts of proinflammatory factors that could prevent wound healing. An effort to choose proteases 

to conserve potentially beneficial proteins such as growth factors was made. By reducing multiple 

nocuous factors, various autocrine and paracrine feedback loops could be down-regulated or disrupted. 

As a result, shifting the imbalanced wound microenvironment toward more balanced signal cross-talk 

could theoretically transition the wound into the next phase of healing. The protease blends have since 

been developed into wound and skin dressings (Protease Technology®, Swiss-American Products, 

Carrollton, TX, USA).  

The purpose of this study was to further elucidate the intensity and speed of particular proteases 

affecting key wound healing proteins. The blend of protease enzymes used in the dressings was tested 

for the ability to degrade, deactivate or activate known inflammatory or healing proteins. Some test 

results using a variety of methods and proteins were previously published [27]. Additional and repeat 

proteins using the same blend have been tested with a new technique to corroborate prior findings and 

are published herein.  

2. Experimental Section  

2.1. Sample Preparation  

The protease blend currently used in wound and skin dressings was tested as a solution. Control and 

test solutions (Swiss-American Products, Carrollton, TX, USA) were provided to an independent lab 

(MicroConsult, Dallas, TX, USA). Purified human target proteins (Aushon Biosystems, Billerica, MA, 

USA) associated with inflammation and/or wound healing were selected for testing and shipped to the 

lab (MicroConsult, Dallas, TX, USA). At the lab, human target proteins were reconstituted with PBS 

per manufacturer’s directions and incubated at 37 °C with control PBS (without protease blend) and 

test PBS (with protease blend) solutions. The pH was tested to confirm pH levels were within 0.05 of 

one another. No samples required pH adjustment. Timed samples were taken at 0, 1, 4, 8, and 24 h and 

mixed 100:1 with a general purpose protease inhibitor to stop any enzymatic reactions including those 

involving MMPs (P2714, Sigma; St. Louis, MO, USA). Samples were blinded and aliquoted prior to 

freezing at −80 °C.  

2.2. Sample Testing  

Blinded samples were placed on dry ice and shipped overnight for testing with an infrared protein 

multiplex sandwich-ELISA-type array technique (SearchLight Sample Testing Service of Aushon 

Biosystems, Billerica, MA, USA). The Aushon testing service is a CLIA (Clinical Laboratory 

Improvement Amendments) certified laboratory that follows strict GLP (Good Laboratory Practices) 

regulations, procedures and protocols as required by the US Government.  

The SearchLight Technology testing service creates and validates each specific protein antibody 

array based on the biomarkers selected for testing. Each custom array can measure up to 16 biomarkers 

at once that reduces the sample size required and can measure potential protein interactions within the 

samples if desired. The multiplex array uses an antibody sandwich-ELISA-type technique that is spot 



J. Funct. Biomater. 2011, 2 341 
 

 

arranged within each well. Blinded samples were tested with internal SearchLight controls a minimum 

of three times and the average result and variance was provided in the final report. Approximately  

50 target proteins associated with inflammation and healing were tested including MMPs, TIMP, 

cytokines, chemokines, receptors, neuropeptides and growth factors.  

2.3. Statistical Methods  

SearchLight data were analyzed using separate repeated measures analysis of variance model with 

time, treatment, and time-by-treatment as fixed effects in the model with a compound symmetry 

correlation structure. All statistical calculations were made using the software program Analyse-It® 

(Analyse-It Software, Ltd., Leeds, UK). 

3. Results and Discussion  

Many proteins were tested, however, due to space constraints, only the most pertinent results are 

reported here.  

3.1. Matrix Metalloproteinases (MMPs) and Tissue Inhibitor of Matrix Metalloproteinases (TIMPs) 

Many proinflammatory enzymes such as matrix metalloproteinases (MMP) were degraded by the 

tested blend of proteases. Human MMP1 (p = 0.0011), hMMP2 (p = 0.0044), hMMP3 (p = 0.1187), 

hMMP7 (p = 0.0784), hMMP8 (p = 0.0258), and hMMP9 (p = 0.0051) all showed degradation of 

various degrees by the protease dressing blend. The most impressive degradation was for MMP1, 

which was degraded to near zero levels within seconds of adding the protease blend, see Figure 1. 

Also, MMP9 showed a rapid degradation within 4 h, see Figure 2. Prior ELISA assay results of the 

protease blend incubated with chronic wound fluid with known MMP9 levels, showed complete 

MMP9 degradation within one hour [27]. Even though both assays showed rapid degradation, at this 

time, it is not known why there is a slight difference of time of degradation observed. 

Not all MMPs were degraded by the proteases. In fact, control solutions saw more degradation than 

solutions containing the proteases in the MMP10 (p = 0.0129) and MMP13 (p = 0.0186) samples, see 

Figure 3. Some of the MMP enzymes degraded within seconds, others took hours, and some had little 

to no degradation detected, see Figures 1–3. Tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) 

showed similar degradation over time for both the control and test samples and were not significantly 

different (p = 0.5194), see Figure 4. The SearchLight technique results using pure TIMP-1 showed 

little degradation and are very similar to results previously reported using chronic wound fluid with an 

ELISA assay [27]. 
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Figure 1. MMP1 observations showed rapid degradation by the tested protease blend  

(n = 48). Degradation was statistically significant (p = 0.0011). 

 

Figure 2. MMP9 observations showed rapid degradation by the tested protease blend. 

Degradation was statistically significant (n = 24, p = 0.0051). 

 

Figure 3. MMP10 observations showed relatively little degradation by the tested protease 

blend even after 24 h at 37 °C. Difference compared to control PBS solution degradation 

was statistically significant (n = 24, p = 0.0129). 
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Figure 4. TIMP1 observations showed similar degradation over time between control and 

test solutions (n = 48, p = 0.5194).  

 

3.2. Cytokines and Chemokines 

Many proinflammatory cytokines and chemokines were degraded by the protease blend. Both tumor 

necrosis factor α (TNFα) active monomer (p = 0.0017) and TNFα active trimer (p = 0.0195) showed 

rapid degradation. The active monomer degraded to near zero levels within seconds whereas the active 

trimer degraded 75% within one hour of incubation with the protease blend. Previous results utilizing 

chronic wound fluid and purified TNFα (a variety of protein structures) showed rapid and complete 

degradation within 8–10 h [27].  

The protein degradation of Interleukin-6 (IL-6, p = 0.0111) and its receptor (IL-6R, p = 0.0260) had 

remarkably similar degradation patterns, see Figure 5(a,b). The protein structures for IL-6 and its 

receptor are very different, yet both exhibited sustained degradation over time in similar fashions. 

Significant degradation for IL-2 (p = 0.0048), granulocyte macrophage colony stimulating factor 

(GMCSF, p = 0.0017), macrophage inflammatory protein 1 α (MIP1α, p = 0.0207) and interferon α 

(IFNα, p = 0.0119) were also detected. All of these proteins are known to be involved in areas of 

inflammation. MIP1α is also known as chemokine (C-C motif) ligand 3 (CCL3). 

Other cytokines and chemokines did not appear to have any statistically significant differences 

between the control and protease solution degradation. These included IL-1α (p = 0.1633), IL-1β  

(p = 0.2124), IL-8 (p = 0.1027), IL-10 (p = 0.4224), IL-12p70 heterodimer (p = 0.0694), IL-18  

(p = 0.1118), IL-23 (p = 0.3496), Interferon γ induced protein 10 (IP10, p = 0.1232), MIP1β  

(p = 0.7103) and macrophage chemotactic protein 1 (MCP1, p = 0.0868). See Figure 6 as an example 

of results typically seen. Previous incubation of chronic wound fluid with known IL-1β levels with 

dressing proteases and assayed by ELISA showed similar results as the SearchLight data reported here. 

It should be noted that IP10 is also known as C-X-C motif chemokine 10 (CXCL10) and MIP1β is also 

known as CCL4. 
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Figure 5. (a) IL-6 and (b) IL-6 receptor observations showed remarkable similarity in  

their degradation patterns over time. Degradation was statistically significant for both  

p = 0.0111 (n = 24) and p = 0.0260 (n = 24) respectively. 

 

 

Figure 6. IL-1α observations showed similar degradation over time between control and 

test solutions (n = 24, p = 0.1633).  

 

b 

a 
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3.3. Growth Factors 

Growth factors were also tested for degradation. Growth factors samples of vascular endothelial 

growth factor (VEGF, p = 0.2729), transforming growth factor β (TGFβ, p = 0.6075) and fibroblast 

growth factor basic (FGF basic, p = 0.4477) did not appear to have any statistically significant 

differences between the control and protease solution degradation. Both platelet derived growth factor 

AB (PDGF-AB, p = 0.0002) and PDGF-BB (p = 0.0146) maintained higher concentrations in the 

protease solutions throughout the 24 h period than the control solutions, see Figure 7(a,b). Prior 

ELISA assay of the proteases with PDGF-AB and chronic wound fluid also showed sustained growth 

factor levels throughout the 24 h testing period, whereas the controls showed degradation [27]. None 

of the growth factors incubated with the protease blend had any significant degradation.  

Figure 7. (a) PDGF-AB and (b) PDGF-BB observations showed statistically significant 

resistance to degradation over time in the protease solutions compared to control solutions 

(PDGF-AB, n = 24, p = 0.0002; PDGF-BB, n = 48, p = 0.0146).  

 

 

b 

a 
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3.4. Neuropeptides  

A neurotransmitter, Substance P (SP) and a neurotrophic protein Glial cell-derived neurotrophic 

factor (GDNF) were incubated with the protease solution and degradation measured. SP degradation in 

the protease solution was statistically significant compared to control (p = 0.0008). Degradation of SP 

occurred within seconds of the addition of the protease test solution, see Figure 8. Conversely, GDNF 

control and test groups did not have significant degradation (p = 0.8682). 

Figure 8. Substance P observations showed rapid degradation by the tested protease blend 

within seconds of exposure. Degradation was statistically significant (n = 24, p = 0.0008). 

 

3.5. Results Summary 

Proteins MMP1, MMP2, MMP8, MMP9, TNFα active monomer, TNFα active trimer, IL-2, IL-6, 

IL-6R, GMCSF, MIP1α, IFNα and SP were susceptible to degradation by the protease solutions. 

Proteins TIMP1, IL-1α, IL-1β, MIP1β, VEGF, TGFβ, FGF basic and GDNF were resistant to 

degradation and showed levels similar or higher than control solutions up to 24 h of incubation. 

Throughout the 24 h incubation period, concentration levels of PDGF-AB and PDGF-BB were 

statistically higher in protease treated samples than the controls.  

Family protein structure did not appear to affect degradation or resistance, but instead was 

determined by individual protein structure. A good example of this can be seen in Figure 9(a,b) 

comparing MIP1α and MIP1β. Also, even though the protein structures are different, IL-6 and IL-6R 

demonstrated remarkably similar degradation patterns. Although the AB heterodimer and BB 

homodimer of PDGF are structurally different, both showed sustained concentrations over time in the 

presence of the protease blend.  

The purified protein solutions used in this experiment produced similar results as collected wound 

fluids with known protein amounts [27]. The new SearchLight array technique showed consistent, 

reproducible results compared to standard ELISA technique used previously. Unlike the ELISA assay, 

the SearchLight technique was faster and required a smaller sample size. 
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Figure 9. (a) MIP1α and (b) MIP1β observations show very different degradation patterns 

over time. Degradation was statistically significant for MIP1α (n = 24, p = 0.0207) but not 

MIP1β (n = 24, p = 0.7103). 

 

 

3.6. Discussion  

In chronic wounds, research has shown that detrimental components outnumber beneficial 

components in the wound milieu [16-19,21]. MMPs, elastases, collagenases, proinflammatory 

cytokines, chemokines and neuropeptides are known to be destructive to the healing process when 

produced in excess [2,18,24,28,29]. Not only do these components up-regulate themselves through 

feedback loops and perpetuate an imbalance, MMPs and other enzymes can destroy TIMPs, growth 

factors and tissue that normally would provide counterbalance via the same networks [16-20,30]. Such 

an imbalance will not lead to healing until the microenvironment becomes more balanced. 

Unique protease properties were selected for specific targets of degradation and protection. 

Choosing distinct proteases allows wound dressings to be customized such that a formulation for 

phagocyte driven inflammation could be different than one for T cell driven inflammation. Applications 

of a specific blend of anti-inflammatory proteases to a chronic wound could decrease the level of 

numerous detrimental components. By using protease blends as immunomodulators, the imbalanced 

pathways and cross-talk should shift towards a more physiologically balanced microenvironment as 

b 

a 
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multiple detrimental components are degraded. The physiologic effect should be broad and amplified 

because multiple specific proteins are targeted instead of one sole protein. The end result should lead 

to improved wound healing. The chosen proteases were formulated into wound and skin dressings. 

The protease blend tested from wound and skin dressings showed degradation of specific proteins, 

receptors, and enzymes that in excess impair healing by promoting inflammation. In this experiment 

and previously demonstrated using spiked chronic wound fluid, excess proinflammatory mediators 

were degraded by the protease blend, but excess growth factors were not [27]. It is important to note 

that neutrophil elastase is known to degrade PDGF, TGFβ and TIMPs whereas the formulated 

proteases do not [20,27,29]. Unlike some wound dressings, these study results showed many proteins 

beneficial to healing and angiogenesis were not degraded. Not all proinflammatory mediators were 

deactivated suggesting the protease blend would not eliminate the inflammatory response but, instead, 

could reduce the intensity. Elimination of the inflammatory response or complete removal of an active 

protein (i.e., MMPs) is not desirable because the microenvironment imbalance could shift from one 

extreme to the other and still fail to achieve closure. Thus, it is more important to dampen the signal of 

multiple key proteins than to eliminate or add one factor involved in tissue repair. 

Endopeptidase enzymes are present in human, animal, and plant tissues. The proteases used in this 

project were screened and are generally well tolerated by the human body. Formulated proteases 

applied directly to the dermal wound bed have not elicited any complaints or adverse events [31-33]. 

Because many proteases are potent catalysts, low concentrations can deactivate specific components. 

Low concentrations are beneficial for two reasons. The less exogenous proteins applied to a wound  

(1) the less likely irritancy will occur, and (2) the body can self-eliminate the proteins. Self-elimination 

of the proteases also allows the regulation pathways to proceed without shifting too far in the opposite 

pathway direction (i.e., excessive collagen synthesis). Use of certain extrinsic proteases to impact the 

regulatory healing processes represents a simplistic, yet novel approach to improving wound healing. 

This technology utilizes the strength of the feedback loops in order to modulate the wound.  

Topical wound and skin dressing products have been formulated using the protease blend reported 

here. Dramatic improvements in inflammation are consistently seen within 12–48 h following application 

of protease containing wound and skin dressings [31-34]. Clinical symptoms of inflammation such as 

itch and heat often improve or resolve quickly in minutes whereas erythema and edema typically take 

longer depending on the wound. In chronic wounds, the fourth day following consecutive protease 

containing dressings often show wound beds that are beginning to differentiate and re-epithelialize [32]. 

These improved clinical observations have been documented in chronic contact dermatitis, acute and 

chronic fungal perineal dermatitis, chronic pressure ulcers and burn scar itch [31-34]. These etiologies 

all clinically display inflammation and associated symptoms and are known to have elevated levels of 

proinflammatory mediators (i.e., TNFα, MMPs, etc.).  

Here is a clinical example showing rapid improvement in inflammation when a protease blend 

containing dressing was used. A patient underwent a radical hysterectomy with bilateral  

salpingo-oophorectomy and lymph node resection. At post-op day 4, patient complained of pain across 

lower belly and pannus with intense itching across lower half of incision and pannus. Examination 

revealed inflammation, vesicles and purulent exudate from base of incision up to and including the 

umbilical area. The lower pannus, abdominal fold and pubic area was red, irritated, warm, moist and 

tender to the touch exhibiting classic symptoms of fungal/yeast skin infection, see Figure 10(a).  
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The incision line and the infected skin was cleansed and patted dry. A 2% miconazole antifungal 

cream with a protease blend (Trivase®, Swiss-American Products, Carrollton, TX, USA) was applied 

to all inflamed areas with special attention to areas of itching. The incision line was dressed with an 

alginate dressing and secured with a secondary dressing. All systemic medications remained 

unchanged. Within 11.5 h following the Trivase application, the patient had significant improvement 

in pain and itch across the lower belly, pannus and pubic area. An examination revealed a marked 

decrease in inflammation, redness, irritation, and warmth. The degree of improvement in erythema and 

inflammation can be readily seen in Figure 10(b). Tenderness, pain and itch were improved such that 

subsequent cleansing and reapplication of Trivase were easy with little discomfort. The entire fungal 

infected area under the pannus fully resolved within 48 h.  

Figure 10. (a) At post-op day 4, patient complained of pain across lower belly and pannus 

with intense itching across lower half of incision and pannus. Area was red, irritated, 

warm, moist and tender to the touch exhibiting classic symptoms of fungal/yeast infection. 

Area was cleaned and an antifungal dressing containing the protease blend applied;  

(b) Clinical improvement within 11.5 h following protease containing antifungal application 

was seen. Patient comfort improved and had significant decrease in itch, pain, inflammation, 

erythema, warmth, irritation and edema. Note the vast improvement in skin color, texture 

and irritation. Entire infected area fully resolved within 48 h. 

 

Obviously patient improvement depends on the individual factors involved, but compared to 

patients with similar symptoms and history, the improvement was markedly rapid. Normally a similar 

patient treated with a 2% miconazole cream without the protease blend would be expected to have 

appreciable symptomatic relief in one to two days and resolution of the infection in four to five days. 

However, the protease blended 2% miconazole cream used here had symptomatic and visual 

improvement within 12 h. The skin infection was completely resolved within 2 days whereas traditional 

miconazole antifungal creams would require several additional days of treatment. Such an improvement 

in patient comfort, morbidity and decrease in time to closure helps lower the risk of additional secondary 

infection and improves patient outcomes. 
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The clinical findings and in vitro study results appear to correlate well, especially in regards to the 

rapid reduction in MMPs, TNFα and SP with the rapid resolution of inflammatory symptoms. In wounds 

and skin displaying inflammation, an application of protease containing dressings typically improves 

patient comfort as inflammation, specifically symptoms of pain, itch and heat, resolve. As the 

inflammation resolves, the wound and tissues become healthier looking with less erythema and edema 

resulting in a firmer, less painful, healthy wound bed. An improvement in patient quality of life and a 

reduction in analgesic medication are expected to be significant and are being studied.  

Thus far, the proteases have been stabilized and used within vehicles of hydrogel, ointment, creams 

and lotion for use on compromised and intact skin as well as acute and chronic wounds. The vehicle 

used affects the release rate speed for quick action or sustained exposure. Incorporating the protease 

formulation into non-amorphous dressings and scaffolds are being investigated and new formulations 

and compounds are being developed. Protease containing wound dressings need to be in contact with 

the wound bed for optimal release and effect. To avoid frequent dressing changes, the dressings need 

to be engineered such that the protease concentration is maintained throughout the wear time. Use of a 

protease coated degradable scaffold (i.e., collagen and hyaluronic acid) for tissue repair is exciting 

because the inflammatory cycle could be held in check and the materials needed for tissue repair 

would be readily accessible to the body. Clinical problems of adhesion formation following abdominal 

or gynecological surgery might be avoided or minimized by use of a protease containing gel or film. In 

acute procedures such as laser resurfacing, inflammation, wound bed protection and cosmesis are 

important factors the first 48–72 h. A protease containing wound dressing that is applied as a solution 

that forms a protective film would be desirable to both surgeons and patients. Combining customized 

protease formulations into various biomaterials could eventually lead to more effective wound healing 

for a variety of wounded tissues.  

It should be noted that these proteases and wound dressings differ greatly from enzymatic wound 

debriders. Commercial enzymatic debriding agents contain high concentrations of specific or  

non-specific proteinases, with or without hydrolases in an ointment base [35,36]. Enzymatic debriders 

are intended to debride slough and wound eschar components in order to prepare the wound bed by 

removing devitalized tissue. In contrast, the protease wound dressing formulations are designed to 

impact specific cytokines, proteins and proteases, not devitalized tissue. Although all debriding agents 

work towards physical removal of nonviable macroenvironment tissue, not all wound debriders can 

preserve viable tissue and growth factors [36]. Conversely, the proteases in this project are selective 

for specific microenvironment proteins which are found near but not in devitalized tissue. As a result, 

the protease blend ingredients are different and overall units of activity are substantially lower than 

commercially available enzymatic debriders.  

The SearchLight microarray technique used was rapid, inexpensive, and required small sample 

sizes. Overall, the technique showed reproducible results when compared with previously assayed 

ELISA results. This technique is an excellent screening tool although it may have slightly more 

variability than comparative ELISA assays. However, since multiple proteins can be tested at the same 

time, it conserves both time and expense. Proteins can be run separately or together making it possible 

to observe protein interactions during incubation without requiring additional steps prior to assaying. 

Like ELISA assays, the SearchLight microarray technique measures the antibody capture of the 

target which may or may not be similar to biological activity levels. Use of validated cell or protein 
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based bioassays will be necessary to correlate the biological activity with the results published herein. 

Some initial testing suggests certain biologically inactive pro-forms of proteins can be cleaved and 

activated following incubation with the proteases at various concentrations, but the preliminary results 

are inconclusive (unpublished data). It is also possible that during the protease incubation period, the 

tertiary or quaternary folded structure could be opened allowing high levels of the target to be detected 

via the microassay, but remain biologically inert. Testing samples with the SearchLight microassays 

and bioassays should help determine the extent of protein activation/deactivation during incubation 

with the proteases.  

The SearchLight technique can accommodate a variety of animal and human fluids, tissue 

homogenates and culture media samples; therefore, future experiments should be able to measure 

subject sample changes in conjunction with the clinical observations. Many of the inflammatory 

factors are highly conserved in mammals and it is theorized the protease blend would behave similarly 

in animal wounds. A porcine wound healing model with protease containing and control wound 

dressings could allow tissue samples to be taken during the healing process. Samples analyzed with 

SearchLight microarray could then be compared to the wound characteristics and healing outcomes.  

A double-blinded, randomized controlled trial (RCT) pilot study evaluated the use of a protease 

containing lotion to relieve pruritus in post burn itch subjects with encouraging results [34]. Control 

and test materials were applied to intact skin, but no tissue sampling was performed due to ethical 

reasons. Additional RCTs are being discussed in the areas of post burn itch and psoriasis. Developing 

validated fluid sampling techniques appear to be essential in order to evaluate clinical outcomes with 

dynamic microenvironmental changes in open and compromised skin. Clinical research with protease 

containing products to further corroborate the in vitro findings is ongoing. 

4. Conclusions  

In the chronic wound milieu, excessive levels of MMPs, elastases, collagenases, proinflammatory 

cytokines, chemokines and neuropeptides are known to impair healing. Using a blend of proteases to 

lower the availability of multiple nocuous proteins appears to help the microenvironment become more 

balanced. Documentation of rapid resolution of clinical inflammatory symptoms and the quick reduction 

in pro-inflammatory proteins in the in vitro studies suggest high correlation between the two. Use of 

definitive proteases in novel wound dressings may improve the wound microenvironment such that 

healing can proceed. 
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