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Abstract: Biomimetic dental implants are regarded as one of the recent clinical advancements in
implant surface modification. Coatings with varying thicknesses and roughness may affect the
dental implant surface’s chemical inertness, cell adhesion, and antibacterial characteristics. Different
surface coatings and mechanical surface changes have been studied to improve osseointegration and
decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell
proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This
review provides a comprehensive update on the numerous biomimetic coatings used to improve the
surface characteristics of dental implants and their applications in two main categories: coating to
improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors
(BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate,
hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-
coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K
and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling
agents) and metal elements (silver, zinc, and copper).

Keywords: dental implants; coatings; surface modifications; antibacterial; osseointegration

1. Introduction

Nowadays, one of the most popular treatment choices for partially and completely
edentulous arches is dental implants [1]. The intervention with implants promised greater
outcomes than the treatment with traditional dentures, with an emphasis on alveolar bone
preservation, esthetics, and prosthesis durability [2]. Osseointegration is essential to dental
implant success, because it requires direct contact and interface between the peri-implant
tissues and the implant surface in the absence of connective-tissue-layer involvement [3].
Osseointegration is also crucial for the success of bone grafts. The implant material’s
biocompatibility, the surface and design characteristics of the implant, both macroscopic
and microscopic, the quantity and quality of bone, an unhindered healing phase, the loading
circumstances, and the implant finish are all important factors in achieving successful
osseointegration of the implant [4,5].

Failure of dental implants can occur for a variety of causes. These include issues
relating to implants, clinicians, and patients; also, infections and foreign-body responses
may contribute to the quick loss of alveolar bone [6]. The loss of alveolar bone, which
is typically accompanied by the deposition of microbial plaque and bacterial infections
known as peri-implantitis, is the most frequent cause of implant failure [7,8].
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For dental implants to be clinically effective in the long term, osseointegration and the
contact between the implant material and the bone are essential [9]. There is considerable
evidence that improving osseointegration is strongly associated with the durability and
prolonged clinical success of dental implants, as demonstrated in the research study [10].
A variety of surface coatings [11] and mechanical surface changes [12] have been studied
to see whether they can improve osseointegration and bone formation. Surface medication
leads to enhanced cell proliferation and growth factors, which results in an increase in
the osseointegration process [13]. According to studies, the surface area of the implant
increases with increased surface roughness, which leads to higher cell proliferation and cell
growth [14]. Because of these surface modifications, the biocompatibility of the implant
material is greatly improved, as is the adsorption of protein and cells [15]. This results in
faster osseointegration and also a shorter period of healing, which is desirable for both
clinicians and patients, and thereby improves the patient’s quality of life [5,9]. Hence,
biomimetic coating is the process of dental-implant surface modification mainly targeting
increasing osseointegration and reducing microbial biofilm formation. The aim of this
narrative review is to provide a succinct update on the numerous biomimetic coatings
that are used to improve the surface characteristics of dental implants, as well as their
applications. Figure 1 shows the overview of this review.
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2. Implant Surface Modifications

Metals are not new in dentistry. However, metals are materials with no biological
activity, which contributes to their limited attractiveness as biomaterials [16]. During the
last three decades, remarkable technological breakthroughs in ceramics and polymers have
permitted their usage in medical devices. Due to their superior biofunctional properties,
ceramics and polymers have replaced many metal-based devices [17]. Due to their strength,
durability, and lifespan, metals still account for over 70% of implant devices in the medical
and dental industries [18]. Ceramics and polymers cannot replace metallic biomaterials.
Metals cannot have biofunctions added to them during production procedures such heat
treatment, casting, melting, or forging [19].

The surface modification (Table 1) has an impact on the material’s surface shape,
structure, and composition, while keeping its core mechanical properties. Metals with
biofunctional characteristics have also been required recently [20]. Dental implants must
be compatible with hard and soft tissue for osseointegration and bone development, and
antibacterial characteristics to prevent biofilm formation. These biofunctional properties
oppose protein adsorption and cell adhesion [21]. A metallic implant reacts with living
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tissues right away when it is placed into a human body. Put differently, the biofunction
of a metallic substance is determined and characterized by its early reaction. Surface
biofunction can be enhanced by surface alteration. For these reasons, many methods of
metal surface modification are being researched and tested (Figure 2) [22–24]

Table 1. Different methods of surface modifications.

Physical Surface
Modifications (Subtractive)

Chemical Surface
Modifications (Additive)

Biological Surface
Modifications (Biomimetic)

Plasma spraying
Low-pressure plasma spraying
High-velocity oxy-fuel spraying
Sputter deposition
Magnetron sputtering
Ion beam-assisted sputtering
Pulsed laser deposition

Sol–gel deposition
Electrophoretic deposition
Electrochemical deposition
Acid etching
Anodization
Peroxidation
Alkaline treatment
Fluoride treatment
Vacuum treatment
Plasma coating

Extracellular matrix
Peptides
Growth factors (BMPs, PDGF, and FGF)
Drugs (antibiotic, statin, and
bisphosphonate)
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3. Biomimetic Coating

Implant dentistry progress encourages the advancement in improving implants’ me-
chanical and biological properties. Aside from altered processes that cause the implant
surface to distort plastically, certain supplementary technologies can produce surface depo-
sitions known as coatings [25]. The most essential way to improve clinical effectiveness is to
update implant-coating technology. Various surface-coating combinations have been used
to increase implant biocompatibility, bioactivity, and antibacterial potential [21]. Biomimetic
dental implants are regarded as one of the most recent clinical advancements in implant
surface modification. Otto Schmitt used the term “biomimetics” for the first time in the
1950s [26]. The structure, synthesis, and operation of biologically created materials, as well
as biological systems and processes, are all included in biomimetics, which is the artificial
emulation of natural processes to create similar products [27–29].
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The ideal characteristics of biomimetic agents are discussed as the following: the
ability to generate proper cell differentiation for promoting new bone formation, easy
synthesis or manufacturing, with no extraction from allografts to reduce the danger of
infectious–contagious disease transmission, resorbability in response to osteogenic activ-
ity, eliminating issues with implant loss owing to coating delamination, not generating
immunological responses in the host, chemical stability until the implant is inserted into
the surgical socket, and finally, a good cost-to-benefit ratio [29–31]. Table 2 shows the key
properties of biomimetic coatings and Figure 3 illustrates the trend in publications related
to biomimetic dental implants, according to PubMed.

Table 2. Key properties of biomimetic coatings.

Properties of Bioactive Coatings Studies Findings

Bioactivity and osseointegration

Mackovic et al., 2012 [32]

With their extremely quick kinetics for bone-like
hydroxyapatite mineralization and non-toxic effects on
osteoblast cells, nanoscaled bioactive glass particles are a
potentially useful material for bone-tissue engineering.

Li et al., 2018 [33]

Carbonated hydroxyapatite (CHA) bioceramic coating with
synergistic surface chemistry and topography alteration has a
bright future as an implant coating, to promote
optimal osseointegration.

Cellular response Yu and Wei, 2013 [34]
Cell adhesion on distinct biomaterial surfaces is directly
influenced by substrate surface qualities, which in turn
influence cell proliferation and differentiation.

Ion dissolution and osteogenesis Wu et al., 2020 [35]
Researchers used biological coating and surface topography
modification to make biomimetic titanium implants with
good-quality osteogenic potential.

Mechanical performance

Sebdani and Fathi, 2011 [36]
The elastic modulus, hardness, and fracture toughness of
produced composite coatings increased as forsterite
concentrations rose.

Erol-Tygun et al., 2013 [37]
Modified bioglasses (such as nanoparticles) may increase the
mechanical characteristics of these materials (hardness, elastic
modulus, and tensile strength).
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3.1. Coating to Improve Osseointegration

Although advances in surface topography have resulted in improved osseointegration,
a wide range of inorganic and organic coatings are being researched, to increase the tissue
integration of dental implants [38]. The mechanical performance of strong biometals
and the bone-bonding potential of bioactive materials can be combined when bioactive
materials are coated on them. The surface features of dental implants, such as chemical
inertness, cell adhesion, and antibacterial properties, can be impacted by coatings that
differ in thickness and roughness [21,39]. The following section mostly discusses current
advancements in dental implants coated with bioactive materials. Figure 4 shows the stages
of osseointegration around dental implants [40].
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3.1.1. Hydroxyapatite Layer and Nanocomposites

Of the several methods, one of the most popular is coating implants with hydroxyap-
atite (HA) [41]. HA is a biologically stable type of calcium phosphate that mineralizes to
strengthen the organic matrix without causing inflammation or immunogenicity [42]. It
is composed of naturally occurring ions from physiological settings, and has good osteo-
conductive and osteointegration properties. Several ion-substituted hybrid anchors paved
the path for implant architecture featuring diverse biological activities. Ion-substituted
HA coatings have been demonstrated to significantly enhance cell attachment, despite the
possibility that they will negatively affect the growth and differentiation of cells attached to
the coating surface [43,44].

Moreover, the bioactivity and osteoconductivity of the titanium substrate can be
enhanced by the HA layer. By using a micro-arc oxidation process to create a porous
hydroxyapatite-coated titanium alloy surface, it will be possible to enhance the mechanical
properties and promote bone formation by increasing the interface contact rate and bone-
to-implant contact [45]. Recently, implant surface qualities have been enhanced by the
use of nano-hydroxyapatite, which can be combined with collagen, bioglass, or titanium
dioxide, to create a composite that mimics the bio-environment of natural bones [46]. The
specific surface area and adsorption capacity of nano-sized particles are greatly increased.
The nano-hydroxyapatite coating provides better bone bonding with dental implants over
time, when compared to a standard dual acid-etched surface. Because HA coatings can
immobilize growth factors and proteins through non-covalent interactions, hybrid coatings
that hasten the healing of bones have been created [21].

In conclusion, since HA’s chemical and crystallographic structures are remarkably
comparable to those of human bone, virtually all biocompatibility issues are resolved,
making its application particularly promising. Nevertheless, HA has certain drawbacks,
including fracture toughness, low tensile strength, and brittleness. However, when created
as a coating for practical use, HA’s benefits can be fully utilized.

Table 3 contains a selection of a list of recent publications on nanoceramics used as
coating materials.
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Table 3. Surface coating of implants using nanoceramics.

Studies Methodology Findings

Ripamonti et al., 2012 [47] Plasma sprayed with
crystalline hydroxyapatite

The findings in nonhuman primates suggest that
geometrically built plasma-sprayed titanium
implants are intrinsically osteogenic, with the
concavities creating an ideal microenvironment for
inducing bone development.

Alghamdi et al., 2013 [11] Calcium phosphate (CaP) coating sprayed
by radio frequency magnetrons

In both healthy and osteoporotic situations, dental
implants modified with a thin layer of calcium
pseudophosphate (CaP) coating efficiently
enhance osseointegration.

Jing et al., 2015 [45] HA coating by micro-arc
oxidation approach

Bone ingrowth and the strength of the
bone–implant interface will be significantly
improved by this coating process.

Carradò et al., 2017 [48] Sodium titanate/hydroxyapatite
nanoporous bilayer

Osteointegration and osteoconduction in vivo are
enhanced by a nanoporous hydroxyapatite/sodium
titanate bilayer. It avoids delamination during
screwing and may strengthen the durability of
HA-coated dental implants without
adhesive failures.

Łukaszewska-Kuska et al., 2018 [49] HA coating using a direct electrochemical
method

Potential advantage in chemical and physical
properties that promote osseointegration.

Hu et al., 2018 [50] Nanostructured HA coating on Ti-6Al-4V
implants

Ti-6Al-4V implants covered with nanostructured
HA may enhance osteointegration in diabetes
animals by increasing angiogenesis and
osteogenesis and addressing pathological bone loss.

Fang et al., 2019 [51] Nanocrystalline
hydroxyapatites with SDF-1

Biomimetic HA microsphere can promote alveolar
bone repair.

Eawsakul et al., 2020 [52] Double layers of gold nanoparticles
The coating possessed homogeneity and good
biocompatibility, promoted osteoblast cell
proliferation and had good stability.

Yu et al., 2021 [53]
Polydopamine nanoparticles functionalized
with hydroxyapatite (HA/nPDAs) coated in
three dimensions on implant surfaces

The coating’s ability to prevent reactive oxygen
species (ROS) and encourage osteogenesis in both
normal and high ROS environments (like diabetes,
periodontitis, and osteoporosis) showed great
promise for enhancing implant osteointegration,
particularly in situations where high ROS levels are
brought on by diseases.

Su et al., 2022 [54]

Composite multifunctional coating of
polydopa-mine/hydroxyapatite/gelatin (PHG)
prepared using gelatin and
polydopa-mine/hydroxyapatite
nano-particles

The proposed PHG coating may increase soft tissue
sealing and bone bonding.

Alcudia et al., 2022 [55]
Porous silver
nanoparticle/polycaprolactone/polyvinyl
alcohol coatings

This coatings exhibited excellent adherence and a
honeycomb-like surface structure that could
facilitate vascularization of the implant and
improve osseointegration.

Mokobia et al., 2023 [56] ZnO-NPs-Coated implants

Implant fixation was improved by ZnO-NPs coating
on metal surfaces because it promoted osteogenesis
and soft tissue integration. Furthermore, to achieve
a strong biological attachment for implants,
osteoconductive nanoparticles formed a chemical
relationship with bone. There is little doubt that
implants with ZnO-NPs placed to their surfaces
exhibit superior clinical outcomes due to a
decreased risk of infection.

3.1.2. Growth Factors

Numerous growth factors are produced by platelets and macrophages, which are
present during the first phase of osseointegration and help to initiate the second phase [57].
To speed up this process, coating materials containing Transforming Growth Factor (TGF),
Platelet-Derived Growth Factor (PDGF), and Fibroblast Growth Factor (FGF) have been
employed [20,58].
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The signal protein known as vascular endothelial growth factor, or VEGF, is involved
in both vasculogenesis and angiogenesis. It has been demonstrated that VEGF increases
alkaline phosphatase (ALP) activity, activates genes and protein expression related to
vasculogenesis, and increases primary rat osteoblast proliferation in vitro. In the related
in vivo experiment, coating the implant with VEGF significantly increases the activation of
osteoblasts and endothelial cells [59,60]. When compared to SiHA or VEGF-coated groups,
respectively, the silicon substituted hydroxyapatite (SiHA)-coated scaffolds combined with
VEGF had a synergistic effect on enhanced ossification, larger bone trabeculae, and greater
angiogenesis degree in a sheep model [61].

Growth factors known as bone morphogenetic proteins (BMPs) are crucial for the
development of cartilage and bone. BMPs have the ability to regulate osteogenic cells
and promote bone mesenchymal stem cell (MSC) development [62,63]. More encouraging
findings are achieved when BMPs are used, since they have a strong biological potential
for osteoinduction. BMPs (BMP-2, BMP-4, and BMP-7) are members of the superfamily of
Transforming Growth Factors (TGF) [64]. When compared to anodized implants, titanium
implants containing BMP-2 had better bone-to-implant contact, more new bone develop-
ment, and a higher density of surrounding bone than acid-etched implants [65,66]. BMP-7
has shown promise as a bone regeneration stimulant throughout the years. Research has
demonstrated that administering a comparatively modest concentration of BMP-7 locally
can enhance osseointegration through the development of a particular delivery mechanism
including a titanium surface covered with poly-ethyl acrylate [67,68].

To conclude, growth factors have been shown to improve bone regeneration and
osseointegration. The initial findings reported in the literature appear encouraging, even
if further clinical research is needed to confirm the long-term benefits of growth factors
as dental implant surface coatings. Table 4 shows a selected list of recent articles on the
surface implant coating with growth factors.

Table 4. Surface implant coating with growth factors.

Studies Methodology Outcomes

Lee et al., 2010 [69]
Titanium implants covered with a
biodegradable polymer and basic
fibroblast growth factor (bFGF).

The study’s findings suggest that electrospraying
polylactic-co-glycolic acid (PLGA) and
beta-fibroblast growth factor (bFGF) onto a
titanium implant may promote bone formation
adjacent to the implant’s surface.

Kim et al., 2013 [66]
Anodized implants covered in a mixture
of human BMP-2 recombinant and
human VEGFs.

Encourage the growth of vertical alveolar bone, yet
it is unknown how rhBMP-2 and rhVEGF work
together.

Schliephake et al., 2015 [70]

Oligodeoxynucleotides (ODNs) were
anchored to the surface of sandblasted
acid-etched (SAE) titanium screw
implants and were hybridized with
complementary strands of ODN
conjugated to rhVEGF165

Accelerate the bone-implant contact of titanium
implants that have been sandblasted and etched to
a certain point. The growth factor appears to have
a limited effect on the tissue right next to the
surface of the implant.

Guang et al., 2017 [59] Coating the implant with VEGF in vivo Experiments could help osteoblasts and
endothelial cells grow.
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Table 4. Cont.

Studies Methodology Outcomes

Yang et al., 2017 [71]

Titanium disc and screw types coated
with human bone morphogenetic
protein-2 (hBMP-2) and human growth
and differentiation factor-5 (hGDF-5) to
allow for the controlled release of the
growth factors.

Enhance the clinical characteristics of implants for
use in dentistry and orthopedics.

Al-Jarsha et al., 2018 [68]
Poly-ethyl acrylate (PEA)-coated titanium
discs were adsorbed with human bone
morphogenetic protein 7 (BMP-7).

Cell adhesion, proliferation, mineralization, and
the production of osteogenic markers (osteopontin
and osteocalcin) demonstrated that, in the absence
of PEA coatings, the system was more effective in
promoting osteodifferentiation of mesenchymal
cells than combinations of titanium and BMP-7.

Keceli et al., 2020 [72] PDGF and BMP-6 are loaded into the
titanium implant after anodization.

There is a considerable probability that the early
osseointegration phase will be prolonged as a
result of a more favorable factor release and its role
in the mineralization, proliferation, and related
gene expression in osteoblastic cells.

Eawsakul et al., 2021 [52]
Creating BMP-2 immobilization on
titanium that has been altered using the
layer-by-layer method (LBL).

Enhanced osteoblast cell proliferation and
exhibited an increase in stability.

Palermo et al., 2022 [60] Using concentrated growth factor (CGF)
permeated dental implants.

Improved osseointegration and post-surgical
problems.

Maekawa et al., 2022 [73]

The first study to use BMP gene delivery
combined with chemical vapor
deposition (CVD) technology on titanium
to encourage in vivo bone-to-implant
contact and repair.

Enhances alkaline phosphatase activity and
osteoblast cell development in vitro; enhances
alveolar bone regeneration and bone-to-implant
contact in a manner akin to high exogenous BMP-7
dosages in vivo. This new method of targeted gene
distribution on implant surfaces provides an
alternative to alveolar bone rebuilding.

3.1.3. Extra Cellular Matrix

Another method to increase dental implant biocompatibility is by accumulating extra-
cellular matrix (ECM) proteins on implant surfaces, which control cell-matrix adhesion [74].
Fibroblast growth factors stimulate fibroblasts to secrete extracellular matrix (ECM) pro-
teins like hyaluronan, collagen, chondroitin sulfate, fibronectin, and elastin during the
proliferative stage of osseointegration [57]. By rearranging intracellular microfilaments and
microtubules, these extracellular matrix proteins seem to be essential for the early stages
of bone healing. They also help cells adhere and spread, and via the action of cell surface
integrins and fibronectin arginine–glycine–asparginine motifs, they guide osteoprogenitor
cell migration to the implant surface [75,76]. However, using such a unique protein has
three significant limitations: the high cost of synthesis, the molecule’s antigenicity and
instability, and the macromolecule’s steric hindrance in focal adhesion [77,78].

There is enough evidence from the literature on the usefulness and contribution of
ECMs as coating materials to the osseointegration process. However, in order to allow
the use of early loading techniques and ensure implant success in patients with damaged
bone tissue, future research should look into the developments in dental implant surface
design including ECMs. These developments are critical to improve the healing process
and enhancing bone formation. Table 5 contains a selection of recent articles on the surface
coating with ECM.
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Table 5. Surface coating with ECM.

Studies Methodology Findings

Morra et al., 2010 [79]
Collagen’s biochemical surface alteration
in reaction to acid-etched
titanium surfaces.

Results suggest that surface topography
(morphological) and surface linkage of
bioactive chemicals (biochemical) signals
might work in concert to produce
multifunctional implant surfaces.

Alghamdi et al., 2013 [80]
Comparison of three types of implants:
uncoated, nano-CaP-coated, and coated
with type 1 collagen.

Results failed to demonstrate a consistent
beneficial effect of the collagen covering
on bone growth throughout a
three-month period, following
implantation.

Lee et al., 2014 [81]

The development of peri-implant bone in
implant groups that were uncoated (UC)
and coated with HA, collagen plus HA
(CH), and collagen, HA, and bone
morphogenetic protein-2 (BMP-2).

Compared to the other groups, the BIC
and new bone formation were
significantly higher in the CH group.
There were no notable variations
observed in the other groups.

Korn et al., 2014 [82]
Collagen was combined with sulfated
hyaluronan (sHya) or chondroitin sulfate
(CS) in the coatings.

Implant surface coatings made of the
selected organic ECM components
demonstrated some potential to affect
in vivo osseointegration.

de Barros et al., 2015 [83]

The implant surfaces underwent
sandblasting and acid etching, and a
portion of them were also coated with
chondroitin sulfate and collagen type II
(collagen/CS).

The width of the peri-implant gap affects
the formation of peri-implant bone. There
was not enough newly formed bone to
completely fill in all the gaps
surrounding each surface. The coating
had a beneficial effect on bone growth
when it was close to the surface.

Raphel et al., 2016 [84]

Elastin-like protein (ELP) that undergoes
chemical modification to allow for new
photocrosslinking and solution
processing techniques to create stable
coatings on the surfaces of
titanium-based orthopedic and
dental implants.

ELP coatings facilitate early implant
loading, and may lessen micromotion,
which may lead to aseptic loosening and
early implant failure. They are also
resistant to surgical implantation and
accelerate osseointegration.

Yin et al., 2019 [85]

TNS-MAP is the designation given to
titanium that has been alkali-treated and
has nanonetwork structures (TNSs)
covered with mussel adhesive
protein (MAP).

TNS-MAP, a novel biocomposite implant
material, with potential applications in
orthopedics and practical dentistry.

Wu et al., 2020 [35]

TiO2 nanotubes or sandblasting and acid
etching the surface of titanium were used
to modify it. Mineralized extracellular
matrix (ECM) made from cultured
bone-marrow mesenchymal stromal cells
was then applied.

The results demonstrated a viable
strategy for producing biomimetic
titanium implants with good osteogenic
capacity, by combining surface
topographical alteration with
biological coating.

Syam et al., 2021 [86]
Dip-coating titanium (IDCT-Ti) implants
with tetrapeptide Gly-Arg-Gly-Asp
(GRGD).

The topography, hemocompatibility, and
wettability of the implant surface—all of
which are linked to enhanced
osteoblast-cell adherence to implant
surfaces and osseointegration—were
positively impacted.

Rappe et al., 2022 [87]

The metallic foams were treated with an
inorganic alkali thermochemical process
and grafted with a cell adhesive
tripeptide (RGD), in order to create a
bioactive surface.

Combining these two techniques may be
beneficial in improving the stability and
osteointegration of porous
metallic implants.
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3.2. The Antibacterial Performance of Coating

Implant-associated infections are a frequent postoperative outcome of implant rehabili-
tation, which can cause patient discontent, additional costs, and, potentially, implant failure.
Microorganisms within implants are shielded from antibodies by biofilms adhering to the
implant surface [88,89]. On the other hand, antibiotic overuse can potentially increase the
spread of drug-resistant microorganisms [90]. In an effort to combat this, a large number of
researchers have worked to create specialized implants with functional coatings that can
either specifically target and kill the bacteria or prevent bacterial adherence and biofilm
formation [91,92]. Figure 5 shows the bacterial interaction with naked implant surface,
a bactericidal surface, and a bacteriostatic surface.
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3.2.1. Drug-Coated Dental Implant

Antibiotics, Simvastatin, and bisphosphonate are examples of drug coating on the
surface of dental implants [93]. Antimicrobial surfaces have been developed in dental
implantology in two different ways, so far. Antimicrobials are actively released from
type I surfaces to inhibit bacterial adherence and promote killing, whereas antimicrobials
are permanently bound to type II surfaces, to prevent long-term bacterial adhesion and
promote killing [94,95]. Implants featuring a type I surface have proven effective in treating
infections related to implants; however, their eluting activities may pose challenges, as the
initial burst of antibiotics happens during the first week of implantation and then decreases
exponentially over time, raising the possibility of generating bacteria resistant to antibiotics
that will persist for a long time [96,97].

A number of bactericidal and bacteriostatic chemicals were permanently added to
implant surfaces, in order to generate a type II surface that prevents the formation of
biofilm around dental implants, in order to solve this restriction of the type I surface [88,98].
For instance, applying a bacteriostatic medication like tetracycline permanently on im-
plant surfaces efficiently eliminated bacteria that may otherwise infect the implant surface,
promoting cell proliferation and bone healing [99]. In a similar way, prolonged van-
comycin coating of titanium implants inhibited Streptococcus aureus colonization, while
speeding up bone repair. [100]. Vancomycin therefore works better than antibiotics that
cling to germs permanently, such as gentamicin, which becomes ineffective when bacteria
are re-exposed [98,101]. However, widespread use of vancomycin would exacerbate the
worry about the spread of vancomycin-intermediate and vancomycin-resistant Strepto-
coccus aureus (VISA) strains [102]. Bisphosphonates (alendronate, etidronate, tiludronate,
and zoledronate) are medications that stimulate osteoblasts and bone production, while
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blocking osteoclastic activity and bone resorption [103,104]. For the antibacterial activity,
bisphosphonate-coated implants revealed a significant decrease in bacterial adhesion [105].
Simvastatin may promote bone growth and enhance bone-to-implant contact by upreg-
ulating the production of VEGF and BMP [106]. Porous titanium surfaces coated with
simvastatin improved alkaline phosphatase activity, type I collagen synthesis, and osteocal-
cin release from pre-osteoblasts, in vitro [107]. In addition, Simvastatin-Hydroxyapatite
coatings are reported to have good antibacterial performance [108].

To sum up, in order to provide targeted drug delivery and therapeutic activities,
a variety of strategies have been used to induce prolonged drug release from dental
implants, for a range of medications. Drug excretion from dental implants has been
documented in a number of in vitro and in vivo animal models, and in experimental
investigations; nevertheless, more clinical study is necessary before considering drug-
eluting dental implants for clinical application.

3.2.2. Antimicrobial Peptide Coating

Innate host defense antimicrobial peptide coatings (AMPs), which are tiny cationic
peptides, demonstrate a wide range of antibacterial activity against different pathogens,
such as gram-positive and gram-negative bacteria, and they also lessen the development of
bacterial resistance [109,110]. Applications for AMPs are numerous; however, one of the
more notable uses is the covalent immobilization method used to biofunctionalize titanium
to confer antibacterial properties [111]. To stop germs from growing on implant surfaces,
a number of bactericidal peptides have been employed, such as GL13K and human beta
defensins (HBDs) [112]. The salivary defense protein BPI fold-containing family A member
2 (BPIFA2) is the source of GL13K, a parotid secretory protein [113]. According to research
by Holmberg et al., GL13K applied to implant surfaces has a bactericidal effect against
Porphyromonas gingivalis, while preserving cytocompatibility and promoting sufficient
proliferation of osteoblasts and gingival fibroblasts [114]. Likewise, HBDs showed broad-
spectrum antibacterial action, and stimulated osteoblast and mesenchymal stem cell growth
when applied to implant surfaces [115,116].

Peptide antibiotics are gaining traction as a viable implant coating material to
lessen/prevent peri-implantitis and increase dental-implant success rates, because of their
wide range of activity and less potential to cause bacterial resistance. It would facilitate their
transition to clinical application if more evidence could be provided about the reliability of
these peptides adsorbed onto implant surfaces and their resistance to buffers, pH changes
and bodily fluids.

3.2.3. Polysaccharide Antibacterial Coating

Natura Chitosan is a neutral cationic polymer generated from the deacetylation of
chitin [117]. Chitosan-immobilized implant surfaces have been shown to exhibit antibacte-
rial characteristics [118,119]. Triethoxysilylpropyl succinic anhydride (TESPSA) functions
as a coupling agent that has the potential to form a stable double-peptide bond with
chitosan [120]. The TESPSA/chitosan coating demonstrated good adhesion resistance at
titanium surfaces, according to Campos et al. [121]. In order to boost antibacterial activity,
Palla-Rubio et al. incorporated silica–chitosan hybrid materials onto titanium implants.
They found that a suitable concentration of 5–10% for encapsulated chitosan displayed
antibacterial features [122]. The antibacterial properties of polyelectrolyte multilayers
containing hyaluronic acid and chitosan were also appreciated against S. aureus [123]. Ag-
conjugated chitosan nanoparticle coating on titanium surface shows promise in preventing
growth of S. mutans and P. gingivalis and in reducing the formation of biofilms and bacte-
rial adhesion [124,125]. Additionally, antimicrobials may be provided by using chitosan
coatings in a biocompatible way, to prevent the growth of bacteria. On the titanium surface,
chitosan coatings containing either 0.2% or 20% tetracycline digluconate were applied and
tested for their ability to fend off infections such Actinobacillus, Actinomycetemcomitans,
and Staphylococcus epidermidis. A total of 89 percent of tetracycline and 100 percent of
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chlorhexidine were released by the coatings in 7 and 2 days, respectively; nevertheless, the
chlorhexidine that was released posed a risk to human osteoblasts and fibroblasts [126].

In summary, considerable progress has been made in using polysaccharides as coatings
with antibacterial properties. A wide variety of the most often utilized coating processes
have been developed, each with varying possibilities for development. Future technological
developments could focus on improving the structures and properties of polysaccharides
as coatings, as well as creating commercially viable polysaccharide-based coatings for
particular uses.

3.2.4. Antibacterial Properties of Metal-Element Components

Antibiotic resistance and a restricted antibacterial range are just two of the drawbacks
associated with using antibiotic coatings on dental implants [127]. Silver, copper and zinc
have also been used in coating of implants as an alternative, because of their antibacterial
properties and the fact that they are available in nanoparticulate forms [128,129]. Silver’s
multilayer antibacterial action is widely recognized, and assures a broad range of antibacte-
rial activity, as well as long-term antibacterial activity [130]. Table 6 shows several elements
that were used as coating that have a good antibacterial property.

Table 6. Surface coating with antimicrobial properties of metals.

Studies Methodology Findings

[131] AgNPs with polydopamine (PDA) coating applied
to titanium.

May successfully prevent the growth of microorganisms
against S. mutans and P. gingivalis.

[132]
Spin-coating technology was used to manufacture a series of
Zn-incorporated coatings on micro rough titanium (Micro-Ti)
using the sol–gel process.

Encourages osseointegration and prevents gram-positive and
gram-negative germs from adhering to surfaces.

[133]

A two-step hydrothermal process was used to create
nanorod-array structured coatings with a controlled-release
feature of zinc (Zn) based on the in situ conversion of ZnO to
ZnO@ZnS. This method gave titanium surface cell selectivity.

Maintained a strong antimicrobial effect against S. aureus and
E. coli

[134] Zinc ions and fluoride integrated into
calcium phosphate coatings.

Possess bactericidal effects, particularly efficient at preventing
the proliferation, colonization, and adherence of P. gingivalis.

[135] TiOB® (chemically oxidized titanium) coating
containing ionic zinc.

Revealed that TiOB® functionalization with ionic zinc
demonstrates bactericidal characteristics similar to a coating
containing gentamicin.

[136] Zinc oxide (ZnO) nanoparticles. Displayed antimicrobial properties

[137] Copper nanoparticles (CuNPs).
Can release copper ions, which are thought to have a dual
function in aiding in the development of new bone and
avoiding infection.

[138] Calcium silicate coatings containing cerium oxide (CeO2-CS).
Promoted osteoblast differentiation, demonstrated significant
antibacterial efficacy against E. faecalis while maintaining
acceptable biocompatibility.

[139] Tantalum-based implant. Coated surface performed significant antibacterial action
against F. nucleatum and P. gingivalis.

[140] Poly (lactic-co-glycolic acid)/Ag/ZnO nanorods coating. Provided a strong antibacterial activity and high degree
of cytocompatibility.

[141]
Using plasma electrolytic oxidation (PEO), selective laser
melting (SLM) produced volume-porous Ti-Ta-Nb-Zr scaffolds
with a surface biofunctionalized.

Provided robust osteogenic stimulation and antimicrobial
activity, without causing cytotoxicity in mammalian cells.

[142] Silver/strontium glass integrated polyelectrolyte multilayer
coatings on 316L stainless steel.

Angiogenesis, osseointegration, and antibacterial activity were
all improved by the PEM/AgSrMBG coating’s prolonged
release of silver and strontium ions.

[143]
Titanium substrates were treated with phosphorus, calcium,
and copper co-incorporated titanium oxide (TiO2) layers,
using plasma electrolytic oxidation.

Bactericidal action against E. coli. The biological reaction to the
phosphorus-, calcium-, and copper-containing layer has
improved MG-63 osteoblastic cell integration, proliferation,
and viability.

[144]
By using one-step micro-arc oxidation (MAO) technology, zinc
and strontium were added to the surface coating of implants
in different concentrations.

Bone marrow mesenchymal stem cells (BMSCs) can be
effectively promoted to proliferate and differentiate when
exposed to S. aureus and P. gingivalis; exhibits good
antibacterial activity against these bacteria, and greater
proliferation is seen in the cells on the coating with a higher
strontium level.
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Antibacterial metal alloys exhibit strong and durable antibacterial capabilities, together
with excellent mechanical properties, corrosion resistance, and all-round qualities that
point to their possible future applications. Nonetheless, a few issues remain prior to the
clinical application, such as the exact antibacterial mechanism and possible toxicity of
some elements.

4. Conclusions

Biomolecules, such as bioactive chemicals and multifunctional molecules, can be
attached to implant surfaces to enhance the osteogenetic process around implants. This pro-
cess includes inducing cell adhesion, providing an osteogenic stimulation, and potentially
having antimicrobial properties.

To improve osseointegration, the use of hydroxyapatite and BMP in the coatings of
implants appear to be the most promising methods. The treatment of implant surfaces
with nano-hydroxyapatite, which can be combined with collagen, may create a composite
mimicking the bio-environment of natural bones, and thus reduce inflammation and
accelerate the healing of the peri-implant bone.

Growth factors such as VEGF, which is involved in angiogenesis, but especially BMPs,
are crucial for increasing bone-implant contact and osteoinduction, allowing the develop-
ment of new bone on the implant periphery.

The covering of implant surfaces with ECM proteins such as growth factors from
fibroblasts appears essential at the early stages of bone healing, but presents significant limi-
tations, such as their high synthesis cost, antigenicity and instability of the coating material.

Concerning the antibacterial performance, the addition of tetracycline or bisphospho-
nate to type II implant coatings to prevent bacterial adhesion and the formation of biofilms
seems to be the method most often used.

Regarding AMPs to prevent germs from growing on implant surfaces, GL13K and
HBDs showed broad-spectrum antibacterial action, while stimulating the growth of os-
teoblastic and mesenchymal stem cells.

Other antibacterial compounds, such as TEPSA, chitosan, or multilayer silver implant
coatings have also reported good results, but should be developed particularly against the
resistance or profiling of specific strains of the oral environment, such as S.aureus, S. mutans
and P. gingivalis.

Therefore, long-term clinical studies are still necessary to assess the effectiveness
of various coatings and ascertain the success rates of novel implant coatings, even in
light of the encouraging results. In addition, more investigation is needed to ascertain
whether standard implant surface treatments and coatings can yield dependable therapeutic
outcomes, especially with regard to attaining osseointegration stability and preventing
inflammation, mobility, infection and mechanical issues.
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