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Abstract: Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mecha-
nisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavail-
ability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of
brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary
bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter)
were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of
CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic
hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced
aminothiols level in plasma, and the glutathione redox status in the brain, which were induced
by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the
extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation,
and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect
mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a
promising trend in the treatment of acute disorders of CBF.

Keywords: aminothiols; cerebral blood flow; cerebral ischemia; cysteine; glutathione; homocysteine;
platinum nanoparticles; rat; S-adenosylhomocysteine; S-adenosylmethionine

1. Introduction

Disorders of cerebral circulation are one of the major global causes of death and
disability [1]. An impaired cerebral blood flow (CBF) plays an important role in the
pathogenesis of secondary brain damage caused by stroke, injury, or cardiac arrest [2,3].
One of the most common and clinically important indicators of CBF disorders is the
occurrence of postischemic brain hypoperfusion despite the restoration of blood supply
to ischemic sites because of the increased resistance of cerebral vessels. Postischemic
hypoperfusion is considered a major factor in the spread of edema during stroke [4].
Therefore, the search for new approaches to reducing secondary brain damage is important.

To date, there are essentially two concepts for the treatment of acute CBF disorders.
The first involves the use of thrombolytics (recombinant tissue plasminogen activators) or
endovascular thrombectomy, which enables recanalization and restoration of blood flow
in damaged vessels. The effectiveness of this approach in practice is significantly limited
by the time window available (up to 3–4.5 h for thrombolysis and 6–24 h for endovascular
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thrombectomy) and the possibility of severe complications or contraindications after use [5,6].
The second concept involves the use of various agents that have a neuroprotective effect.

The brain has a high rate of oxygen consumption, and unlike most organs, it has
no internal energy reserves. This causes a rapid development of oxidative stress (OS) in
the brain, a process in which the generation of reactive oxygen species (ROS) prevails
over the ability to eliminate them under conditions of ischemia and during subsequent
reperfusion. Also, cerebral ischemia causes rapid and strong activation of the sympathetic
nervous system [7], which apparently triggers the development of systemic endothelial
dysfunction (ED) [8]. Due to the key role of OS in the development of ischemic brain
damage [9], ED [10], and postischemic hypoperfusion [11], the use of antioxidants is one of
the promising areas of neuroprotection. For example, there have already been a few clinical
studies showing the effectiveness of the low-molecular-weight antioxidants edaravone [12]
and N-acetylcysteine [13].

The development of nanotechnology has led to the emergence of new approaches for
the treatment and diagnosis of cerebrovascular diseases based on the use of biocompatible
nanoparticles as transporters of drugs or diagnostic probes [14,15]. For instance, there are
nanoparticles of noble metals (including platinum (nPts), gold, titanium, and palladium)
that have catalytic activity. Unlike the salts of these metals, nanoparticles are not toxic,
although the details of their metabolism are not clear [16]. The catalytic activity of nPts has
been demonstrated for a wide range of redox reactions, including the decomposition of
ROS such as H2O2, OH•, and O2

− [17,18]. However, nPts can also catalyze the oxidation
of biomolecules.

Low-molecular-weight aminothiols (cysteine—Cys, glutathione—GSH, homocy-
steine—Hcy, and others) are highly sensitive to OS. In response to cerebral ischemia,
there is a rapid decrease in the content of their reduced forms in blood plasma as well
as a drop in the redox status of the main intracellular antioxidant (GSH) in the ner-
vous tissue itself [19,20]. GSH has previously been shown to be associated with stroke
severity [21]. The important protective role of GSH was also confirmed by the efficacy
of using N-acetylcysteine (a readily available substrate for GSH synthesis) in models of
ischemia [22,23] and in the treatment of stroke [13]. An elevated Hcy level, the damaging
effect of which is associated with the induction of OS [24], is considered a risk factor for
stroke since a decrease in Hcy level can reduce this risk [25]. The effect of nPts on the
homeostasis of aminothiols in cells is still poorly understood. Previously, it was shown that
nPts decreased the cellular GSH level, and this effect was correlated with the particle size
in an inverse manner but appeared not to be based on the formation of ROS [26]. To the
best of our knowledge, studies on the effect of nPts on aminothiols under stress conditions
have not yet been carried out.

Under ischemia–reperfusion injury, the development of OS leads to the activation
of a number of transmethylases in the nervous tissue, which manifests as hypermethyla-
tion of DNA, noncoding RNA, and histones, as well as disruption of the biosynthesis of
polyamines and acetylcholine, which in turn enhance inflammatory damage to neurons [27].
During these transmethylation reactions, S-adenosylmethionine (SAM) is consumed and
S-adenosylhomocysteine (SAH) is formed. Thus, the SAM/SAH ratio is referred to as the
global methylation index [28]. Numerous works involving models of cerebral ischemia
have shown a protective effect of SAM administration [29–31], including decreasing the
GSH content in the brain [32]. However, studies on the effect of nPts on the balance of SAM
and SAH have not yet been conducted.

Although the metabolism of nPts and the range of their biological effects remain poorly
understood, recent models proposed that the main mechanism by which inflammatory
reactions are inhibited in the presence of nPts is the suppression of OS in cells [16]. A
previous study showed that the introduction of nPts mitigated damage to brain tissues
caused by a 1 h occlusion of the mesencephalic artery in rats. The introduction of nPts led to
an improvement in postischemic motor function and a decrease in the size of infarction in
the brain cortex. These results indicated that the degradation of collagen IV, the activation of
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metalloproteinase-9, and the production of O2
− in the ischemic area were all inhibited [33].

In addition, the introduction of nPts reduced the negative side effects of stroke treatment
via tissue plasminogen activator in the same model [34].

In the study on the neuroprotective effect of substances, one of the key issues is their
bioavailability; i.e., the ability to penetrate through the blood–brain barrier (BBB), which is
a complex of membranes and intercellular contacts formed by the endothelium of blood
vessels, astrocytes, and pericytes [35]. The BBB prevents the transfer of many substances
from the blood to the brain. Although it has previously been shown that metal (in particular,
gold) nanoparticles penetrate the BBB through the mechanisms of passive diffusion, carrier-
mediated transport, adsorptive-mediated endocytosis, or pinocytosis [36], there are no data
yet on how the BBB can be made permeable to nPts.

Thus, based on the neuroprotective effect of nPts in vivo, we set out to shed light on
(1) whether nPts are able to effectively suppress systemic OS and postischemic hypoperfu-
sion induced by acute impairment of cerebral blood flow, and (2) whether the effect of nPts
is due to a direct effect on brain tissue or due to the extracerebral effect of nanoparticles. To
achieve these objectives, we determined indicators of systemic (reduced plasma levels of
aminothiols) and brain (reduced GSH, SAM, and SAH in the hippocampus) OS, CBF, and
nPt content using a model of temporary global cerebral ischemia in rats.

2. Materials and Methods
2.1. Animals and Experimental Design

Male outbred white rats (300–350 g) were used in the experiments. The rats were
housed under conditions of controlled temperature (19–25 ◦C) and humidity (30–70%) in
Macrolin cages with food and water available ad libitum. Light was on from 7:00 a.m.
until 7:00 p.m. All experimental procedures involving rats were approved by the Ethical
Committee at the Institute of General Pathology and Pathophysiology and were carried
out in accordance with the recommendations in the Animal Care and Use Committee
guidelines.

The animals were randomly divided into four groups. Then, 0.9% NaCl was ad-
ministered to the first group (n = 10) and nPts to the second group (n = 10). These rats
underwent a sham operation (control). The third (n = 19) and fourth (n = 10) groups
underwent temporary bilateral occlusion of the common carotid arteries (tBCAO) with
the administration of nPts or 0.9% NaCl, respectively. Five rats from each group were
euthanized for morphological examination of the brain at 3 and 7 days after tBCAO. Five
rats from each group were euthanized for determination of reduced low-molecular-weight
aminothiols (rCys, rGSH, and rHcy) in blood plasma at 3 h after reperfusion. Five rats from
each group were euthanized for determination of reduced GSH and oxidized GSH, SAM,
and SAH in the hippocampus at 3 h and 3 days after reperfusion. Nine rats from the third
group were euthanized for determination of nPts in the hippocampus, blood, and liver at
3 h after reperfusion. The outline of the experiment is presented in Figure 1.
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2.2. Surgical Technique (tBCAO) and CBF Determination

The animals were anesthetized with 50 mg/kg of pentobarbital sodium (Nembutal®,
Ovation Pharmaceuticals, Deerfield, IL, USA). The depth of anesthesia was assessed via an
absence of response of the vibrissae to a pain stimulus. The femoral artery was catheterized,
and heparin was administered intra-arterially at a dose of 500 U/kg to allow the mea-
surement of the MAP and taking of blood samples from the animals. Rectal temperature
was maintained close to 36.7 ◦C using a heat lamp. The animals were euthanized with an
overdose of pentobarbital sodium at the end of the experiments.

The tBCAO was induced as described previously [19]. Systemic blood pressure was
reduced by 40–45 mm Hg by inducing hemorrhage (approx. 30% of blood volume or
2.5 ± 0.2 mL/100 g body weight). This was followed by bilateral occlusion of the common
carotid arteries for 10 min followed by reinfusion of blood and removal of the carotid
artery clips. In the control group, a sham procedure was performed without blood loss or
compression of blood vessels. One milliliter of nPts (0.22 mM in 0.9% NaCl) or 0.9% NaCl
was administered intraperitoneally at the beginning of reperfusion. CBF was measured
using the laser Doppler flowmetry method before the start of tBCAO, during ischemia, and
120 min after reperfusion, as described previously [37]. The LAZMA software (v. 2.2.0.507;
LAZMA, Moscow, Russia) was used for CBF analysis.

2.3. Synthesis and Characteristics of nPt

H2PtCl6·6H2O, trisodium citrate dihydrate, NaBH4, polyvinylpyrrolidone (PVP) with
a low molecular weight of 12,600 ± 2700 g/mol, and 0.9% NaCl solution in water for
infusion were used for synthesis. A total of 2 mL of sodium citrate (28 mg/mL) aqueous
solution, 2 mL of PVP aqueous solution (10 mg/mL), and 2 mL of NaBH4 (3 mg/mL) were
added to 17 mL of H2PtCl6 aqueous solution (0.15 mg/mL). The efficiency of Pt reduc-
tion was evaluated using the reaction in which a colored complex of Pt ions with iodide
ions is formed in acidic conditions [38]. To obtain a formulation suitable for biomedical
applications, nPts were removed from the reaction mixture via precipitation and ultra-
centrifugation at 140,000× g for 40 min, resuspended in physiological solution, and then
filtered through a membrane with a 0.22 µm pore diameter. For the animal experiments, an
nPt solution with a Pt concentration of 0.22 mM (0.04 mg/mL) was used.

Electron micrographs and electron diffraction patterns were obtained via transmission
electron microscopy using a LEO 912 AB OMEGA microscope (Carl Zeiss, Jena, Germany).
The samples for analysis were prepared by applying a drop of the nPt solution to a copper
mesh and drying it in air. A Zetasizer Nano ZS photonic particle analyzer (Malvern, UK)
was used to determine the size and ζ potential of particles. The analyzer had a particle
measurement range of 0.6 to 6000 nm. The operating temperature range was 2–120 ◦C, the
angle of detection of scattered light was 173 ◦C, a helium–neon laser with a wavelength
of 633 nm was used as a light source, and the power of the light source was 5 MW. The
device determined particle sizes by measuring the rate of fluctuation of scattered light by
particles. The measurement was carried out in automatic mode according to the standard
procedure. The glass cuvette was filled with 1 mL of the sample and loaded into the cuvette
compartment of the device. The beam of light emitted by the laser passed through the
attenuator and entered the sample cell. The light scattered by particles was detected by the
detector. The electrical signal of the detector, which is proportional to the light intensity,
was processed by the correlator according to mathematical algorithms embedded in the
software. When determining the ζ potential, an immersion-type electrode was lowered
into the cuvette filled with the sample. The sample was exposed to an electric field, and the
electrophoretic mobility of particles in the electric field was used to calculate the ζ potential.
The solvent was water.

2.4. Determination of Pt Levels in Tissues

The Pt levels in blood plasma, liver, and brain samples were determined using an X-
series inductively coupled plasma mass spectrometer (ICP-MS; Thermo Scientific, Waltham,
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MA, USA) as described previously [39]. Sample preparation was performed via acid
decomposition of the samples in an autoclave with resistive heating [40].

2.5. Morphological Examination of the Brain

A morphological examination was performed at 3 and 7 days after tBCAO. In anes-
thetized rats, the thorax was opened, and perfusion of the brain was performed transcar-
dially through the left ventricle using 20 mL of isotonic sodium chloride followed by 20 mL
of 2.5% glutaraldehyde in phosphate-buffered saline. The brain extracted from the skull
was additionally fixed and stored in a 2.5% solution of glutaraldehyde at a temperature
of +4 ◦C. Tissues were sampled from the hippocampus via a cut of 2–5 mm from the
bregma in the caudal direction [41]. Then, 10 µm thick hippocampal sagittal sections were
obtained using a vibratome (Leica VT1000S) and stained with Luxol fast blue Kluver and
Barrera (Bio-Optica). The sections were dehydrated in absolute alcohol and covered with
coverslips. Images of the dentate gyrus of the hippocampus were taken using an Olympus
BX51 microscope. Quantification was performed using the cellSens Standard software
Ver. 2.3. It consisted of determining the content of hyperchromic neurons in the sections as
a percentage of the total number of neurons in the studied area of the dentate gyrus.

2.6. Determination of Reduced Low-Molecular-Weight Aminothiols

Blood samples (1 mL) were obtained from the tail vein 3 h after reperfusion. Venous
blood was collected into tubes containing sodium citrate and centrifuged at 4500× g for
3 min. The blood plasma was collected and processed as described previously [20], frozen
at −80 ◦C, and stored until analysis.

The brains were removed, and the hippocampus was isolated at 3 h and 3 days after
reperfusion. Brain slices (20–50 mg) were prepared and homogenized in acetonitrile with
5,5′-Dithiobis (2-nitrobenzoic) acid (DTNB) or iodoacetamide (IAA) for rGSH and oxidized
GSH determination, respectively. A total of 10 mL of extragent (20 mM of DTNB with
2.5 mM of internal standard penicillamine (PA) or 5 mM of IAA) was added per 1 g of
tissue. The brain slices (20–50 mg) were homogenized in 10% HClO4 (10 mL per 1 g)
for SAM/SAH analysis. The probes were centrifuged for 10 min at 15,000× g, and the
acetonitrile-containing supernatants (100 µL) were dried under vacuum (45 min at 60 ◦C).
Pellets were resuspended in 0.1 M of Na-phosphate buffer with a pH of 7.4 before analysis
using ultra-performance liquid chromatography (UPLC) as described previously [20].

We used an UPLC H-class ACQUITY system (Waters, Milford, MA, USA) with a PDAλ

UV detector (λ = 330 nm) to measure the concentrations of reduced low-molecular-weight thiols.
Ten microliters of each sample was injected onto an Eclipse Plus C18 100 × 2.1 mm × 1.8 µm
column (Agilent, Santa Clara, CA, USA). The column was equilibrated with 2% acetonitrile
for 3 min. Elution was performed at a flow rate of 0.2 mL/min and a column temperature of
25 ◦C in a solution of 0.15 M of NH4 acetate with 0.1% (v/v) HCOOH with a linear gradient
of acetonitrile from 2% to 16% over 5 min and then at 50% for 1.5 min. The chromatograms
were processed using MassLynx 4.1 (Waters, Milford, MA, USA). The data were collected and
analyzed using IBM SPSS Statistics (v. 22; IBM SPSS, Armonk, NY, USA).

2.7. Statistical Analysis

Where appropriate, the data are presented as the mean ± standard deviation (SD).
A comparison of group dispersions (homoscedasticity) was performed using the Fisher–
Snedecor test with a significance threshold of α = 0.05. Paired and unpaired t-tests were
conducted to compare the results between the experimental groups. For the analysis,
2-sided p < 0.05 was considered to be significant.

3. Results
3.1. nPt Characteristics

The nPts were assessed using dynamic light scattering and transmission electron
microscopy. The formation of the face-centered cubic phase of the metal was confirmed
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by the electron diffraction pattern according to the ratios of diffraction ring diameters.
The ratios of diffraction ring diameters corresponding to {111}, {200}, {220}, {311}, and
{222} planes were

√
3:,
√

4:,
√

8:,
√

11:, and
√

12, respectively. The diffuseness of the
diffraction rings was due to the small particle size. The absence of extraneous reflexes
indicated the absence of an admixture phase of oxides, hydroxides, or complex metal
compounds (Figure 2A). The nPt size determined via transmission electron microscopy was
3 ± 1 nm. Dynamic light scattering was used to determine the hydrodynamic particle size,
which was 28 nm (Figure 2B), while the ζ potential of the nanoparticles was negative at
−8.83 mV (Figure 2C). The hydrodynamic particle size determined by dynamic light scat-
tering exceeded the nanoparticle diameter determined by transmission electron microscopy.
This could be because the PVP stabilizer shell thickness contributed to the hydrodynamic
particle size, because of the possible formation of associate nanoparticles, or because of
features of the hydrodynamic size calculation using dynamic light scattering. The nPt
preparations obtained were suitable for further study of their biological effects because
they did not contain impurities from the reaction mixture and did not form aggregates in
the saline solution.
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3.2. Morphological Examination of the Brain

The sham operation was accompanied by a background level of hyperchromic neurons
(~5%) in the cornu ammonis (CA1 region) of the hippocampus (Figure 3A,B). This indicator
increased to 22 ± 7% three days after tBCAO in the rats injected with 0.9% NaCl, but the
level of hyperchromic neurons did not exceed the background level (2.5 ± 1.2%) in the rats
injected with nPts. However, one week after tBCAO, approximately the same high rate of
neuronal apoptosis (~22%) was observed in both groups, as shown in Figure 3.

3.3. Influence of nPts on CBF and MAP

The introduction of nPts per se had almost no effect on the MAP, but it slightly
increased the level of CBF in the intact rats (Figure 4A,B). The tBCAO caused an approx-
imately twofold decrease in the MAP and a significant decrease in the CBF from 23.4 to
3.3–3.4 perfusion units (p < 0.001). After 2 h of reperfusion, the MAP level in the tBCAO and
tBCAO + nPt groups remained significantly lower than the initial level (p < 0.01), while the
CBF level in the tBCAO group was approximately 60% of the initial level (p < 0.001), which
indicated cerebral hypoperfusion. At the same time point, this indicator was significantly
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higher (p < 0.001) and was more than 95% of the initial level in the tBCAO + nPt group.
Figure 4C,D show the changes in CBF in these groups of animals.
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3.4. Determination of Pt in Rat Tissues

A high level of Pt was observed in the liver, and a significantly lower level was
observed in the blood three hours after the administration of nPt (Table 1). In the hip-
pocampus, the Pt level could not be determined in some animals because it was below the
detection limit (0.3 ng/g of sample). In other rats, the Pt content in the hippocampus did
not exceed 1.5 ng/g. Taking into account the average volume of blood in the hippocampus
(7.15 µL/g [42]) and assuming a blood density of 1.05 g/mL [43], we calculated that the con-
tent of Pt directly in the nervous tissue of the hippocampus (i.e., without blood) averaged
less than 1 ng/g (Table 1).

Table 1. Pt levels (ng/g) in rat tissues (N = 9).

Rat No.
Tissue Type

Liver Blood Hippocampus (Whole) Hippocampus (without Blood)

Median 167 44 0.83 0.74
Min. 26 2.9 <0.3 (N = 3) <0.3 (N = 3)
Max. 467 97 1.5 1.1

3.5. Effect of nPts on the Brain and Plasma Aminothiols

The tBCAO caused a drop in the level of rCys and especially in the level of rGSH (see
Figure 5). Interestingly, the level of rHcy, in contrast, was increased. The introduction of
nPts per se caused an increase in the rCys level with no effect on rGSH and rHcy. In the
presence of tBCAO, the introduction of nPt prevented a decline in rCys and rGSH, but it
had almost no effect on the rHcy level.
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Changes in the global methylation potential (SAM/SAH) in the hippocampal tissue
are shown in Figure 6. Despite a fairly significant variation in this indicator in the control
groups, there was a significant decrease in its value three days after tBCAO in the rats
that were injected with 0.9% NaCl. However, in the rats injected with nPts, the global
methylation potential remained at the same level.
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Figure 6. The effect of tBCAO and nPts on SAM/SAH ratio in the hippocampus. * p < 0.05.

A decrease in the level of reduced GSH was already observed after three hours of
reperfusion in the hippocampus in both the 0.9% NaCl- and nPt-treated rats (Figure 7A).
This indicator continued to decrease three days after tBCAO in the NaCl-treated group, but
it returned to the initial level in the nPt-treated group (Figure 7A). The level of oxidized
GSH increased significantly after three hours of reperfusion in all groups with tBCAO
(Figure 7B). In general, it could be conjectured that tBCAO caused a significant decrease
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in the GSH redox status (i.e., reduced/oxidized GSH ratio) in the hippocampus, but nPts
attenuated this effect in the first hours of reperfusion (Figure 7C).
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4. Discussion
4.1. nPt Synthesis

Aqueous dispersions of nPts can be obtained using a variety of chemical methods
based on the reduction of Pt salts in aqueous solutions with various reducing agents in
the presence of stabilizers [44]. However, not all nPt drugs are suitable for studying the
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bioeffects of nPts because of the presence of nonreduced metal ions, toxic stabilizers, or
oxidation products of the reducing agent used, which are present in excess. In addition,
nPts stabilized by ionic molecules can exhibit aggregation in salt media [16].

We synthesized nPts by reducing an aqueous solution of Pt salts with NaBH4, which
can quickly and completely restore Pt ions [45]. It is important to note that the obtained
nPts were characterized by small sizes (3 ± 1 nm), which could play a positive role in
their ability to penetrate the BBB. We used PVP as a stabilizer because it is nontoxic and
biocompatible. nPts were separated from the reaction mixture using ultracentrifugation,
followed by resuspension in saline. Thus, we obtained a stable nPt formulation containing
no impurities from the reaction mixture, which was suitable for biomedical applications.

4.2. The Effect of nPts on Aminothiols

The effect of nPts is associated with the suppression of ROS production (particularly
that of O2

−) in cerebral tissues [33,34]. Aminothiols are one of the natural components of
antioxidant protection, but they undergo oxidation by ROS and their oxidation products
have a damaging effect on both the vascular endothelium and neurons. The level of
their reduced forms is low, and in rats, their level usually constitutes 5–10% of the total
content in blood plasma. Reduced GSH is a major thiol inside cells, and its content is
many times higher than that of other thiols. Ischemia or brain trauma causes systemic
disturbances in metabolism involving the peripheral vessels that induce a massive release
of ROS, particularly of superoxide anion, which is apparently the result of activation of the
sympathoadrenal system [7,8]. This is the most obvious reason for the rapid decrease in the
level of reduced aminothiols and in the level of total blood plasma sulfhydryl groups [19,46].
However, there is still no clear understanding of the role of systemic OS in the pathogenesis
of ischemic brain damage and the prospects for using systemic OS as a therapeutic target
in stroke.

In our experiments, the introduction of nPts prevented the decrease in the levels of
rCys and rGSH during the first hours of reperfusion, which demonstrated their effectiveness
in suppressing systemic OS. It has been shown that the administration of antioxidant and
nonspecific carvedilol adrenergic antagonists significantly increases the levels of rCys,
rGSH, and rHcy in plasma in intact rats but is unable to maintain their levels in the tBCAO
model, despite their pronounced antioxidant effect in brain tissue [47,48]. However, the
β-adrenergic receptor antagonist metoprolol (which is not an antioxidant in high doses)
attenuates the postischemic decrease in rCys, rGSH, and rHcy in the same model [20].

GSH is the main intracellular antioxidant, and it is used to neutralize lipid hydroper-
oxides and H2O2 (via GSH-peroxidase) and remove xenobiotics from cells (via GSH-S-
transferase); maintaining its level prevents pro-inflammatory pathways, such as activation
of c-Jun N-terminal kinase [49]. A decrease in the level of reduced GSH in the brain tissue
is a consequence of the development of local OS in the brain during ischemia/reperfusion
injury. Although we did not find a protective effect of nPts on the content of the reduced
form of GSH directly in the hippocampus in the first hours after tBCAO, the administration
of nPts attenuated the growth in the oxidized form of GSH, and therefore the decrease
in its redox status was less pronounced during this period. The positive effect of a single
injection of nPts on GSH synthesis persisted even three days after reperfusion, which was
expressed in the ability of the brain to maintain a normal level of reduced GSH despite an
increase in its oxidized form and, as a result, a violation of its redox status.

The SAM/SAH ratio (global methylation index) is also an important indicator of cell
viability, which decreases with ischemic brain damage [20]. Our results showed that nPts
suppress this ischemia–reperfusion effect as well. Thus, it can be concluded that nPts
have a protective effect on both the general and brain metabolism of aminothiols, which is
consistent with their antioxidant activity in vivo.



J. Funct. Biomater. 2023, 14, 348 12 of 17

4.3. The Effect of nPts on CBF

The model of ischemia we used leads to a temporary decrease in cerebral flow to
critical thresholds at which both necrosis and apoptosis processes are triggered. Therefore,
a rapid restoration of blood flow is very important for the normal activity of neurons.
The return of spontaneous circulation does not naturally result in a recovery of cerebral
perfusion, as cerebral perfusion failure after ischemia is well described in animal models
with no reflow, hypoperfusion, and hyperperfusion [50]. Hyperperfusion is the result of a
number of interrelated factors: impaired metabolism of vasodilators (nitric oxide—NO and
prostacyclin), an increase in the level of vasoconstrictors (endothelin-1 and noradrenaline),
a decrease in the production of anticoagulants by the endothelium with the formation
of microthrombi, cerebral edema at the stage of ischemia because of hemostasis, and an
increase in blood–brain barrier permeability. ROS and reactive nitrogen species formed
during the activation of inducible NO synthase (iNOS), NADPH oxidase, and cyclooxyge-
nase are actively involved in these processes [11,51]. Superoxide anion produced during
the last two reactions in both cerebral vessels [52] and peripheral arterioles [37] reacts with
NO to become peroxynitrile, which in turn inhibits Ca + 2/K + BK channels and leads to
vasoconstriction [53].

Because the ability of nPts to reduce superoxide anion production has been shown
in both cell cultures and models of cerebral ischemia [16,33], the effectiveness of nPts in
regulating cerebrovascular autoregulation, as shown in the present study, may be the result
of a direct antioxidant effect of nPts on brain vessel endothelium. Although little is known
about the specific mechanisms of ED attenuation by nanoparticles in vivo, experimental
work in cell cultures has shown that nPts can maintain NO bioavailability not only by
neutralizing ROS but also by catalyzing the release of NO from its bound forms [54] and
preventing iNOS activation [55,56].

In addition, CBF is under the neurogenic influence of sympathetic fibers and signals
associated with the intensity of neuron metabolism [57]. Although the data reporting an
influence of the sympathetic nervous system on CBF are controversial [58,59], the role of
spreading depolarization of gray matter in the brain during CBF disruption is undeniable
and is considered to be a therapeutic target for secondary lesions in the brain [11]. Spreading
depolarization causes not only pronounced local metabolic effects but also vasospasm in
the brain, which contributes to enlargement of the ischemic area (penumbra) during the
reperfusion period [60]. Therefore, the elimination of this ischemic hypoperfusion effect
in the presence of nPts might also be explained through indirect mechanisms involving
suppression of sympathetic nervous tissue activation or spreading depolarization.

4.4. Protective Action of nPts on Hippocampal Neurons during tBCAO

It is known that hippocampal structures are highly vulnerable to ischemia, and the
analysis of regions such as the cornu ammonis or dentate gyrus is widely used to assess
brain damage resulting from global ischemia [61]. Apoptotic changes in the hippocampus
develop for quite a long time after ischemia/reperfusion; therefore, this process becomes
visible morphologically only after a few days, and within 7–10 days, a stable pattern of
hippocampal damage is usually formed in models of global cerebral ischemia in rats [62,63].
In this regard, we sought to determine the intensity of apoptosis approximately at the peak
of its growth (three days) and by the time a stable focus of damage to the hippocampus
was formed (seven days). A previous study demonstrated the protective effect of nPt on
the volume of infarction in the brain cortex (but not in the dorsal striatum) in a more severe
model of ischemia (1 h occlusion of the mesencephalic artery). Our results demonstrated
that nPts effectively prevented neuronal death in the hippocampus during tBCAO; however,
their effect was not long-lasting after a single dose.

Based on the numerous studies that demonstrated the direct antioxidant action of nPts
in vitro and in vivo, the preserved viability of neurons in the hippocampus in the tBCAO
model could also be explained by an antioxidant effect of nPts directly on the brain tissue.
In addition, these studies demonstrated a high rate of nPt absorption and distribution
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in the body. One of the most urgent problems of using various nanoparticles in stroke
therapy is their poor distribution in the brain [14]. Once inside a cow, nPts are rapidly
absorbed by the liver, kidneys, and spleen by monocytes; therefore, their half-life in blood
circulation is severely limited. The endothelium is also actively involved in the transport
of nPts from the blood to tissues, but to date, there have been few studies on the ability
of nPts to overcome the BBB in normal and pathological conditions. In general, it can
be said that there is an inverse relationship between the sizes of nanoparticles of various
origins and the ability to penetrate the BBB [14]. It is also known that various damaging
factors (trauma, ischemia, and hypoxia) cause an increase in the BBB when the brain is most
susceptible to damage [64]. Therefore, in order to have an idea of the actual distribution of
nPts in the body (especially in the brain) during the direct action of the damaging factor, we
determined the Pt content three hours after the start of reperfusion. None of the previous
studies measured the level of nPts in the brain tissue, and our study showed that after
intraperitoneal administration, nPts rapidly accumulated in the liver, where their level
could reach hundreds of nanograms per gram, but in the hippocampus itself, their content
was less than 1 ng/g; i.e., their accumulation was not observed in the most sensitive area of
the brain to ischemia/reperfusion. ICP-MS is quite sensitive (detection limit of 0.3 ng/g
of sample), but in a third of the animals, the nPt level in the hippocampus was below
this threshold.

In various in vitro studies, the biological effects of nPts have been identified in the con-
centration range of 0.5–200 µg/mL [65–69], which is more than three orders of magnitude
higher than their level in the rat hippocampus determined in the present study. This raises
questions about whether such a level of nPts is sufficient for effective decomposition of ROS
in the tissue or whether the protective effect of nPts is due to their indirect effect on nervous
tissues and peripheral organs as well as the sympathetic–adrenal system. It is known that
platinum nanoparticles not only have antioxidant activity but also pro-oxidant activity;
for example, platinum nanoparticles are mimetics of peroxidase and catecholoxidase [70].
Bioactive catechols include epinephrine, norepinephrine, and dopamine, while it has been
shown that platinum nanoparticles can accelerate the oxidation of dopamine [71]. Thus,
it is possible that the inhibition of systemic OS and postischemic hypoperfusion is due to
accelerated oxidation of bioactive catechols on the surface of nPts. In this regard, it becomes
interesting to study the possibility of nPt accumulation in the peripheral sympathetic
nerves and its effect on presynaptic β1-adrenergic receptors, which play a key role in the
activation of this system [7]. However, little is known about the molecular targets of nPts
in endothelial cells and neurons.

Our study had several limitations. First, our focus was only on the effect of nPts on
apoptosis, CBF, and the aminothiols system, leaving aside other important parameters
such as necrosis, the ROS itself, catecholamines, inflammatory mediators, and ED. Second,
we only studied the acute response to tBCAO and not the long-term or medium-term
consequences of nPt accumulation in organs. Although nPts are considered nontoxic, they
can show cardiotoxicity at high doses [72]. Finally, we studied only a single administration
of nPts but not the effects of its regular administration.

5. Conclusions

In the present study, we synthesized and purified nPts to demonstrate their effective-
ness as neuro- and vasoprotective agents in a tBCAO model in rats. The tBCAO model
was not complicated by the presence of products resulting from incomplete Pt reduction.
We found that purified nPts prevented the apoptotic death of hippocampal neurons, elim-
inated the effect of postischemic hypoperfusion, and prevented the decline in the levels
of reduced aminothiols in blood plasma. Moreover, nPts attenuated the decline in the
GSH redox status and the global methylation index directly in the brain, which indicated
the ability of nPts to suppress the development of both local and systemic OS. However,
the level of nPts in the brain was significantly lower than that at which the direct an-
tioxidant effects of nanoparticles are observed. This suggests firstly that the mechanism
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of neuroprotective action of nPt is indirect; secondly, it points to the important role of
extracerebral mechanisms in the development of secondary brain damage. Therefore, nPts
can be a very useful tool for both therapy and the search for new targets for the treatment of
cerebrovascular diseases.
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