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Abstract: Bone is a highly vascularized tissue, and the ability of magnesium (Mg) to promote
osteogenesis and angiogenesis has been widely studied. The aim of bone tissue engineering is
to repair bone tissue defects and restore its normal function. Various Mg-enriched materials that
can promote angiogenesis and osteogenesis have been made. Here, we introduce several types of
orthopedic clinical uses of Mg; recent advances in the study of metal materials releasing Mg ions
(pure Mg, Mg alloy, coated Mg, Mg-rich composite, ceramic, and hydrogel) are reviewed. Most
studies suggest that Mg can enhance vascularized osteogenesis in bone defect areas. Additionally, we
summarized some research on the mechanisms related to vascularized osteogenesis. In addition, the
experimental strategies for the research of Mg-enriched materials in the future are put forward, in
which clarifying the specific mechanism of promoting angiogenesis is the crux.
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1. Introduction

As a pivotal structure in vertebrates, bone can be easily aggrieved by accidents, dis-
eases, and aging [1–4]. However, the self-healing ability of bone is limited. For microfrac-
tures, bone has sufficient self-healing ability. Unfortunately, for fractures exceeding the
critical size, bone cannot form complete fracture healing [2]. Presently, the gold standard for
the treatment of critical bone defects is still autologous bone transplantation, which brings
secondary injury such as donor site deformity, hypersensitivity, and muscle weakness,
and bleeding, chronic pain, inflammation, and infection may also occur after operation.
Therefore, finding suitable bone substitutes is still the critical issue of bone tissue engi-
neering (BTE) [2,5,6]. The regeneration of large bone defects requires rapid angiogenesis
to provide nutrients and oxygen, and inadequate angiogenesis often leads to undesirable
bone regeneration, which is determined by the complex structure of long bones containing
a peripheral cortical shell with a network of vascular penetration channels and an internal
highly vascularized bone marrow space [7]. Appropriate blood supply is the key element to
ensure fracture healing [8,9]; the lack of a functional microvasculature connected to the host
blood supply is responsible for implant failure [9,10]. The global rate of fracture nonunion
is about 10% [7]. Notably, when fracture is accompanied by macrovascular injury, the rate
of fracture nonunion rises rapidly to 46% [11].

Ever since magnesium (Mg) was isolated in 1808, it has been widely used in many
fields [12–17]. As the fourth most abundant cation in the human body, Mg plays a crucial
role in metabolism [18]. It was first used in biomaterials until the mid-nineteenth cen-
tury [17]. Recently, functional Mg materials have shown great advantages over traditional
materials in many fields, including bio-Mg materials [19]. Recent studies have shown that
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Mg has the potential to promote osseointegration and angiogenesis [20]. Thus, the appli-
cations of modern Mg-based biomaterials can be mainly divided into two areas: vascular
application and orthopedic application [17]. Mg and Mg-based alloys are potential materi-
als for bone repair and coronary arterial stents due to their excellent biocompatibility and
biodegradability [21–26]. Mg-based alloys have been used in implantable vascular stents
and Mg-based cardiovascular stents with encouraging clinical trial outcomes [19,27]. The
degradation rate of physiological environment once limited the application of Mg-based
alloys in bone repair. However, with the development of biomaterials, such as alloying and
surface coating strategy, which can delay the degradation of Mg, Mg and Mg-based alloys
are gradually becoming candidates for a new generation of orthopedic implants.

At present, there are three main defects in a variety of metal biological implant materi-
als. Firstly, the corrosion or wear products have biological toxicity, causing inflammatory
cascades of the organism. Secondly, the stress shielding effect may result in the absorption
of surrounding healthy bone, thus decreasing the stability of the implant. Thirdly, some
materials need to be removed with a secondary surgery [18].

Bone is an artistic craft of nature. It is a strong composite material composed of
weak ingredients, with a seven-order hierarchical structure [28]. Beyond all doubt, autolo-
gous bone is more suitable for the human body than any artificial material in any aspect.
Consequently, reproducing and mimicking the microenvironment in vivo is essential for
the osteogenesis of stem cells [29]. The fabrication of metal scaffold materials has been
committed to imitating the osteogenic environment in the human body. Mg is an active
ingredient present in natural bone matrix [30]; therefore, Mg has the potential to become a
bioactive ingredient in simulating the osteogenic microenvironment. Mg transporters are
highly expressed in the endochondral ossification region of the cartilage in mouse embryos,
endochondral ossification is a vascularized bone formation process, suggesting that Mg
may be closely related to vascularized osteogenesis [30].

2. Mg-Based Orthopedic Implants for Clinical Use

The advantages of Mg-based materials in bone implants over the currently used per-
manent metal implants are: biodegradability, biocompatibility, mechanical strength close to
cortical bone, and osteoinductivity [4]. The earliest use of Mg-based orthopaedic materials
for the successful treatment of human bone fracture was reported by Lambotte, who used
Mg nails to fix supracondylar fractures in four children, and all the joint functions were
fully restored without any complications [4]. Previously, Chlumský used high-purity Mg
to prevent joint stiffness and restore joint motion in humans after bony separation of anky-
lotic joints [31]. Since then, other researchers have gradually used Mg-based materials for
fracture treatment, but the attention received by Mg-based materials has slowly waned due
to uncontrollable Mg corrosion in vivo [31]. With the rapid development of the metallurgy
field, scientists began to focus again on the value of Mg as a biodegradable metal for clinical
application in recent years [31]. At present, Mg-based materials are divided into two types
in clinical applications: cardiovascular and orthopedic biodegradable metals. This review
focuses on the reported biodegradable metals for clinical use in orthopaedics.

There are two commercialized Mg-based orthopaedic materials which have been used
in the clinical setting: MgYReZr (MAGNEZIX® CS fabricated by Syntellix AG, Hanover,
Germany) and Mg-Ca-Zn (K-MET screws developed by U&I Company, Uijeongbu-si,
Republic of Korea) [3,32]. The high-purity Mg screw designed by Chinese researchers Zhao
et al. and fabricated by Eontec in Dongguan, Guangdong has been allowed for clinical
trial in 2019 by the Chinese National Medical Products Administration (NMPA), but has
not been approved for clinical use yet [3,33]. The results of their previous randomized
prospective clinical trials showed that pure Mg screws possess great potential in clinical
medical applications [4,34]. Table 1 compares the mechanical properties of Mg-based
materials for clinical use and bone.



J. Funct. Biomater. 2023, 14, 326 3 of 20

Table 1. Mechanical properties of magnesium (Mg) -based materials for clinical use compared to
cancellous and cortical bone.

Tissue/Materials Density
(g/cm3)

Young’s
Module
(GPa)

Yield
Strength

(MPa)

Compression
Strength

(MPa)

Tensile
Strength

(MPa)

Fatigue Strength
(MPa, 107 Cycles) Author/Year

Cortical bone 1.8–2.0 7–30 NA 100–230 164–240 27–35
Zhao, D./2017 [4],

Dragosloveanu,
S./2021 [35]

Cancellous
bone 1.0–1.4 0.01–3.0 NA 2–12 NA NA Zhao, D./2017 [4]

Pure Mg
(99.9%, casted) 1.74 41 21 40 87 NA

Zhao, D./2017 [4],
Staiger,

M.P./2006 [18]

Pure Mg
(99.9%,

wrought)
1.74 41 100 100–140 180 NA

Zhao, D./2017 [4],
Staiger,

M.P./2006 [18]

MgYReZr 1.84 45 235 NA Above 275 NA

Zhao, D./2017 [4],
Dragosloveanu,

S./2021 [35],
Ezechieli,

M./2016 [36],
Sontgen, S./2023 [37]

Mg-Ca-Zn 1.80 NA NA 415 249 NA Cho, S. Y./2012 [38]

Note: NA: not available.

2.1. MgYReZr (MAGNEZIX® CS)

The first prospective, randomized, controlled clinical pilot study of MgYReZr was
reported in Germany, which led to the MgYReZr compression screw MAGNEZIX® CS gain-
ing the Communauté Européenne (CE) mark in 2013 [3,39]. In this study, MgYReZr was
used for fixation during chevron osteotomy in patients with a mild hallux valgus, indicating
that MgYReZr is equivalent to a titanium screw in short-term clinical performance [39].
Furthermore, they also reported some in vivo and in vitro experimental results of the safety
of MgYReZr: the upper part of the screw (diameter: 3 mm; length: 6 mm) was inserted
into the left femoral supracondylar region of rabbits and observed for up to 12 months.
The results showed that the screw had good biocompatibility and osteoconductivity, with-
out acute, subacute, or chronic toxicity [40]. In another experiment, they implanted the
MgYReZr pins into the femoral intercondylar notch of the stifle joint of rabbits for a maxi-
mum observation period of 12 weeks, and used the extracts of MgYReZr for cytotoxicity
experiments. Experimental results suggest that the MgYReZr alloy has great potential as
intra-articular degradable implants [41]. Subsequently, their further experiments confirmed
that MgYReZr is promising for anterior cruciate ligament reconstruction, but the amount of
gas liberated may need to be reduced [42,43]. As the first bioabsorbable metal implant for
clinical use, MAGNEZIX® CS was brought onto the market in 2015, setting a precedent [44].
After that, there have been more reports on other indications of MgYReZr, and its scope of
application has also been extended to maxillofacial surgery [32,45–50]. Unfortunately, some
patients who have been implanted with MgYReZr have reported extensive bone cysts and
long bone healing time, demonstrating that MgYReZr may not be suitable for all fracture
types [51].

2.2. Mg-Ca-Zn Screws

Korean researchers have designed Mg-Ca-Zn alloys and proven through experimen-
tation that the new alloy has excellent biocompatibility, strength maintenance in vivo,
mechanical properties, and an appropriate degradation rate, laying down a solid foun-
dation for subsequent research [38,52,53]. By optimizing the degradation behavior and
mechanical properties of Mg-Ca-Zn alloys, they finally concluded that the extruded Mg-5
wt%Ca-x wt%Zn (1 ≤ x ≤ 3) alloys had the desired performance as a biodegradable implant
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material [52]. After that, in April 2015, the Korean Food and Drug Administration(KFDA)
approved Mg-Ca-Zn screws for clinical use [3]. Subsequently, they carried out a long-term
(one-year follow-up) clinical study using Mg-5 wt%Ca-1 wt%Zn alloy screws. A total of
53 subjects were surgically fixed at the distal radius using this screw. After a one-year
follow-up, all cases showed normal healing rates without any signs of pain [54].

3. Mg-Based Metal for Promoting Vascularized Osteogenesis
3.1. Pure Mg

Distraction osteogenesis (DO) is an effective operation for the treatment of large bone
defects. It regenerates neo-formed bone and adjacent soft tissue by gradual and controlled
traction of the bone segment separated by osteotomy [55]. The mechanical stretch produced
in the process of DO causes a stronger angiogenic response than fracture healing [56]. In the
early stage of DO, angiogenesis is also closely related to osteogenesis. Vascular endothelial
cells play a core role in regulating bone regeneration of DO [57]. Ensuring blood supply
is the key to successful osteogenesis in the process of DO [58]; this may be the key reason
why the current research on pure Mg promoting vascularized osteogenesis focuses on DO.

Qin et al. [59] found that Mg could diffuse from the implant to the periosteum after
the implantation of a 99.99%-pure Mg rod into the medullary cavity of a rat’s complete
femur, and the amount of new bone formation in the femur increased significantly after
implantation of Mg, but the pure Mg rod failed to fix the long-bone fracture of mice 3 weeks
after implantation; this may be due to the weakening of mechanical strength over time
caused by premature degradation. Alternatively, in another follow-up study [57], Mg nails
with a purity of 99.99% were inserted into a femural midshaft bone defect (5 mm in length)
model. Two weeks after stretching, they found that the generation of new bone increased
by about 4-fold and the generation of new blood vessels increased by more than 5-fold.
The in vivo studies show that Mg can up-regulate calcitonin gene-related peptide (CGRP)-
mediated angiogenesis and thus promote osteogenesis. Similarly, in the rat DO model,
Hamushan [60] et al. inserted a high-purity Mg pin (purity unknown) with a total length
of 5 mm and diameter of 1 mm into the medullary cavity. Histological analysis confirmed
that the Mg pin enhanced angiogenesis and bone consolidation in the experimental group.
As such, pure Mg has a broad application prospect in DO.

3.2. Coated Mg

The low electrochemical standard potential of Mg determines its low corrosion re-
sistance characteristics [61]. The rapid degradation of Mg and Mg alloys is an important
reason for the nonunion of bone tissue after the implantation of Mg-based materials. There-
fore, researchers have taken various methods to slow down the degradation rate of Mg,
and the coating is one of the most effective methods [62]. The surface coating provides
a corrosion barrier between the metal substrate and the corrosive medium, which can
effectively improve corrosion resistance. In addition, the inherent characteristics of the
metal substrate will not be negatively affected by the coating procedure [63], so the coated
Mg has great development prospects. Cheng et al. [64] studied three films in common use,
namely Mg hydroxide (Mg(OH)2), Mg fluoride (MgF2), and hydroxyapatite (HA) films.
MgF2 showed the best ability of vascularized osteogenesis in vitro, but the results in vitro
were different, which showed that HA film had optimal ability of bone integration.

Layered double hydroxides (LDHs) are promising bone implants, which can improve
the corrosion resistance and biocompatibility of Mg alloys. Cheng et al. [65] prepared
the Mg-Al LDH coating on the pure-Mg surface by hydrothermal treatment; Mg-Al LDH-
coated Mg was more favorable for the osteogenic differentiation of mouse osteoblast cell line
(MC3T3-E1) and promoted human umbilical vein endothelial cell (HUVEC) angiogenesis
in vitro; in the in vivo femoral implantation experiments, Mg-Al LDH-coated Mg exhibited
better osteointegration than bare Mg and Mg(OH)2-coated Mg. Significantly, this study
also found that this new coated Mg-based material can induce macrophages to polarize
anti-inflammatory M2 phenotype, and products of the induced macrophage can promote
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the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSC) and
angiogenesis of HUVEC.

Microarc oxidation (MAO) is an electrochemical technique that can prepare anti-
corrosion coating on the surface of Mg and Mg alloys, which can improve the corrosion
resistance [63,66]. Previous studies have shown that the corrosion rate of MAO-treated Mg
enhances biocompatibility [63]. Liang et al. [66] manufactured Cu2+-coated Mg-film by
MAO, Cu-MAO Mg-enhanced osteogenesis and angiogenesis in a dose-dependent manner
in vitro; they used a chicken embryo ex ovo model to be verified again in vivo. The Cu
coating enhanced the original ability of Mg to promote osteogenesis and angiogenesis as
well as make the material partly resistant to Staphylococcus aureus.

3.3. Mg Alloy

The design of Mg-based alloys is mainly considered from the aspects of enhancing
corrosion resistance, reducing hydrogen production, and maintaining biocompatibility.
The degradation of Mg alloy implants in vivo is mainly determined by alloying elements.
The introduction of most alloying elements such as zinc and aluminum into Mg alloys can
improve the oxidation rate, while the introduction of some rare earth elements can reduce
the oxidation rate of Mg alloys [67]. Generally, adding manganese (Mn), aluminum (Al),
or a small amount of Ca [68] to Mg-based alloys can improve the corrosion resistance [69].
The addition of zinc into Mg-based alloys can increase the yield strength and reduce the
production of hydrogen [69]. For the low electrochemical potential of Mg, when Mg alloys
are used, they are prone to microgalvanic corrosion of Mg as the anode, and hydrogen gas
(H2) is generated [70,71]. If used in vivo, the generated H2 may cause subcutaneous bubbles
and affect surrounding tissues [70]. Alternatively, extrusion can decrease the corrosion
rate of Mg due to the average grain size of Mg, which is reduced during the process of
extrusion [52,72]. The average grain size of extruded Mg5Ca1Zn (Mg-5 wt%Ca-1 wt%Zn)
has been clinically approved [73], and has been refined to ~10 mm by the extrusion [52].
Lee et al. [54] conducted clinical research with a follow-up period of one year. The fractures
of the 53 patients healed uneventfully. Additionally, the results of X-ray examination at
6 months and 1 year were consistent with their living animal studies. On this basis, the
direct impact of the biodegradation of materials on angiogenesis through a fetal mouse
metatarsal assay (Figure 1A) was conducted by Han et al. [73]. This model was used to
simulate angiogenesis in vivo; their findings demonstrated that Mg5Ca1Zn could accelerate
bone healing by releasing anabolic metallic ions into the surrounding tissues so as to
enhance the growth of blood vessels and actively recruit osteoprogenitors near the implant
site. Immunofluorescence diagrams (Figure 1B) show that the CD31 positive blood vessels
grew from metatarsal bone, and Mg5Ca1Zn had a notable capacity to induce angiogenesis,
suggesting that Mg5Ca1Zn has great potential in vascularized osteogenesis for clinical
application.

In addition, 6.25% extract liquid of the Mg1Zn2Mn alloy can promote the angiogenesis
of HUVEC by activating FGF signal, which may be closely related to the Phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT) pathway [74].

Zhang et al. [75] developed Ca−P-coated Mg−Zn−Gd alloy scaffolds (Ca−P−Mg),
which can trigger trigeminal neurons to produce CGRP via transient receptor potential
vanilloid subtype 1 (Trpv1); CGRP has been proven as a key factor that promotes angiogen-
esis and osteogenesis.

Many alloying elements have been applied in Mg-based materials. However, due to
the limited solubility of alloying elements in crystalline Mg, the corrosion rate can only
be altered in a limited range, and the problem of hydrogen evolution in the degradation
process of crystalline Mg alloys remains to be solved [69].
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Figure 1. (A) Schematic illustration of fetal mouse metatarsal assay culture method © [73]. (B) Rep-
resentative fluorescent images of CD31 positive vessel outgrowth from metatarsal growth under
different types of metal alloys © [73]. (C) Schematic illustration of the GelMA/TCS/POSS-Mg hydro-
gel fabricated using the two-step strategy © [76]. (D) Micro-CT assessment of newly formed bone
and blood vessels in rat calvarial defect regions after implantation of scaffolds of CS, HANWs/CS,
and HANW@MS/CS for 12 weeks © [77]. (E) Newly formed blood vessels presented by 3D recon-
structed images © [77]. Note: CD31: Platelet endothelial cell adhesion molecule-1; GelMA: Gelatin
methacrylate; TCS: thiolated chitosan; POSS: polyhedral oligomeric silsesquioxane; Mg: magnesium.

4. Metal Materials Releasing Mg Ions
4.1. Titanium Alloy

Commercialized pure titanium and titanium alloy (typically Ti6Al4V with 110 GPa
Young’s Modulus [69]) are nondegradable materials commonly used in orthopaedics and
dentistry (predominantly Ti6Al4V in orthopaedics and pure titanium in dentistry), due
to their excellent biocompatibility [78]. In dentistry, an implant bed needs to be drilled
into the jaw bone before a titanium dental implant is inserted. Therefore, an artificially
created wound is formed which initiates a subsequent series of wound healing processes,
and angiogenesis may play a significant role in the osseointegration. Meanwhile, this
phenomenon has been demonstrated by the wide genome expression profiling of human
peri-implant tissues from 4 days to 2 weeks after implant insertion [79]. Gao et al. [80,81]
fabricated Mg-coated Ti6Al4V scaffold using an arc ion plating system in order to ameliorate
the characteristics of insufficient bone integration of porous titanium scaffold. The thickness
of the Mg coating obtained by their method with fine grain size and high film/substrate
adhesion is approximately 5 µm, with a composition of about 1 µm of uniform Mg grains.
The in vitro experiment showed that the modified scaffold has the ability to release Mg,
with rapid degradation in the first 4 days, which has adverse effects on cells. Fortunately,
degradation stabilized after 4 days and promoted cell proliferation. Additionally, Mg-
coated Ti6Al4V also displayed favorable osteogenic and angiogenic properties. Moreover,
the scaffolds were inserted in rabbit femoral condylar defects. Additionally, the in vivo
assay confirmed osteogenesis as well as osseointegration around and inside the scaffold.
Microangiography analysis of the 2 mm area around the scaffold showed that, compared
to bare Ti6Al4V, more new blood vessels were generated around the Mg-coated Ti6Al4V,
indicating that it can accelerate the formation of early blood vessels.

Mg has also been used to enhance the angiogenesis and antibacterial properties of
titanium implants. Bacteria around the implant leads to peri-implantitis and failure of
osseointegration. Fortunately, some ions such as Cu, Ag, and Zn have strong antibacterial
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properties [82]. Yu et al. [83] came up with the idea of combining the antibacterial property
of Zn with the osteogenic and angiogenic properties of Mg, and prepared a dental implant
material—dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII)—via plasma immersion
ion implantation (PIII). The Zn/Mg-PIII can promote the differentiation of rBMSC by exert-
ing the physiological synergy of Zn2+ and Mg2+; concurrently, it can enhance angiogenesis
by promoting the expression of Mg2+ transporter 1 (MagT1) in HUVEC, which was proven
to be achieved by the releasing of Mg ions.

4.2. Tantalum

Tantalum (Ta) has been widely used in the clinical setting because of its biocompatibil-
ity and corrosion resistance. However, the elastic modulus of Ta is much higher than that of
natural bone (200 vs. 0.1–30 GPa); the stress shielding problem will make the regenerated
bone gradually atrophy due to lack of load bearing [84]. 3D printing technology can modify
the elastic modulus of the scaffold by changing the porosity and shape of the implant
to match that of bone tissues [85], and the porous scaffold has been proven to be able to
facilitate vascularized osteogenesis [86]. To sum up, Ma et al. [84] produced 3D porous
Ta scaffolds (the elastic modulus of porous Ta was 4.85 ± 0.11 GPa, which is close to that
of natural bone) using a selective laser melting (SLM) 3D printer, and then utilizing the
surface adhesion ability of polydopamine, doped Mg on the surface of the 3D-printed
tantalum scaffolds. The results demonstrate that Ta-PDA-Mg2+ can release Mg ions which
significantly enhanced the vascularized bone formation and angiogenesis. It is worth
noting that the material that can release the highest level of Mg ions (Ta-PDA-Mg2+) has
the best osteogenic and angiogenic effects in vitro, demonstrating the key role of Mg in
promoting vascularized osteogenesis of Mg-enriched biomaterials.

5. Mg-Modified Calcium-Phosphate-Based Materials
5.1. Mg-Enriched Hydroxyapatite (MHA)

Bone tissue mainly consists of organic collagen and inorganic hydroxyapatite (HA:
Ca10(PO4)6(OH)2) with excellent biocompatibility and osteoinductivity [29,87,88]. Since
1970s and 1980s, researchers have performed a series of tests on HA. However, the brickle
characteristic and low resorption rate of HA may cause mechanical instabilities and frac-
tures. Therefore, they turned their attention to soluble calcium phosphates (CaP) and
created ion-substituted CaP with modified material architecture, and those methods can
improve the resorption rate of CaP [89,90]. Partial substitution of HA with Mg results in a
nonstoichiometric; this MHA can entirely degrade within 6–12 months. The clinical trials
showed that the MHA did not negatively impact the clinical outcome [91–94]. Doping
Mg into porous HA not only enhances the scaffold degradation ability, but also makes the
scaffold surface smoother and the micropores more regular, as demonstrated by the study
of Deng et al. [90]; in addition, they demonstrated that MHA could enhance the expres-
sion level of ALP, Collagen I, and vascular endothelial growth factor (VEGF) in human
osteoblasts cells (MG63) through in vitro experiments, though the in vivo angiogenesis
level could not be effectively evaluated.

5.2. Mg-Enriched CaP Cements/Bioceramics

The research and development of CaP cements (CPC) can be traced back to the
early 1980s [95]. Nowadays, CaP bioceramics have been widely used in BTE and clinical
applications because they are similar to the composition of bone and they have excellent
bioactivity, osteoconductivity, high plasticity, and self-setting properties [96–98]. CPC can
self-set after mixing with physiological saline or setting solution, and finally produce low-
crystallinity HA similar to human hard tissue in structure and composition [99]. However,
the disadvantages of bioceramics should not be ignored: bioceramics show rapid ion
dissolution and difficult shaping [100].

Mg-phosphate-based cements (MPBC) have a better combination of strength, setting
time, and resorption rate, and are regarded as a more ideal bone substitute material
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than CPC [95]. Wu et al. [98] disclosed citrate regulation on MCPC-mediated angiogenic
and osteogenic reactions via a Mg calcium phosphate cement (MCPC) matrix. Their
findings proved that MPCP can promote HUVEC polarization and migration to an ordered
activation state. Moreover, the HE staining and Masson trichrome staining results of the
in vivo experiments showed that MCPC can be gradually absorbed after implantation, and
the formation of new bone tissue and blood vessels increased accordingly.

Tricalcium phosphate [Ca3(PO4)2, TCP] has excellent biocompatibility, osteoconduc-
tivity, and resorbability. The resorption properties of TCP make it one of the most widely
used materials [96]. Mg ions can increase the solubility of phosphate, so Mg phosphate has
greater solubility than TCP and HA. Coupled with the special biological functions of Mg
ions, Mg-phosphate-based materials have greater superiorities than TCP and HA as bone
substitutes [88]. Bose et al. [101] used 3D printing technology to fabricate TCP scaffolds
with different interconnected macropore sizes. These printed TCP scaffolds showed huge
potential for bone tissue repair and regeneration due to the continuously released Mg and
Si ions, though the increase in angiogenesis was attributed to pore interconnectivity and
multiscale porosity in these TCP scaffolds.

Silicocarnotite [Ca5(PO4)2SiO4, CPS] has the potential to be a desirable bone repair
material because it has better cytocompatibility and solubility than conventional CaP such
as HA [102]. Wu et al. [103] designed and fabricated Mg-silicocarnotite [Mg-Ca5(PO4)2SiO4,
Mg-CPS], demonstrating that the introduction of MgO can improve the osteogenesis and
angiogenesis of CPS. The osteogenic differentiation of MC3T3-E1 and angiogenic effect of
HUVEC were significantly enhanced when the incorporation of MgO ranged from 0 wt% to
10 wt%. Moreover, the mechanisms of the aforementioned phenomenon could be attributed
to the activating of the Smad2/3/-Runx2 pathway in MC3T3-E1 cells and the PI3K/AKT
signal pathway in HUVEC trigged by the released Mg ions.

6. New Class of Biomaterial

Clay nanoparticles, high polymers, hydrogels, and composites are new kinds of
biomaterials which have great potential in BTE [104].

6.1. Mg-Enriched Biodegradable Polymer

As a biodegradable polymer, Poly(lactic-co-glycolic) acid (PLGA) has been used as a
clinical bone repair material due to its degradability and adjustable biocompatibility [105].
PLGA-based products have been approved by the Food and Drug Administration (FDA)
for biomedical usage, among which OsteoScaf™ (TRT, Toronto, ON, Canada) has been
used clinically [105,106]. However, the low mechanical properties and local acidification of
PLGA often lead to the failure of its clinical application [107]. By coating Mg hydroxide
and bone-extracellular matrix (ECM) on porous PLGA scaffolds, Kim et al. [107] fabricated
PMEP scaffolds with the bioactive polydeoxyribonucleotide added into these PME scaf-
folds, which could inhibit osteoclastogenesis while promoting adequate cell proliferation,
angiogenesis, and osteogenesis in vitro. Lai et al. [1] used Mg powder, PLGA, and β-
tricalcium phosphate (β-TCP) elements to engineer a novel porous PLGA/TCP/Mg (PTM)
scaffold by low-temperature rapid prototyping technology (LT-RP). The angiogenesis and
osteogenesis effects of the PTM scaffolds were evaluated in established steroid associated
osteonecrosis (SAON) rabbit models. The in vivo experiments revealed that this modified
scaffold can provide space for vascular crawling, resulting in neo-angiogenesis formation,
which finally facilitated the formation and remodeling of new bone.

Guo et al. [108] found that Mg2+ can promote the osteogenesis of MC3T3-E1 and
angiogenesis of HUVEC by up-regulating the secretion of Platelet-derived growth factor-
BB (PDGF-BB) from the former in their previous in vitro experiments. Based on the results
of this research, they fabricated a Polyetheretherketone (PEEK)-based material via 3D
printing technology. The elastic modulus of PEEK was revised to be close to that of human
cancellous bone. Then, the bioactivity of the printed PEEK was further enhanced by coating
it with a Poly-dopamine (PDA) coating and Mg2+ [109].
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Polybutylene succinate (PS) is an aliphatic thermoplastic polyester with biodegrad-
able, nontoxic, and biocompatible properties. However, the sluggish degradation rate
makes it undesirable for bone regeneration [110]. Zhao et al. [110] accelerated the degrada-
tion rate and bioactivity of the PS by adding Mg phosphate (40 wt%) and wheat protein
(10 wt%) to it. The composited material PMWC significantly promoted the proliferation
and differentiation of MC3T3-E1 in vitro, and also bolstered osteogenesis and angiogenesis
in vivo.

6.2. Mg-Enriched Hydrogels

Hydrogel is a kind of water-swollen polymeric biomaterial composed of a 3D hy-
drophilic network with an abundance of water. Traditional hydrogel synthesis methods
include crosslinking copolymerization, the crosslinking of reactive polymer precursors,
and crosslinking via polymer–polymer reaction [111,112]. Hydrogels can mimic ECM as
its structure is similar to the macromolecular-based components in the body [113]. When
designing tissue-engineering hydrogels, the following aspects should be taken into consid-
eration: mechanical properties, controlled degradation, and the interaction between cells
and hydrogels [113].

6.2.1. Hydrogels from Synthetic Polymers

Chen et al. [114] uniformly mounted osteoconductive HA nanocrystals and osteoinduc-
tive magnesium oxide (MgO) nanocrystals into the network matrix of an organic hydrogel
composed of cysteine-modified γ-polyglutamic acid (PGA-Cys) to construct a hydrogel
scaffold (HA/MgO-H). This hybrid hydrogel (Young’s modulus 0.78 ± 0.17 MPa) can
reduce proinflammatory macrophage infiltration and improve angiogenesis (CD31+) in
order to provide a favorable microenvironment for bone repair in rats with type I dia-
betes mellitus. The in vitro results indicated that Mg2+ enhanced the expression level of
Col-I, the main component of ECM, though the Mg2+ seemed to have no effect on CD31+

neovascularization.

6.2.2. Gelatin Methacrylate

A Gelatin with methacryloyl side groups—Gelatin methacrylate (GelMA)—is a pho-
tosensitive hydrogel material that has been widely used as 3D scaffolds [115]. GelMA
can mimic the structure of ECM, but it has no osteoinduction to induce bone formation
and needs to be combined with other bioactive materials to endow it with osteogenic
effects [76,116].

Luo et al. [117] made PLGA microspheres loaded with La2(CO3)3, and embedded
it into a MgO/MgCO3-loaded cryogel made of photocrosslinkable GelMA to enable the
co-delivery of Mg2+ and La3+. This co-delivery system of Mg2+ and La3+ had a synergistic
effect in promoting vascularized bone formation in their study.

In order to improve the mechanical performance of hydrogels and stimulate local bone
healing by using Mg2+ to promote neo-angiogenesis, Zhang et al. [76] prepared a Mg ion-
incorporating dual-crosslinked hydrogel via a two-step method of photopolymerization
and Mg–S coordination (Figure 1C). The photocrosslinking characteristics of GelMA were
adopted, polyhedral oligomeric silsesquioxane (POSS) was employed to strengthen the
polymer grid structure, and Mg2+ ions were then introduced into the system via coordina-
tion bonds of Mg–S; thiolated chitosan (TCS) was further used to bridge Mg2+, by which a
new hydrogel network system was finally established. This modified hydrogel possesses
enhanced mechanical properties and advocates a Mg-enriched microenvironment, expe-
diting the osteogenesis of stem cells and angiogenesis of endothelial cells. The Young’s
modulus of this material was significantly higher than GelMA, but still could not match
that of natural bone.

Interestingly, in the study by Luo et al. [118], when black phosphorus (BP) nanosheets
were added to GelMA, the elastic modulus of the material significantly increased. However,
when Mg-modified BP (BP@Mg) was added to GelMA, there was no significant change
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in the elastic modulus of the material compared to the group only incorporated with BP
nanosheets. The change in swelling rate was also inapparent, indicating that Mg may
not necessarily have a significant impact on the elastic modulus. In their previous study,
they added this BP@Mg to GELMA as a bionic periosteum structure and found that it can
promote angiogenesis [119]. The upper bionic periosteal structure and the lower GelMA-
PEG/β-TCP hydrogel together forms a double-layer hydrogel scaffold, and Mg can enhance
the osteogenic properties of the scaffold. In in vivo experiments, the early angiogenesis and
bone formation in the surrounding bone defect area of the Mg-free double-layer hydrogel
group were less than those of the Mg-containing group.

6.2.3. Injectable Hydrogel

Scaffold implantation requires a large enough incision for the insertion of the scaffold.
On the other hand, injectable hydrogel is an excellent scaffold material for the regeneration
of irregular non-load-bearing bone defects [120]. Mg-enriched injectable hydrogels usually
have a basic injectable hydrogel system, and then Mg or Mg-containing materials are incor-
porated into the system. For instance, Jiang’s group [121] fabricated a three-dimensional
(3D) culture system based on the incorporation of Mg ammonium phosphate hexahydrate
(struvite) into GelMA, which advanced the osteoinduction of GelMA successfully. This
novel injectable composite hydrogel can release the ionic components in vitro, promot-
ing the osteogenic differentiation of dental pulp stem cells (DPSCs) and enhancing the
chemoattraction of HUVEC to increase angiogenesis. Similarly, Han et al. [122] made an
injectable SAG hydrogel comprising of sodium alginate, akermanite (Aker), and glutamic
acid which could be used for wound healing. Zhang’s group [100] noticed the value of
injectable SAG hydrogel systems in bone regeneration. They examined the osteogenic
effect of SAG composite injectable hydrogel in vitro and in vivo. The results showed that
the hydrogel extract induced osteogenesis in a concentration-dependent manner, and the
ideal concentration was regarded as 66.9 ppm for Ca2+, 23.8 ppm for Mg2+, and 33.5 ppm
for Si2+.

In order to further enhance the angiogenic potential of the material, Priya et al. [120]
added Mg-doped bioglass (MBG) and fibrin nanoparticles (FNPs, 250 ± 20 nm) to the
basic injectable hydrogel system made of chitin and poly (butylene succinate) (PBSu).
Of note, fibrin was essential for the formation of microvascular networks and Col I. The
properties of the above-mentioned material showed that the addition of MBG increased
the elastic modulus of the hydrogels, while the addition of FNPs had an inverse effect
due to the hydrophilic nature of fibrin. In addition, after optimizing the proportion of
additives, it was finally concluded that the hydrogel system with 2% MBG and 2% FNPs
exhibited angiogenic as well as osteogenic potential; it also showed desirable injectability
and temperature stability ranging from 25 to 45 ◦C. Therefore, this injectable hydrogel
sheds light on the treatment for irregular bone defects.

Furthermore, there are several innovative injectable hydrogels. Tang et al. [123] fo-
cused on the emission of H2 gas during the degradation of Mg. They employed Mg particles
(MPs) as foaming agents and incorporated these particles into hydrogel solutions with
living cells incubated in it. These injectable microporous hydrogels possessed injectable,
porous, and biocompatible characteristics, but the elastic modulus inevitably decreased
due to the increased porosity of the porous hydrogel. They believe that this material could
form a mild alkaline environment and alleviate acidosis caused by material implanta-
tion, which further promoted the generation of intact vascularized bone in three weeks.
Jiang’s group [6] utilized the coordinative reaction between metal ion ligands to construct
a bisphosphonate functionalized injectable hydrogel microsphere (GelMA-BP-Mg). In-
stead of introducing Mg ions, the hydrogel microsphere captured Mg2+ in the body; the
atomic percentage of captured Mg2+ was 0.6%, which could be continuously released for 18
days. Moreover, this hydrogel promoted bone formation and angiogenesis by stimulating
osteoblasts and endothelial cells while inhibiting osteoclasts. Table 2 summarizes the
characteristics and functions of Mg-enriched injectable hydrogels.
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Table 2. Characteristics and functions of Mg-enriched injectable hydrogels.

Materials Characteristic Experiments Animal
Model Functions Author/

Year

Struvite Composite
Cell-Laden
Hydrogel

elastic modulus:
approximately
7.26 × 103 Pa

in vitro -

GelMA: has fluidity, stability, and
degradability

Composite: promotes
osteogenesis and angiogenesis

Liu, C./
2021 [121]

Chitin-PBSu
hydrogel system

with 2%MBG and
2%FNPs

elastic modulus:
approximately
1.45 × 105 Pa

in vitro -

chitin-PBSu hydrogel: mimics the
ECM; provides cues for the

surrounding cells to proliferate;
helps in healing the defect site

FNPs: enhances the cell
attachment and spreading;

angiogenic property
MBG: promotes higher protein
adsorption for helping in better
cell attachment and spreading;

possess osteoinductive and
angiogenic properties

Vishnu Priya,
M./2016 [120]

SAG hydrogel

the pore size
ranged of

freeze-dried
porous scaffolds

from 150 to 250 µm

in vivo

maxillary
sinus floor

elevation in
rabbits

promotes bone formation via
CXCR4 elevation and ERK

signaling pathway

Zhang, X./
2018 [100]

injectable
macroporous

hydrogels

void ratio
73.04 ± 5.92% in vivo

SD rat femur
defects
model

Mg-degradation-dependent
H2-foaming method directly
generated pores in cell-laden

hydrogels while sustaining the
injectability and cytocompatibility

of the hydrogels

Tang, Y./
2020 [123]

Note: GelMA: Gelatin methacrylate; PBSu: poly (butylene succinate); ECM: extracellular matrix; FNP: fibrin
nanoparticles; MBG: magnesium-doped bioglass; CXCR4: C-X-C chemokine receptor type 4; ERK: extracellular
regulated protein kinases; SD: Sprague Dawley.

6.3. Clay Nanoparticles

Clay has a high retention capacity and swelling and rheological properties. Clay miner-
als are a family of inorganic layered nanomaterials which can enhance the mechanical and
degradation properties of polymer matrixes and are increasingly used in biomedicine [104].
Taking advantage of the nontoxic and bioactive characteristics of natural attapulgite (ATP,
structural formula (Al2Mg2)Si8O20(OH)2(OH2)4·4H2O) nanorods, Wang et al. [124] used
a 3D bioprinter to manufacture a novel porous nano-ATP scaffold and bonded it with
polyvinyl alcohol as a binder, then sintered it to obtain the end-product. This scaffold could
directly induce bone formation by membranous ossification and promote the revasculariza-
tion of the defect zone in a rat cranium defect model. In vitro experiments have also shown
that it has good biocompatibility while promoting the osteogenesis of human BMSCs.

6.4. Nanomaterials

Chen et al. [77] have previously synthesized a highly flexible HA wire using calcium
oleate as a precursor. With the foundation in front, they used HA wire and chitosan
(CS) to simulate inorganic components and collagen of bone, respectively. Thereafter,
they synthesized HANW@MS core−shell porous hierarchical nanobrushes composed
of hydroxyapatite nanowires (HANWs) as the core and Mg silicate nanosheets (MS) as
the shell, and used it to fabricate HANW@MS/CS scaffolds (size 15 × 10 mm). These
HANW@MS/CS scaffolds can release Mg2+ and SiO3

2− in vitro, promoting the osteogenic
differentiation of rBMSC and simulating the formation of new bone and neovascularization.
The results of in vivo assays showed that the scaffolds were capable of releasing Mg and Si
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ions, both of which further boosted new bones and blood vessel formation in the defect
area [77] (Figure 1D,E).

7. Mechanism Research
7.1. CGRP-Mediated Pathway

CGRP is a neuropeptide related to bone healing which can be released from the sensory
neuronal endings in the periosteum of the long-bone shaft [59]. Qin et al. [59] proved that
the Mg ions released from the implant promoted the synthesis of CGRP in the dorsal root
ganglion (DRG) and the sensory nerve rooted in periosteum as well. Because Mg ions
can enter into neurons mediated by MAGT1 and transient receptor potential melastatin
7 (TRPM7), the intracellular Mg ions promote actin polymerization and further facilitate
the aggregation of CGRP vesicles at the synapses [59] (Figure 2A). Since then, the CGRP-
mediated pathway has been identified as the main mechanism of Mg-promoting bone
formation in the process of fracture healing. Their study also found that CGRP or Mg
implants did not up-regulate the expression of Runx2, a key osteogenic gene. Therefore,
other regulatory pathways may also be involved in the osteogenic differentiation regulatory
effects of Mg ions. Their subsequent experiment [57] on DO found that CGRP increased
angiogenesis through the focal adhesion kinase (FAK)-VEGF signal pathway, which may be
the key mechanism of Mg accelerating the DO process, showing the potential of Mg in the
application of DO therapy (Figure 2B). However, Hamushan et al. [60] found that Mg may
enhance angiogenesis and bone consolidation via the regulation of the Von Hippel–Lindau
(VHL)/hypoxia-inducible factor-1α (HIF-1α)/VEGF pathway.
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osteogenic differentiation © [59]. (B) Schematic diagram showing the proposed mechanism of pure
Mg nail-enhanced critical-size bong defect repair during distraction osteogenesis (DO) © [57].

7.2. Pro-Osteogenic Immune Microenvironment

Wang et al. [97] prepared a magnesium calcium phosphate cement (MCPC) by mixing
CPC and magnesium phosphate cement (MPC) powder together with deionized water
(90 wt% CPC, 10 wt% CPC, 0.3 mL g-1deionized water). The in vitro studies showed
that the MPCP could transform macrophage responses from the M1 phenotype to M2
phenotype, and this immune regulation was conducive to the osteogenesis of BMSC and
the angiogenesis of HUVEC. Since the Ca2+ released by MCPC in vitro was similar to that
of CPC, this immunoregulatory effect was mainly attributed to the release of Mg2+.
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7.3. PI3K/AKT Pathway Signals

The results of some studies show that the method by which Mg-enriched materials
promote vascularized osteogenesis may be closely related to the PI3K/AKT signaling
pathway [74].

The degradation of the Mg-based material after implantation creates a local alkaline
environment peripherally, which is a double-edged sword. On the one hand, the alkaline
environment can promote osteoblast proliferation; on the other hand, a high-alkaline envi-
ronment can force osteosarcoma cells into dormancy. Thus, the search for the mechanism
of Mg action in these cases is of great significance for both osteosarcoma therapy and the
production of orthopaedic implants [125,126]. Zhang et al. [127] found that the effective
concentration of Mg ions (5 × 10−3 mol/L–10 × 10−3 mol/L) could activate PI3K phospho-
rylation via Mg ion transporter TRPM7, which triggered hFOB1.19 (human osteoblast cell)
recruitment, osteogenesis, and resistance to alkaline stress. Additionally, the expression of
VEGF in osteoblasts increased significantly after the treatment of Mg with the concentration
of less than 5 ×10−3 mol/L. Their research provided a new view of Mg-enriched materials
in the treatment of osteosarcoma: targeting the activity of the TRPM7 and PI3K pathways
(Figure 3A).

Recently, Lin et al. [128] found that bone morphogenetic protein-2 (BMP-2) boosted
the osteogenic differentiation of BMSC by promoting AKT-pathway-related metabolic
reprogramming in a dose-dependent manner. Additionally, the low concentration of
Mg-rich environment (5 × 10−3 mol/L) enhanced the osteogenic response to low doses
of BMP-2 (20 µg/mL). In the subcutaneous ectopic bone formation mouse model, the
Mg-rich environment could considerably promote the formation of vascularized new
bone (Figure 3B). The mechanisms of Mg-enriched materials promoting vascularized
osteogenesis are listed in Table 3.

Table 3. Mechanisms of Mg-enriched materials promoting vascularized osteogenesis.

Materials Characteristic Experiments Animal Model Angiogenesis Mechanism Author/Year

Mg nail Purity of 99.99% in vivo

Critical size
midshaft femur

bone defect (5 mm
in length) model

up-regulated the expression of
CGRP, CGRP promoted the

phosphorylation of FAK and
elevated the expression of VEGFA

Ye, L./
2021 [57]

High-purity
Mg pin

Length of 5 mm
and diameter of

1 mm
in vivo

rat distraction
osteogenesis

model

via the regulation of
VHL/HIF-1α/VEGF signaling

Hamushan,
M./2020 [60]

MCPC

Contain CPC
powder, MPC

powder and liquid
phase (deionized

water)

in vitro -
Regulation of HUVEC

angiogenesis in vitro by immune
regulation of macrophages

Wang,
M./2016 [97]

microgel
composite
hydrogels

BMP-2/Mg2+

codelivery
platform

in vivo critical cranial
defect mode

increase cellular bioenergetic
levels to fuel osteogenesis, and

thereby markedly promoted the
osteoinductivity of BMP-2.

Lin, S./
2022 [128]

Note: CGRP: calcitonin gene-related peptide; FAK: Focal Adhesion Kinase; VEGF: vascular endothelial growth
factor; VHL: Von Hippel–Lindau; HIF-1α: hypoxia-inducible factor-1α; CPC: calcium phosphate cements; MPC:
magnesium phosphate cement; HUVEC: human umbilical vein endothelial cell; BMP-2: bone morphogenetic
protein-2.
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8. Conclusions and Prospects

Although many studies have shown that Mg-enriched materials have excellent os-
teogenic ability, it has also been observed that Mg has adverse effect on osteogenesis
after fast degradation [63]. Therefore, it is still necessary to clarify the mechanism of
Mg-promoting bone healing.

At present, Mg-enriched materials are rarely used as bone repair materials in clinics.
The main reason is the degradation of Mg-enriched materials in human body is difficult to
track and the local ion concentration cannot be measured. The degradation process can
only be predicted through in vitro degradation experiments and animal models. If a more
effective prediction model can be created, it will promote the safer, more reasonable, and
more controllable application of Mg-enriched materials in clinical surgery [73]. All in all,
these in vitro and in vivo studies are very different from the complicated physiological
environment in the human body.

For now, in vitro experiments of vascularized osteogenesis mainly use HUVEC to ver-
ify the correlation with blood vessels. However, this cell line is derived from fetal umbilical
cords and lacks adult cellular markers [129]. In the future, the source of endothelial cells
should be considered when designing experiments, so that their phenotypes match the
organotypic features [129]. Moreover, more models that can dynamically observe angio-
genesis and osteogenesis should be explored. The fetal mouse metatarsal bone model is a
relatively fine and time-consuming unique tool for studying angiogenesis [130]. However,
few uses of this model have been seen in the study of angiogenesis and osteogenesis. More
use of this model in future experiments may improve the credibility of the research results.

Angiogenesis is regulated by two pathways, one is the VEGF-dependent pathway and
the other is the angiopoietin-dependent pathway [131], both of which may be related to
the process of bone repair. At present, there are few studies on the latter in the research of
Mg-rich materials promoting angiogenesis; this can be studied in the future.

Mg-enriched materials for vascularized osteogenesis have been studied in many bone
defect models, such as the distraction osteogenesis model [57,60] and the orbital bone defect
model [75]. In the future, more research can expand on the use of Mg-enriched materials in
more bone defect models.
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