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Abstract: Background: A balloon dilatation catheter is a vital tool in percutaneous transluminal
angioplasty. Various factors, including the material used, influence the ability of different types of
balloons to navigate through lesions during delivery. Objective: Thus far, numerical simulation
studies comparing the impacts of different materials on the trackability of balloon catheters has
been limited. This project seeks to unveil the underlying patterns more effectively by utilizing a
highly realistic balloon-folding simulation method to compare the trackability of balloons made
from different materials. Methods: Two materials, nylon-12 and Pebax, were examined for their
insertion forces via a bench test and a numerical simulation. The simulation built a model identical
to the bench test’s groove and simulated the balloon’s folding process prior to insertion to better
replicate the experimental conditions. Results: In the bench test, nylon-12 demonstrated the highest
insertion force, peaking at 0.866 N, significantly outstripping the 0.156 N force exhibited by the Pebax
balloon. In the simulation, nylon-12 experienced a higher level of stress after folding, while Pebax
had demonstrated a higher effective strain and surface energy density. In terms of insertion force,
nylon-12 was higher than Pebax in specific areas. Conclusion: nylon-12 exerts greater pressure on the
vessel wall in curved pathways when compared to Pebax. The simulated insertion forces of nylon-12
align with the experimental results. However, when using the same friction coefficient, the difference
in insertion forces between the two materials is minimal. The numerical simulation method used
in this study can be used for relevant research. This method can assess the performance of balloons
made from diverse materials navigating curved paths and can yield more precise and detailed data
feedback compared to benchtop experiments.

Keywords: angioplasty; balloon dilatation catheter; finite element analysis; bench test; insertion force;
balloon pleating simulation

1. Introduction

Peripheral artery disease (PAD) is a long-term arterial disease caused by atherosclerosis
in the peripheral vessels, leading to complications in limbs such as pain, ulcers, gangrene,
and reduced function [1]. Percutaneous transluminal coronary angioplasty (PTCA) is an
effective approach for treating symptomatic atherosclerotic peripheral artery disease [2].
This disease affects a wide patient population worldwide, with more than 200 million
individuals afflicted [3]. The balloon-tipped catheter is a device delivered to the site of a
lesion, and it functions to increase the lumen’s diameter [4]. The roles played by different
types of balloons in treatment vary greatly [5–7]. For instance, drug-coated balloons can
directly deliver antiproliferative drugs to the local lesion in the blood vessel without the
need for implanting a stent, while cutting balloons have metal blades attached to their
surface that can cut through plaque during expansion. Additionally, different balloon
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structures, such as dual-wire and scoring balloons, cater to specific functional requirements.
In terms of compliance, balloons can be categorized into compliant, semi-compliant, and
non-compliant balloons. Compliant balloons adapt better to the morphology of the blood
vessels, whereas non-compliant balloons have a superior ability to compress hard lesions.
PTCA balloons are primarily composed of thermoplastic polymers, including polyethylene
terephthalate (PET), nylon, polyethylene with additives, polyvinyl chloride (PVC), and
polyurethane used along with nylon [8]. The materials used for PTCA balloons significantly
affect their characteristics [9]. Currently, Polyamide 12 and Pebax are widely used in the
market to manufacture PTCA balloons [10]. Trackability, which refers to the force needed
to navigate a balloon catheter through a tortuous path to the target lesion [11], is a crucial
indicator for evaluating the performance of PTCA balloons [12,13]. A lower value is
preferred [14]. The trackability of a real balloon is tested in the folded state, and good
folding properties, which determine the ease of folding and unfolding, also play a crucial
role in maintaining the performance of the balloon after repeated inflations [12]. Therefore,
the quality of the folded state directly affects the trackability of the balloon.

Finite element analysis (FEA) has become a powerful tool for the optimization process
of coronary stents and balloon catheters. There have been many studies that have con-
ducted experiments and simulations on balloons from various perspectives. Geith et al. [15]
proposed a simple, microstructurally motivated constitutive model aimed at mimicking
the pronounced anisotropic material response observed in the performed experiments.
Helou et al. [16] presented a modeling method for simulating percutaneous transluminal
angioplasty (PTA) endovascular treatment and evaluated the effects of balloon design,
plaque composition, and balloon sizing on acute post-procedural outcomes after PTA.
Dong et al. [17] investigated the efficacy of post-dilation balloon diameter and inflation
pressure in improving the stent expansion in a calcified lesion. Rahinj et al. [18] analyzed
a non-uniform balloon stent expansion pattern comprised of variations in the stent axial
position on the balloon, balloon length, balloon folding pattern, and balloon wall thick-
ness. De Beule et al. [19] proposed a trifolded balloon methodology, which was confirmed
through experiments and agreed with manufacturers’ data. Wiesent et al. [20] performed a
stent life-cycle simulation including balloon folding, stent crimping, and the free expansion
of the balloon–stent system. Bukala et al. [21] deployed the “kissing balloon” stenting
technique applied to patients with bifurcation stenosis. Hamed et al. [22] verified through
experiments that the cross-sectional scanning morphology of a balloon under different
pressures and the diameter curve under applied pressure can be consistent with a 2D
simulation, demonstrating the consistency between simulation and experimental results.
Gajewski et al. [23] demonstrated that material stiffness has a significant impact on the
degree of occlusion of the balloon in the artery. The clear advantage of a contrasting
engineering simulation is that it provides a comprehension evaluation of a design, of-
fering insightful feedback and thereby minimizing the need for complex and expensive
experiments, which are often difficult to carry out.

However, to our knowledge, there have been no studies comparing simulated folding
and tracking performances between two different materials. Although Sirivella et al. [11]
successfully simulated the pushability and trackability of polyamide PTCA balloons in the
folded state using finite element analysis and compared the results with experiments, they
did not consider the pre-stress of the folded balloon. Instead, they directly established the
initial model of the balloon in the folded configuration, which compromises some realism.
On the other hand, Geith et al. [24] simulated a complete process of balloon folding and
pleating which closely resembled the real scenario. Nonetheless, their study focused on
stent expansion and did not investigate the trackability of the balloons.

In this article, we performed a simulation study using the FEA method to investigate
the folding of nylon and Pebax material balloons, as well as the trackability of balloon
catheters passing through a 90-degree ideal blood vessel under identical conditions. In
addition, a benchtop experiment was conducted to further validate the simulation results.
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2. Materials and Methods
2.1. Bench Tests

The bench test offered clear insights into the performance of the balloon dilatation
catheter within tortuous anatomical structures. The test evaluated the insertion forces of
folded balloon catheters made of different materials as they navigated grooves—a simula-
tion of the transport conditions within actual curved vessels. The quality of trackability can
be evaluated based on the measured insertion force. Therefore, bench tests can provide a
reference for balloon design and clinical selection [13].

The tests were conducted using a test tracking fixture (Figure 1), as specified in ASTM
F2394-07 [13]. It simulated the bending shapes of coronary arteries on a two-dimensional
plane without considering the shapes of lesions. It was composed of two plates, one above
and one below, with grooves representing the curved vessels. The grooves featured varying
degrees of curvature at different positions. The folded balloon was pushed into the groove
through the entrance. A multi-segment displacement load was applied to the balloon: the
total push distance was set at 40 mm, the individual push distance at 5 mm, and the push
speed was 2 mm/s. After each movement, the subsequent push was executed at regular
2.5 s intervals. A force-measuring device captured the push force exerted by the balloon as
it navigated the bend, as depicted in Figure 1.
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2.2. Materials

Nylon-12 (polyamide) and Pebax are the two materials most commonly used in
balloons [15,25,26]. Two materials were used in this study: Grilamid L25 (nylon 12) from
EMS and Pebax® 7033 SA 01 MED resin (a thermoplastic elastomer from Arkema). They
are specially designed to meet the stringent requirements of medical applications such as
minimally invasive devices, and they both exhibit good biocompatibility [26]. The nylon
stress–strain curve was redrawn from a Grilamid L25 technical data sheet. The stress–strain
relationship of Pebax is shown in [26]. An elasto-plastic material with an arbitrary stress
as a function of strain curve and an arbitrary strain rate dependency can be defined using
MAT_89 in LS-DYNA [27]; the model was selected, and the stress–strain curve was input to
fit the material properties. The densities, moduli of elasticity, and Poisson’s ratios of nylon
and Pebax [15] are shown in Table 1. Clearly, nylon-12 is the stiffer of the two materials.
The shaft is composed of high-density polyethylene (HDPE), which was modeled as linear
elastic, as per Table 1 [28].
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Table 1. Material properties.

Material Density (g/cm3) Young’s Modulus (MPa) Poisson’s Ratio

Nylon 1.01 1100 0.4
Pebax 1.01 414 0.4
HDPE 0.953 1000 0.46

*MAT_89 used the Cowper–Symonds constitutive model [29]. The equation of this
model is:

σs = σ0

(
1 +

( .
ε

C

)1/p
)

(1)

Taking the logarithm of both sides of the equation and simplifying it, we obtain:

log10
.
ε = log10 C + P log10

(
σs

σ0
− 1
)

(2)

where σs is the yield stress of the material, σ0 is the quasistatic (0.001 s−1) yield stress of the
material,

.
ε is the strain rate of the material, and P and C are material constants determined

by test [30].

2.3. Geometric Models

During the process of manufacturing balloon catheters, cylindrical balloons are first
compressed into a folded shape using a balloon-folding machine. Then, they are encapsu-
lated into a smaller diameter using a balloon-crimping machine. Therefore, the balloons
are in a folded state before inflation. In order to make the simulation more realistic, the
crimping process, which involves the generation of pre-stress in the balloon, should be
taken into account.

The balloon model is derived from the Euphora balloon dilation catheter (Medtronic,
Minneapolis, MN, USA), featuring a principal diameter of 4 mm and a distal shaft diameter
of 0.91 mm. The balloon’s thickness is 0.02 mm [18] (Figure 2). The pleating tool, as shown
in Figure 3, has an inner diameter of 2 mm. This tool functions by initially compressing the
balloon into three wings and subsequently facilitating each wing’s rotation around the axis,
thereby inducing the regular folding of the balloon.
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In order to more accurately simulate the working process of a balloon-crimping
machine, the simplistic cylindrical model that was previously widely used was replaced
with a novel design composed of 8 plates combined in a specific formation. They formed
a chamber that could be enlarged or reduced (as shown in Figure 4). The three-winged
balloons were folded and compressed in this chamber, and the encapsulated balloons’ final
diameters were then determined.
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A geometry model, referred to as the “pipeline”, featuring a groove shape consistent
with the ASTM F2394-07 bench test fixture, was designed with a diameter of 1.5 mm [13]
(Figure 5). The model features a 90-degree angle between the inlet and outlet, replicating
the grooves traversed by the balloon during the force-monitoring phase of the bench test
(Figure 1). To prevent mesh distortion and convergence failure due to the pipeline’s edges
being cut by balloons, a transitional outward extension was created at the inlet (Figure 5).
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The outlet was bent 90 degrees relative to the inlet, spanning a total length of 50 mm. The
pipeline was modeled as a rigid body and fixed in space.
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2.4. Finit Element Modeling and Boundary Conditions

The pleating tool moved toward the axis by a distance of 2 mm, resulting in the
balloon being compressed into a three-fold configuration (three-wing configuration). Then,
it rotated along the axis, causing the three-fold to rotate counterclockwise by 120 degrees.
Given that both ends of the balloon were secured to the shaft and a specific negative
pressure was exerted on the balloon’s inner surface at that moment, the balloon tightly
adhered to and was fixed onto the shaft, while the three outward folds rotated with the
pleating tool and attached to the shaft.

At the initial moment, both ends of the balloon were fixed to the shaft. After the
pleating tool compressed the balloon, a negative pressure of 6.5 atm was applied to the
inner surface of the balloon [23], causing it to contract. The degrees of freedom of the shaft in
the x and y directions were fixed, and a continuous displacement load of 20 mm was applied
to one end of the shaft. The reason for not employing multi-segment displacement is that
when replicating the experimental conditions, the abrupt acceleration and deceleration of
the shaft can lead to a significant dynamic effect [31], leading to a loss of the realism of the
balloon’s shape.

The contact between the balloon and the pipeline was set to have an ideal friction
coefficient of 0.02 [32], while the shaft and the pipeline were set to have no friction. To make
the balloon adhere more closely to the shaft, the friction coefficient between the balloon
and the shaft was set to 0.2 so that a certain amount of friction force would be generated
between them after the negative pressure was applied, preventing excessive distortion of
the balloon at both ends during rotation and folding.

A mesh convergence study was conducted to ensure that the calculation results
were not significantly affected by variations in the number of mesh elements [33]. In
this study, a mesh convergence study was performed for the balloon. Four models with
different mesh sizes were created with 54,177, 150,156, 213,539, and 336,542 elements,
corresponding to mesh sizes of 0.1 mm, 0.06 mm, 0.05 mm, and 0.04 mm, respectively
(Table 2). The models were assigned the material properties of Pebax and subjected to
the same simulations of folding, crimping, and insertion into the pipeline. The maximum
stress on the balloon surface at the minimum crimped diameter was recorded for each
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model (Figure 6). The results show that the maximum stress difference between the third
and fourth models is less than 5%, indicating convergence and satisfying the criteria for
mesh convergence. Therefore, the mesh size of the third model was chosen for subsequent
simulations, ensuring computational accuracy without excessive computational time due
to redundant mesh elements.

Table 2. Mesh convergence study.

Model 1 2 3 4

Mesh size (mm) 0.1 0.06 0.05 0.04
Number of elements 54,177 150,156 213,539 336,542

Maximum stress (MPa) 42.0 49.5 55.0 56.6
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Based on the mesh convergence study, the balloon model was discretized into four-
node, fully integrated shell elements with five through-shell thickness integration points. It
was discretized using 213,539 mixed shell elements with a thickness of 0.02 mm, and the
shaft was discretized using 34,438 mixed solid elements. All other components were set as
rigid bodies, and their mesh densities had little effect on the simulation results.

The model discretization was performed using ANSA v21.0 (BETA CAE Systems,
Switzerland), and the simulations were performed on 16 CPUs of an AMD EPYC 7532 (GHz)
workstation using LS-DYNA Release 13 (LSTC, Livermore, CA, USA).

3. Results
3.1. Bench Tests

Figure 7 presents the results of the insertion force tests for the nylon and Pebax bal-
loons. The force–displacement curves, characterized by several peaks due to discontinuous
loading, demonstrate that the insertion forces of both balloons initially increase and then
decrease with greater displacement. The maximum insertion force for nylon is 0.866 N,
substantially greater than that of Pebax, which is only 0.156 N.
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3.2. Numerical Results
3.2.1. Dynamic Folding and Delivery Process of the Balloon

The pleating tool compressed the balloon from its initial form (Figure 8a) into a tri-wing
shape (Figure 8c), with the three wings remaining in an inflated state. Upon the application
of negative pressure to the balloon’s inner surface, the three wings tightly adhered to each
other (Figure 8d). As the pleating tool rotated counterclockwise, it dove the three wings
(Figure 8e), which then sequentially attached to the shaft (Figure 8f). Subsequently, the
simulated balloon-crimping machine continuously constricted the chamber, yielding a
fixed balloon diameter of 1.5 mm. Following this, the balloon was axially inserted into
the pipeline to test the insertion force (Figure 9). The balloon’s shape within the pipeline
demonstrated that the bent balloon exhibited evenly spaced wrinkles on the concave side
Figure 10), causing the adjacent area to bulge beyond the original diameter.
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3.2.2. Balloon Stress–Strain Analysis

The stress distribution and effective plastic strain information can help us understand
how the balloon behaves under different loading conditions, such as a folding state or
bending state. This allows for an evaluation of the balloon’s mechanical integrity and the
identification of any areas prone to excessive stress or deformation. After radially crimping
the balloons to achieve the same diameters, the stress levels of the nylon balloon were
found to be higher than those of the Pebax balloon. The maximum stress was located at the
proximal end, with 61.9 MPa for the nylon balloon and 55 MPa for the Pebax balloon, which
is consistent with the results of previous studies [24]. The post-folding stress distribution
in both balloons was more concentrated at the edges of the three folds and at the balloon
ends (Figure 11), where the deformation exceeded that of the remaining areas. Figure 12
more clearly illustrates that higher effective plastic strains consistently manifested at the
folds. Within the same fringe range, the Pebax balloon’s middle showed a greater effective
plastic strain than the nylon balloon, with the Pebax balloon reaching a maximum effective
plastic strain of 0.948, which is higher than the nylon balloon’s 0.879.

3.2.3. Trackability

The insertion force between the balloon and the pipeline was monitored during the
process of pushing the balloon into the pipeline (Figure 13). The balloons of both materials
showed a gradual increase in insertion force with the increase in pushing distance, and the
insertion force reached its maximum value after the balloon was pushed into the pipeline
completely at 2.16 ms. Nylon had a maximum insertion force of 1.016 N, while Pebax had a
maximum insertion force of 1.021 N.
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Similar to the experimental results, the simulation results also exhibited a gradual
increase in the force value for the initial 20 mm of the inserting displacement. In this
study, the simulation was conducted specifically for the process of the balloon being
inserted into the pipeline rather than the process of the balloon being pushed out of the
pipeline. Therefore, unlike in the experiment, the contact force did not decrease after
reaching its maximum value. In the experiment, the insertion force of the Pebax balloon
was significantly lower than that of nylon. However, in the simulation, the insertion force
of nylon was only slightly different and higher than Pebax’s at certain moments. The
maximum insertion force of the nylon balloon in the simulation was slightly larger than
the experimental value of 0.866 N.

3.2.4. Surface Energy Density

The surface energy density provides valuable information about the interaction be-
tween the balloon material and the surrounding environment. It can affect the balloon’s
ability to navigate through blood vessels, interact with the vessel wall, and perform its
intended functions effectively. The surface energy density of the pipeline with balloons
fully inserted is shown in Figure 14. Throughout the insertion process, the surface energy
density continued to increase and was primarily distributed on the convex surface of the
pipeline and the folds of the balloon. The balloon’s surface energy density is significantly
higher than that of the pipeline. The Pebax-balloon-loaded pipeline had higher surface
energy density than the nylon-balloon-loaded pipeline.
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4. Discussion

With the same shaft, the nylon balloon exhibited a greater insertion force than the
Pebax balloon in the experiments. In the simulations, the coefficient of friction between
the balloon and the pipeline was set to the same value for both cases for better variable
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control [32]. The simplification of the friction coefficient only affects the numerical values
of the insertion force, while the comparison of stress and strain remains unaffected by
it. The frictional force originated from both the balloon’s tendency to expand outward in
its folded state, exerting pressure on the pipeline wall, and from the pressure exerted on
the wall as the balloon bent along the pipeline. Although the friction force is also related
to velocity [34], the same boundary conditions are imposed on both so that the effect of
velocity can also be neglected. The use of the same friction coefficient also results in a less
significant difference in the insertion force between the two materials in the simulation
compared to the experiment [35]. The difference between the experimental result of 0.866 N
for the nylon balloon and the simulated result of 1.016 N can be attributed to the given
friction coefficient. The friction coefficient used in the simulation was obtained from
previous studies [32] and may not perfectly match the friction coefficient in our actual
experimental environment. However, using the same friction coefficient, controlled for the
variables, allows for a better assessment of the impact of material stiffness on the insertion
force without the need to consider variations in surface characteristics such as roughness.

The experimental results seem to indicate that the stiffer balloon material has more
friction during insertion and requires more insertion and retraction forces because it exerts
more pressure on the wall than the softer material. However, numerical simulations
revealed a negligible difference in the insertion forces between the two materials, contrary
to the experimental results. This suggests that the influence of material stiffness on the
balloon insertion force is minimal when surface characteristics are disregarded. Therefore,
the significant disparity in the insertion force test results between the nylon and Pebax
balloons in the experiment is attributed to the differences in their surface characteristics
rather than nylon being harder and thus requiring greater force and Pebax being softer and
thus requiring less force. This finding is counterintuitive.

Both experiments and simulations demonstrated that as the balloon progresses deeper
into the pipeline and subsequently retreats, the frictional force initially increases and then
decreases. This suggests that the friction force during the insertion and retraction processes
correlates with the length of the balloon within the pipeline. Thus, selecting balloons of dif-
ferent lengths may be necessary to ensure that the friction force during insertion/retraction
is not too high for different patients [36,37]. Our future research will explore the use of
balloon models of the same material but different lengths to simulate the friction force
through grooves, which can provide a reference for appropriate balloon selection.

After balloon folding, the deformation near the connection with the shaft is substantial.
The element with the highest stress also occurs in this area, suggesting that this region
dictates the overall balloon’s stress concentration level [24]. This implies that a more
thoughtful optimization of this area’s structure could potentially reduce the maximum
stress experienced after balloon folding. In this study, the proximal and distal folds exhibit
slight differences. It is well documented that the elements with the maximum stress are at
the distal end of both balloons. This is because the distal diameter of 0.91 mm is larger than
the proximal diameter of 0.6 mm, and the transition from the balloon to the connection is
steeper at the distal end, leading to the formation of deeper folds (Figure 15). Therefore,
a smoother transition at the connections between balloons and shafts, particularly at the
neck, could reduce the maximum stress of the balloons after folding.

Wrinkling arises when the balloon undergoes compression on its concave side while
passing through the pipeline instead of stretching on the convex side. If the bend only
stretches the balloon on the convex side, it only changes the length of the balloon along the
axial direction without negatively affecting the balloon’s deliverability. However, squeezing
the balloon on the concave side will cause some folds to exceed the original diameter, re-
sulting in an increased cross-sectional profile of the balloon during bending. This condition
is unfavorable for navigating through tortuous anatomy [38] and can negatively impact
the balloon insertion force, deliverability, and flexibility. To improve balloon delivery,
the folded balloon should stretch on the convex side rather than being squeezed on the
concave side when bending along the axial direction. This can be achieved by designing a
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fold structure to be less prone to wrinkling or by fabricating the balloon from a material
characterized by superior compression resistance and ease of stretching.
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In this study, the assumption of using the same friction coefficient for both materials
in contact with the pipeline is a simplified model. In reality, the contact properties between
different materials may differ, which is a limitation of this study. In addition, fluid–structure
interactions were neglected, as in previous studies [39–41] that simulated stent implantation
in blood vessels with inflated balloons. These factors need to be considered in future work.

5. Conclusions

This study simulated the folding process of two distinct balloon materials and inserted
the folded balloons into a simulated pipeline to monitor the insertion forces. Experimental
tests were conducted on both types of balloons to measure the actual insertion forces.
Through comparing the experimental data and numerical simulation results, it was found
that under the assumption of the same friction coefficient in the numerical simulation, the
difference in insertion force between the two materials was insignificant. This contrasted
with the experimental results in which the harder nylon balloon demonstrated a signifi-
cantly higher insertion force in comparison to the Pebax balloon. This indicates that the
impact of material stiffness on the balloon insertion force is minimal when the surface
characteristics of the materials are not considered. Therefore, in practical production and
application, for balloons with poor trackability, emphasis should be placed on improving
surface smoothness, such as by adding lubricious coatings. Additionally, the stress and
effective plastic strain results after folding showed that the harder nylon balloon expe-
rienced greater stress after folding, while the softer Pebax balloon experienced a higher
level of effective plastic strain. This suggests that nylon balloons are likely to exert greater
pressure on the curved vessel wall. This simulation of balloon folding and insertion forces
offers a generalized methodology for simulating the trackability of balloons made from
different materials. This would be advantageous for selecting suitable balloon materials for
various scenarios and may provide valuable insights for the design of balloon structures
and folding methods.
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