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Abstract: Three-dimensional printing has become incorporated into various aspects of everyday life,
including dentistry. Novel materials are being introduced rapidly. One such material is Dental LT
Clear by Formlabs, a resin used for manufacturing occlusal splints, aligners, and orthodontic retainers.
In this study, a total of 240 specimens, comprising two shapes (dumbbell and rectangular), were
evaluated through compression and tensile tests. The compression tests revealed that the specimens
were neither polished nor aged. However, after polishing, the compression modulus values decreased
significantly. Specifically, the unpolished and nonaged specimens measured 0.87 ± 0.02, whereas the
polished group measured 0.086 ± 0.03. The results were significantly affected by artificial aging. The
polished group measured 0.73 ± 0.05, while the unpolished group measured 0.73 ± 0.03. In contrast,
the tensile test proved that the specimens showed the highest resistance when the polishing was
applied. The artificial aging influenced the tensile test and reduced the force needed to damage the
specimens. The tensile modulus had the highest value when polishing was applied (3.00 ± 0.11). The
conclusions drawn from these findings are as follows: 1. Polishing does not change the properties
of the examined resin. 2. Artificial aging reduces resistance in both compression and tensile tests.
3. Polishing reduces the damage to the specimens in the aging process.

Keywords: 3D print; resin; dental LT clear; polishing; artificial aging; compression; tensile modulus

1. Introduction

Three-dimensional (3D) printing is becoming one of the most popular methods for
fabricating customized dental elements in contemporary dentistry. It is widely employed for
various applications, including dental restorations, personalized orthodontic and prosthetic
appliances, as well as precise components such as surgical guides [1,2]. The ability to create
precise and individualized elements has propelled 3D printing materials to the forefront of
modern dentistry, enabling in-house treatment planning [3].

Clear aligners have emerged as a popular trend in modern orthodontics, affecting
various branches of dentistry. While thermoformed plates have traditionally been used
for their fabrication, there is a growing preference for 3D printed materials due to their
enhanced accuracy and precision. The integration of digital technologies has prompted
dentists and dental companies to explore novel materials, among which Dental LT Clear
resin (Formlabs) stands out. This material is classified as a IIa biocompatible resin, making
it suitable for long-term use on the skin and mucosal surfaces. In addition to its high
translucency, Dental LT Clear resin exhibits nonlinear compression resistance of up to
600 N, comparable to the biting force. This value is comparable to other popular materials
commonly used for fabricating clear aligners, such as Duran and Durasoft [4].

Biocompatibility is a critical feature of dental materials, particularly when they come
into contact with tissues for extended periods. Technical tests are employed to assess the
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biocompatibility of materials and ensure their safety for human use [5]. According to the
manufacturer [6], Dental LT Clear resin is a new-generation, biocompatible material specifi-
cally designed for long-term applications. It is composed of several chemical components,
including 7,7,9-(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl
bismethacrylate, 2-hydroxyethyl methacrylate, a reaction mass of Bis(1,2,2,6,6-pentamethyl-
4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate, diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide, acrylic acid, monoester with propane-1,2-diol, ethylene
dimethacrylate, 2-hydroxyethyl acrylate, mequinol, 4-methoxyphenol, and hydroquinone
monomethyl ether. The material possesses translucency, rigidity, and strength, making it an
ideal choice for esthetically pleasing individual appliances, including dental aligners. Addi-
tionally, the resin is used for fabricating occlusal guards, splints, and orthodontic retainers.
It is important to note that food and beverages can affect the properties of intraoral appli-
ances, diminishing their esthetics and compromising their structural integrity [7,8]. The
properties of materials are also influenced by intraoral conditions. Originally, CAD/CAM
materials were used for dental restorations (temporary and permanent ones) and the pur-
pose of the use is longitudinal—which means that the pieces of material stay in contact with
the oral cavity for a long time. Consequently, the properties of the materials are examined in
terms of color stability and durability [8,9]. Recently, more materials have been introduced,
and therefore doctors and laboratories are able to prepare more customized pieces, such as
individual face masks or individual appliances for cleft patients [10–12].

Dental LT Clear is a relatively new material that has not yet been fully investi-
gated [3,13]. Therefore, the study we have designed is among the first of its kind in
our opinion. Apart from its intended use in intraoral splints, Dental LT Clear may also have
potential applications in the fabrication of precise individual and orthopedic appliance
components, such as nasal–alveolar molding plates for patients with clefts [13]. A similar
rigid material, BioMed Amber, produced by the same manufacturer (Formlabs), has shown
greater resistance to compression but lower resistance to tensile forces. This makes BioMed
Amber more suitable for the fabrication of mouth guards and occlusal splints. However, it
should be noted that BioMed Amber is not designed for long-term use and should only
remain in contact with the human body for a short period [6].

In another study [14], a comparison of three dental 3D printed materials revealed
that Dental LT Clear exhibited the greatest stability following compression and tensile
tests. Fractal dimension and texture analyses showed minimal changes in the material’s
properties. However, bone index analysis of BioMed Amber indicated a decline in material
quality because of the performed tests. It should be noted that according to the information
provided by the manufacturer [6], Dental LT Clear material is not recommended for steril-
ization. Nonetheless, a recent study [15] revealed the benefits of sterilization in terms of
reducing monomer elution, and autoclaving at 132 ◦C for 4 min improved the microhard-
ness of the resin. Therefore, sterilization should be considered during the prefabrication of
occlusal splints.

The aim of this study was to examine the mechanical resistance properties of a selected
3D printable resin, specifically Dental LT Clear from Formlabs, with regard to the effects
of specimen polishing and aging. To evaluate the material, we formulated the following
hypotheses:

• There is no influence of polishing on the material’s durability.
• There is no influence of artificial aging on the material’s durability.
• There is no relation between application of polishing and artificial aging regarding the

material’s durability.
• Polishing does not change the properties of the material in terms of artificial aging.

2. Materials and Methods
2.1. Materials

In this study, we examined the properties of Dental LT Clear, a 3D printable biocom-
patible resin provided by Formlabs, located in Milbury, OH, USA. The specimens were
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prepared using the Form 2 printer from Formlabs, specifically designed for this resin.
The printer is a self-adjusting device, which automatically sets the print settings once the
cartridge is inserted. The printing process was carried out using violet light (405 nm)
with a power output of 250 mW. The print layer thickness was set to 100 microns, and the
temperature was maintained at 35 ◦C. The manufacturer’s recommendations regarding
potential applications and properties of Dental LT Clear are summarized in Table 1.

Table 1. A brief description of Dental LT Clear applications recommended by the producer.

Resin Application

Dental LT Clear Resin

Characteristics:

• Long-term use
• Biocompatible
• Suitable for mucosal and skin contact
• Highly esthetic
• Transparent, translucent
• Strong, rigid

Use:

• Hard splints
• Occlusal guards
• Retainers
• Aligners
• Other direct-printed long-term orthodon-tic appliances

2.2. Specimens’ Preparation and Artificial Aging

For this research, two types of specimens were prepared. The rectangular specimens
were designed for the compression test following the ISO 604:2003 standard [16]. The
dumbbell-shaped specimens (type 1BA) were prepared for the tensile test according to the
ISO 527-1:2019(E) standard [17]. While the standards required a minimum of five samples,
the authors decided to expand the test to 30 specimens for each test. In total, 240 specimens
of Dental LT Clear resin were printed using the Form 2 printer by Formlabs, following the
ISO standards and the manufacturer’s instructions. Of these, 120 were rectangular-shaped
and 120 were dumbbell-shaped.

After printing, the specimens were rinsed twice for 10 min each in 99% isopropanol
alcohol (Stanlab, Lublin, Poland). Following a 30 min drying period at room temperature,
the specimens were postcured using Form Cure from Formlabs at 80 ◦C for 20 min, as
recommended by the manufacturer for Dental LT Clear resin. Once the specimens were
prepared, the supports were removed. All specimens were then ground using sandpaper,
but only half of them (60 rectangular and 60 dumbbell-shaped) underwent further polishing
on one side using 0.2 pumice (Everall 7, Warsaw, Poland) and polishing paste (Everall 7)
with the Reiter Poliret Mini Feinwerktechnik (GmbH, Bad Essen, Germany). The polishing
process involved a rotational range of 1000–4500 rotations per minute and an average speed
of 2250 rpm.

Following preparation, the specimens were stored at room temperature and 50%
humidity for 24 h (for the tensile test) or 4 days (for the compression test). Half of the
specimens were tested immediately after the storage period, while the other half (60 of
each shape) underwent artificial aging for 90 days in distilled water at 37 ◦C. The water
was changed weekly, based on the scheme used in a previous study on conventional
dental restorative materials [18]. The decision to change the water every 7 days was
made to prevent any potential alteration of properties while ensuring that the water did
not evaporate.
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2.3. Compression Test

According to the ISO 604:2003 [15] standard, specimens measuring (10.0 ± 0.2) mm ×
(10.0 ± 0.2) mm × (4 ± 0.2) mm were selected for testing. Prior to the test, the specimens
were conditioned for 4 days at 23 ◦C/50% relative humidity (RH) in ambient air. The height
and width of the specimens were then measured at five points using a Magnusson digital
caliper (150 mm) (Limit, Wroclaw, Poland). The mean values of these measurements were
calculated.

Axial compression tests were conducted using the Z10-X700 universal testing machine
from AML Instruments in Lincoln, UK. The tests were performed at a constant speed of
1 mm/min (Figure 1). By recording the uniaxial stress–strain curve, the compressive modu-
lus (E [MPa]) of each specimen was determined using the slope of the curve. The changes
in width and height during the compression test were compared to the measurements
taken before and after compression, as shown in Table 2.
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Figure 1. Compression test: (A) set of specimens after printing; (B) a finished specimen before
compression; (C) resin specimen between the compression plates.

Table 2. The formulas for calculation of the compression and tensile modulus.

Formula Explanations

Compressive modulus

Compressive stress
σ = F

A [MPa]
Nominal strain

ε = ∆L
L

F—force [N]
A—initial cross sectional area measurement [mm2]
L—the initial distance between the compression
plates [mm]
∆L—the decrease in the distance between the
plates after the test [mm]

Tensile modulus

Tensile stress
σ = F

A [MPa]
Nominal strain

ε = ∆L
L

Et = σ2−σ1
ε2−ε1

[MPa]

F—force [N]
A—initial cross sectional area measurement [mm2]
L—the initial distance between the grips [mm]
∆L—the increase in the distance between the grips
after the test [mm]
σ1—the stress in MPa
measured at a strain of 0.0005 (ε1)
σ2—the stress in MPa
measured at a strain of 0.0025 (ε2)

2.4. Tensile Test

The dumbbell-shaped specimens (type 1BA) were 3D printed with a length of 75 mm
and an end width of 10 mm, while the thickness was 2 mm. These measurements adhered
to the ISO 527-2:2019 standard [17]. Prior to the tensile test, the specimens were conditioned
at room temperature (23 ◦C) and 50% RH for 24 h. Using a Magnusson digital caliper



J. Funct. Biomater. 2023, 14, 295 5 of 11

(150 mm) (Limit, Wroclaw, Poland), the width and height of the specimens were measured
at the test length, with measurements taken at five points. The mean values of these
measurements were then calculated.

To perform the tensile test, a universal testing machine (Z10-X700, AML Instruments,
Lincoln, UK) was utilized. The test was conducted at a constant speed of 5 mm/min, as
shown in Figure 2. If any of the specimens broke outside of the test length, they were
discarded. Based on the measurements obtained during the test, the stress and strain of the
specimens were determined. The formulas for these calculations are presented in Table 2.
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2.5. Statistical Analysis

The statistical analysis was conducted using Statistica c. 13 software (TIBCO Software
Inc., Palo Alto, CA, USA).

The analysis involved calculating the mean values, along with their corresponding
standard deviations, for both the compression and tensile modulus of the specimens. To
assess any potential statistical differences between the specimens, the Kruskal–Wallis test
by rank was employed, with a p-value threshold set at the range of p < 0.001. To compare
the results obtained from the four tests for each trial, a multivariate analysis of variance
(MANOVA) test was conducted. Finally, to determine the significance of the presented
results, the Mann–Whitney U test was performed.

3. Results

The results of the conducted tests are summarized and presented in three tables
and four figures. Table 3 provides an overview of the elasticity modulus measurements
of Dental LT Clear resin. It was found that the highest compression modulus values
were observed in specimens that had not undergone polishing or aging. On the other
hand, specimens subjected to aging or both polishing and aging exhibited lower mean
compression modulus values. It is worth noting that the tensile test results showed the
widest ranges when polishing was applied without aging, while the narrowest ranges were
observed after the application of aging.

Figures 3 and 4 depict the comparisons of the elasticity modulus. Figure 3 illustrates
that the impact of polishing on compression resistance is minimal, while artificial aging
noticeably weakens the material properties by reducing the force required to damage the
specimens. This difference is statistically significant (p < 0.001). In Figure 4, the largest
disparity is observed when comparing the nonpolished and nonaged group with the group
of specimens that underwent both polishing and aging.
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Table 3. The measurements of elasticity module of Dental LT Clear resin after the compression (Ec)
and tensile (Et) tests.

E (GPa) Polishing Aging N M ± SD Me [Q1–Q3] Min–Max

Compression Ec

No No 30 0.87 ± 0.02 0.87 [0.86–0.88] 0.81–0.89
No Yes 30 0.73 ± 0.03 0.73 [0.71–0.74] 0.67–0.80
Yes No 32 0.86 ± 0.03 0.87 [0.85–0.88] 0.74–0.90
Yes Yes 30 0.73 ± 0.05 0.73 [0.69–0.77] 0.62–0.81

Tensile Et

No No 32 2.96 ± 0.20 2.97 [2.84–3.07] 2.31–3.33
No Yes 32 2.20 ± 0.10 2.23 [2.13–2.26] 2.01–2.39
Yes No 28 3.00 ± 0.11 3.00 [2.93–3.08] 2.77–3.23
Yes Yes 36 2.38 ± 0.16 2.43 [2.25–2.51] 1.95–2.62

M—mean, SD—standard deviation, Me—median (50th percentile), Q1—lower quartile (25th percentile), Q3—
upper quartile (75th percentile), Min—smallest value, Max—greatest value.
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Figure 4 displays the variance analysis conducted to determine the influence of ar-
tificial aging and polishing on the module of elasticity in compression (Ec). The mean
values of the elastic modulus varied depending on whether artificial aging was applied
with or without polishing. Polishing had an impact on the nonaged specimens, but when
comparing the aged specimens, polishing itself did not influence the material’s properties.

Additionally, Table 4 shows the results of the MANOVA test, indicating that there
were statistically significant differences among the results obtained from all the processes
performed on the specimens.

Table 4. MANOVA test for elasticity module for Dental LT Clear resin in compression test. p value
lower than 0.001 is presented in red.

Effect SS df MS F p

Constant 731.1 1 731.1 60901 <0.001

Direct 210.1 1 210.1 17502 <0.001
Polishing 0.166 1 0.166 13.8 <0.001

Artificial aging 10.60 1 10.60 883 <0.001
Direct Polishing 0.213 1 0.213 17.7 <0.001

Polishing + Artificial aging 4.773 1 4.773 398 <0.001
Artificial aging + Polishing 0.078 1 0.078 6.49 0.011

Direct Polishing + Artificial aging 0.060 1 0.060 5.02 0.026

Error 2.9052 242 0.012

In contrast to the previous results, Table 5 presents the MANOVA test results for the
module of elasticity in applied tension. It shows that the only significant influence observed
was due to artificial aging. There was no observed influence of the interaction between
polishing and artificial aging.

Table 5. MANOVA test for module of elasticity in tension of Dental LT Clear resin. p value lower
than 0.001 is presented in red.

Effect SS df MS F p

Constant 77.10 1 77.10 62136 0.000
Polishing 0.001 1 0.001 1.16 0.283

Artificial aging 0.562 1 0.562 452.6 0.000
Artificial aging + Polishing 0.001 1 0.001 0.44 0.506

Error 0.146 118 0.001

The results depicted in Figure 5 demonstrate that polishing had no significant influence
on the tensile properties of the examined resin. However, artificial aging was found to
reduce the resistance to breakage during the tensile test.

Figure 6 provides a summary of the previous findings, indicating that polishing has
a slight positive effect on the resistance to tension, but it does not affect the resistance
to compression. In contrast, artificial aging decreases the force required to damage the
specimens in both the compression and tensile tests, although the impact is less noticeable
in compression. Additionally, the tensile modulus value significantly decreases with the
application of artificial aging.
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4. Discussion

Dental LT Clear, as a class IIa biocompatible resin, is specifically designed for long-
term use and contact with tissues, including oral mucosa. It is commonly utilized in the
production of clear aligners and dental guards, which are intended for extended wear by
patients [4,19]. These splints are designed for long-term use and stay in the patient’s mouth
for several hours per day and should not be used while eating and drinking due to the
potential loss of color stability and mechanical properties [7,20]. With this in mind, we
conducted this study to evaluate the mechanical properties of Dental LT Clear resin when
subjected to two technological activities: polishing and artificial aging.

Considering that the examined material is designed for long-term use, such as in
splints, aligners, and retainers [6], we decided to assess its resistance to artificial aging
to simulate this condition. We chose to use water for artificial aging to mimic the humid
environment of the oral cavity. Thermocycling, which involves temperature variations
during eating, was not considered in our study [19]. Water storage provides valuable
information on hydrolytic degradation [21]. Patient appliances should be polished to create
smoother surfaces and prevent irritations. The results we obtained supported the notion
that polishing helps protect the resin from unfavorable conditions, thereby confirming the
durability of its mechanical properties. However, it is important to note that Dental LT Clear
is a transparent, clear resin and is not intended for dental fillings. Therefore, thermocycling
was not included as a method of material aging. We found a study [22] that examined the
influence of artificial aging on the material’s properties. Although their study had a similar
design to ours, they assessed the resistance to mechanical forces after 2 and 4 weeks. The
two-week period, presented by Reymus and Stawarczyk [22], provides insights into the
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material’s durability within a clear aligner treatment timeframe. In contrast, our study
was conducted over a period of 3 months, which is a more appropriate timeframe for
assessing the long-term use of Dental LT Clear as an occlusal splint or retainer. It is also
worth mentioning that other resins, such as Tera Harz TC-85 (Graphy), have been studied
in more detail in the context of artificial aging [3]. Dental LT Clear is a relatively new resin
and, therefore, the available studies on this specific topic are limited.

Dental LT Clear is indeed a relatively new material, and during our literature search,
we did not come across articles specifically examining the features presented in this research.
Existing studies on resin use in dentistry often focus on color changes, which is a primary
concern for researchers [23–26]. Our study demonstrates that polishing has minimal
impact on the mechanical resistance of Dental LT Clear, while artificial aging significantly
weakens these properties. Therefore, we believe that our paper holds value and importance,
especially for clinicians. Over time, splints may become less precise and show signs of
wear. Another interesting study revealed that printed splints tend to be thicker than the
designed file, suggesting potential loss of precision during use [27]. Scanning, which
replaces traditional intraoral impressions, can also introduce errors and distortions [28].
Additionally, the properties of impressions may change during disinfection. Silicone
materials are known to be more resistant to disinfecting agents and sterilization, whereas
commonly used alginate materials are less stable and accurate, losing their precision after
undergoing antibacterial procedures [29–31].

An interesting observation is that the angle of printing is crucial in the context of
polishing, as the layers of material used for occlusal splint preparation can result in irregu-
larities and reduced precision in the structure of the splint [32]. However, this aspect was
not the focus of our study, as we did not plan to print the specimens at different angles.

In a comparative study, it was found that Dental LT Clear has the highest fracture rate
among other resins used for occlusal splints [33]. This finding highlights the importance of
considering the properties of different materials when planning any type of splint. It also
emphasizes the need for further research and the development of new materials with more
stable properties for similar applications.

Furthermore, a study by Paradowska-Stolarz et al. [14] demonstrated that the applica-
tion of external forces does not significantly alter the fractal dimension and texture analysis
reveals only resistance to compression—the study shows that Dental LT Clear remains
stable in its mechanical features, which indicates that the microscopic structure of the
material remains relatively unchanged after undergoing the tested conditions. The study
also revealed the high stability of Dental LT Clear against mechanical action, as indicated
by its resistance to compression.

It is worth mentioning that 3D composite materials may absorb water and undergo
changes in weight. Although this feature was not evaluated in our study, it is an interesting
finding that warrants further investigation [34].

We acknowledge that our research has certain limitations. One of the main limitations
is that we only focused on one resin, Dental LT Clear, without comparing it to other
materials. However, we believe that our study is a novel contribution to this field and was
designed with this specific material in mind. It is worth noting that other papers in the
literature tend to concentrate on restorative and prosthetic materials [23–26], whereas our
study specifically examines a material used for occlusal splints and clear aligners.

ISO standards typically suggest using five samples for this type of research. However,
by expanding our sample size to 30 specimens, we believe that our study gains a significant
advantage in terms of statistical analysis and the reliability of our findings. Furthermore,
the scarcity of references on this particular topic underscores the novelty and originality of
our research.

5. Conclusions

Based on the obtained results, we can draw several conclusions. Firstly, polishing has
minimal influence on the properties of Dental LT Clear resin. However, artificial aging
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significantly affects both the compressive modulus and tension of the material. Secondly,
polishing increases the resistance of the specimens to artificial aging, as evidenced by the
higher force required to damage the specimens. Therefore, it is recommended to polish
appliances made from Dental LT Clear resin after printing to enhance their durability and
resistance to wear during use.
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