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Abstract: Herein, improving the antibacterial activity of a hydrogel system of sodium alginate (SA)
and basic chitosan (CS) using sodium hydrogen carbonate by adding AgNPs was investigated. SA-
coated AgNPs produced by ascorbic acid or microwave heating were evaluated for their antimicrobial
activity. Unlike ascorbic acid, the microwave-assisted method produced uniform and stable SA-
AgNPs with an optimal reaction time of 8 min. Transmission electron microscopy (TEM) confirmed
the formation of SA-AgNPs with an average particle size of 9 ± 2 nm. Moreover, UV-vis spectroscopy
confirmed the optimal conditions for SA-AgNP synthesis (0.5% SA, 50 mM AgNO3, and pH 9 at
80 ◦C). Fourier transform infrared (FTIR) spectroscopy confirmed that the –COO− group of SA
electrostatically interacted with either the Ag+ or –NH3

+ of CS. Adding glucono-δ-lactone (GDL) to
the mixture of SA-AgNPs/CS resulted in a low pH (below the pKa of CS). An SA-AgNPs/CS gel
was formed successfully and retained its shape. This hydrogel exhibited 25 ± 2 mm and 21 ± 1 mm
inhibition zones against E. coli and B. subtilis and showed low cytotoxicity. Additionally, the SA-
AgNP/CS gel showed higher mechanical strength than SA/CS gels, possibly due to the higher
crosslink density. In this work, a novel antibacterial hydrogel system was synthesized via 8 min of
microwave heating.

Keywords: chitosan; alginate; silver nanoparticles; microwave; hydrogel; antimicrobial applications

1. Introduction

The subject of wound dressing has long been investigated in the medical field to
promote cell growth and inhibit the proliferation of bacteria in the wound. For the former
purpose, the structures should be interconnected, porous, and have a high surface-to-
volume ratio, such as electrospun nanofibers [1,2]. For the latter, the materials should
possess antibacterial activity, such as materials with specific functional groups or composite
materials whose fillers have antibacterial properties. Therefore, electrospun nanofibrous
structures made with antibacterial nanoparticles would be the best choice [3,4]. How-
ever, despite its availability, electrospinning still takes a very long time to form a film for
practical use.

Alginate (Alg) is a linear unbranched polysaccharide comprising (1–4)-linked β-D-
mannuronic acid and its epimer α-D-guluronic acid. Alg-based materials have been
reported to be suitable for wound dressings [5,6] owing to their good antimicrobial activity,
gelling ability, biocompatibility, and hydrophilicity. Another biopolymer that has been
applied in medical applications is chitosan (CS) because of its excellent properties, such as
biodegradability, biocompatibility, low cytotoxicity, and antimicrobial activity. Recently,
research into CS and Alg-based hydrogels for wound-healing applications has gained more
attention because both hydrogels can prevent the loss of water from the wound. This leads
to a prolonged moist environment that minimizes bacterial infection in the wound while
also absorbing excess wound exudate [7,8].
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In the preparation of hydrogels, the appropriate solvent has to be chosen. It is com-
monly known that CS and Alg can be dissolved in an acid solution and pure water,
respectively. If the acidic CS solution is mixed with an aqueous solution of Alg, the highly
protonated CS (cation) chain has been reported to rapidly interact with an anionic chain
of Alg and form a precipitate instead of a uniform gel [9]. Therefore, the conditions for
forming a hydrogel from CS and Alg has to be modified. Although CS cannot usually
be dissolved in a basic solution, it is soluble in sodium hydrogen carbonate (NaHCO3).
Recently, uniform gels prepared from the basic CS (cation) and sodium alginate (SA, anion)
were proposed by our group [10].

NaHCO3 was first added to a solution of CS in acetic acid to prepare a basic CS
solution. This basic condition assured a lower degree of protonation in the CS chains.
Subsequently, SA and glucono-δ-lactone (GDL) were added to the basic CS solution. The
pH of the mixture was then gradually decreased until its pH was lower than the pKa of CS
(~6.5). Eventually, the uniform gel turned into a SA/CS hydrogel [10].

The successful use of nanomaterials in biological applications requires the evaluation
of various parameters such as antibacterial activity, cytotoxicity, and mechanical strength,
to name a few. To boost the antibacterial activity, silver nanoparticles (AgNPs), widely
acknowledged for their excellent antimicrobial activity [11–18], could be incorporated into
the working materials to yield an effective nanocomposite. The most common method
to synthesize AgNPs is a reduction reaction, in which reducing agents in the presence
of stabilizers are utilized [19–22], but some of the chemicals used in this reaction are
highly toxic to both the environment and living organisms. Hence, green synthesis of
AgNPs, using non-toxic and environmentally friendly substances has been extensively
investigated [23–27]. During the synthesis, a mixture of all the reactants needs to be
heated for the reduction to occur. Microwave heating, an attractive heating alternative, has
been reported to yield uniform AgNPs because of its ability to significantly accelerate the
reaction rate in a short time, and prevents aggregation during synthesis by forming uniform
nucleation sites [28,29]. To control the sizes of nanoparticles and reduce their cytotoxicity,
coating nanoparticles with different polysaccharides was found to be effective [30–32].
For example, Chen et al. found that PVA/SA/carboxymethyl chitosan (PVA/SA/CMCS)
hydrogels containing SA-AgNPs (synthesized using 0.05% AgNO3 and 0.2% SA at 90 ◦C for
12 h) demonstrated 21 and 20 mm inhibition zones against E. coli and S. aureus, respectively.
In addition, PVA/SA/CMCS hydrogels with SA-AgNPs showed low cytotoxicity with a
cell viability of 80% [33].

This study focused on enhancing the antibacterial activity of SA/CS gel prepared via
our method [10] by incorporating AgNPs (synthesized with microwave heating) to shorten
the reaction time. In addition, AgNPs were coated with SA (SA-AgNPs) to reduce the
cytotoxicity of AgNPs. In this work, a SA-AgNPs/CS gel was successfully synthesized.
It was suggested that the –COO− group of SA could electrostatically interact with Ag+

and help control the size of SA-AgNPs during particle growth. When CS was added later,
the –COO− group of the SA that was already coated on the SA-AgNPs electrostatically
interacted with the protonated –NH3

+ group of CS. As a result, the SA-AgNPs/CS colloid
was formed into a hydrogel by adding GDL. This new system has not been investigated
before. The obtained hydrogel possessed good properties, such as retaining its shape (thus
yielding a slow Ag+ release), exhibiting good water absorption, and having good stability.
The antibacterial activity was boosted, and the mechanical strength of the SA-AgNPs/CS
gels was superior to SA/CA gels, possibly due to the reinforcing effect of the SA-AgNPs
homogeneously dispersed in the SA/CA matrix, which led to the higher crosslink density
of the whole nanocomposite.

2. Materials and Methods
2.1. Materials

Sodium alginate (SA, grade I-S, M/G = 1.0, viscosity of 1% SA = 1.031 mPa·s) and
chitosan (CS, FL-80, Mw = 5.3 × 104, DAC: 85.6) were supplied by Koyo Chem. Co.,
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Ltd. (Osaka, Japan) and Kimica Corporation (Tokyo, Japan). Silver nitrate (AgNO3), citric
acid, sodium hydrogen carbonate (NaHCO3), sodium hydroxide (NaOH), acetic acid, and
L-glutamic acid were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan).
Glucono-δ-lactone (GDL) was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan), while LB agar and LB broth were purchased from Becton, Dickinson and Company
(New York, USA). Eagle’s MEM (EMEM) was purchased from Nissui Pharmaceutical Co.,
Ltd., Ibaraki, Japan. Fetal bovine serum (FBS) was purchased from Biowest Company
(Lakewood Ranch, FL, USA). A high-density polyethylene (HDPE) film and a polyurethane
(PU) film with 0.25% zinc dibutyldithiocarbamate (ZDBC) were purchased from the Food
and Drug Safety Center (Kanagawa, Japan). BALB-3T3 clone A31 cells (mouse fibroblasts,
resource No. RCB0005, lot No. 16, Passage: 3) were purchased from Riken BRC Cell. Bank,
Japan. All chemicals were used without any treatment.

2.2. Preparation of SA-AgNPs
2.2.1. Synthesis without Microwave Irradiation

The SA-AgNP solution was prepared by adding 1 mL of a AgNO3 solution (50 mM)
to 10 mL of 0.5% SA and stirred at 25 ◦C for 1 min. Subsequently, 1 mL of ascorbic acid
(50 mM) was added, followed by the addition of a NaOH solution (0.1 M) to adjust the
pH to 9. A final AgNO3 concentration of 0.004 mM/mL was obtained. The SA-AgNP
solution was produced after a synthesis time of 1 min, and its absorbance was measured
using a UV–vis spectrophotometer (UV–2910, HITACHI, Tokyo, Japan) with a scanning
wavelength range of 300–600 nm.

2.2.2. Synthesis by Microwave Irradiation

SA-AgNPs were synthesized by completely dissolving 0.05 g of SA in 10 mL of
deionized (DI) water, and the pH value of the solution was adjusted within the range
of 5–11 by adding a NaOH solution (0.1 M). Subsequently, 1 mL of a AgNO3 solution
was added, and the reaction mixture, held in a 100 mL glass vessel, was inserted into a
microwave device (Discover Labmate, CEM Corporation, North Carolina, USA) with a
magnetron frequency of 2450 MHz, a power output of 300 W, a power output per reaction
volume of 3 W/mL, and a processing pressure of 1.013 bar to reduce the Ag+ and form
SA-AgNPs. Afterwards, the mixture was cooled in an ice bath to stop the reaction. The
concentrations of the initial SA and AgNO3 solution were in the ranges of 0.1–2.0% and
10–500 mM, respectively, while the reaction temperature and time were in the ranges of
60–90 ◦C and 1–15 min, respectively. The final concentration of the SA-AgNPs was detected
using ICP–AES (ICP-7510, Shimadzu, Kyoto, Japan).

2.3. Preparation of the SA-AgNPs/CS gel

The SA-AgNPs/CS gel was prepared according to the method described by [10].
Initially, pure SA was added to the SA-AgNP solution (synthesized according to
Sections 2.2.1 and 2.2.2) and stirred overnight to form a 2.0% SA-AgNP solution. Sub-
sequently, 191.0 mg of CS was mixed with 1 mL of DI water and 102.2 µL of an acetic acid
solution (1 M) at a molar ratio a CS monomer unit:acetic acid of 1:1. Sodium bicarbonate
powder (0.382 g) was then added to the CS solution and stirred vigorously to stabilize
the basic CS solution. Next, 1 mL of the 2.0% SA-AgNP solution was mixed with 1 mL of
the basic CS solution and stirred until homogeneous, followed by the addition of a GDL
solution (1 M). Subsequently, this solution formed the SA-AgNPs/CS gel after standing at
room temperature in the dark for 1 h.

2.4. Characterization of the Synthesized AgNPs, SA-AgNPs, and SA-AgNPs/CS Gel

The formation of AgNP was confirmed by measuring the color change of the solution
using a UV-vis spectrophotometer. Transmission electron microscopy (TEM) micrographs of
the SA-AgNPs were recorded by a transmission electron microscope (TEM, JEM-1400Flash,
JEOL, Tokyo, Japan) at an acceleration voltage of 100 kV. Fourier transform infrared (FTIR)
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spectroscopy (FT/IR-6300, JASCO, Tokyo, Japan) with the KBr method was used to record
FTIR spectra of the freeze-dried samples. Field emission scanning electron spectroscopy
(FE-SEM, JSM6700, JEOL, Japan) was used to analyze the structural changes of the gels
with different CS:SA values.

2.5. Compressive Strength, Crosslink Density, and SEM Images of SA-AgNPs Gel

A universal testing machine (EZ test series, Shimadzu, Japan) was used for compressive-
strength tests. Hydrogels formed using different SA-AgNPs/CS compositions (with the
AgNO3 concentration and CS:SA in the ranges of 10–50 mM and 0.5–1:1, respectively) were
used for compressive-strength tests. The crosslink densities of the samples were calculated
from the Young’s modulus evaluated using Equations (1) and (2) [34]:

Crosslink densities (mol/m3) = Young’s modulus (N/m2)/Φ1/3 × R × T, (1)

Φ = weight of the gel in the dried state (g)/weight of the gel in the wet state (g), (2)

where R is 8.314 (J/mol · K) and T is the measured temperature (K). The SA-AgNPs/CS gels
were freeze-dried and evaporated using a platinum evaporation apparatus. The average
value and the standard deviation were calculated from 5-time measurements and reported.

2.6. Water-Resistance Test of the SA-AgNPs/CS Gel

The swelling ratio of the hydrogels in DI water indicated their water resistance. Firstly,
excess water at the hydrogel surface was gently wiped off, followed by weighing. Subse-
quently, the hydrogel was immersed in 100 mL of DI water for three days; the swollen-state
hydrogel was weighed in 24-h intervals. Finally, the samples were freeze-dried and weighed
in their dried state. The swelling ratio was determined using Equation (3):

Swelling ratio = Ww/Wd, (3)

where Ww (g) and Wd (g) are the gel weights in the wet and dried states, respectively.
The average value and the standard deviation were calculated from 5-time measurements
and reported.

The SA-AgNPs/CS hydrogels were then immersed in 100 mL of DI water for seven
days to measure the release of Ag+. Every 24 h, pure DI water was replaced. The amount
of Ag+ in 5 mL of the immersed solution was detected using inductively coupled plasma
atomic emission spectroscopy (ICP–AES, ICP-7510, Shimadzu, Japan).

2.7. Antibacterial Test

The disc diffusion method was used to analyze the antibacterial activity of the SA-
AgNPs/CS gels with AgNO3 concentrations ranging from 10–50 mM. Escherichia coli (E. coli)
and Bacillus subtilis (B. subtilis) were used as model test strains for gram-negative and gram-
positive bacteria. Firstly, E. coli or B. subtilis were added to Luria-Bertani (LB) broth solution
and pre-cultured overnight with a shaking speed of 180 rpm at 37 ◦C. Then, the pre-cultured
bacterial solution was diluted to 1.0 × 106 CFU/mL. LB agar (0.8 g) was added to 20 mL
of DI water and sterilized in an autoclave at 121 ◦C for 15 min. The agar medium was
then transferred to a sterile petri dish. Finally, after solidification, 0.1 mL of pre-cultured
bacterial solution was spread on the medium surface and incubated overnight at 37 ◦C.
The zone of inhibition for each sample was recorded using a digital camera and analyzed.
The average value and the standard deviation were calculated from 3-time measurements
and reported.

2.8. Cytotoxicity Test
2.8.1. Cell Propagation for Cytotoxicity Test

BALB-3T3 clone A31 cells (mouse fibroblasts) were used as the cell model to analyze
the cytotoxicity of the SA-AgNPs/CS and SA/CS gels. Before experimentation, BALB-3T3
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clone A31 cells (mouse fibroblasts) were propagated. Firstly, 4.7 g of EMEM and 0.75 g
of NaHCO3 were dissolved in 440 mL of DI water. After that, 0.146 g of L-glutamic acid,
50 mL of FBS solution, and 10 mL of DI water were added to the solution. The obtained
solution was sterilized and used as the new medium. Then, 1 mL of BALB-3T3 clone
A31 cells was added to 10 mL of the sterilized medium and incubated at 37 ◦C for 24 h.
Finally, the old medium was removed, and replaced with fresh medium, and incubated for
72 h. Meanwhile, the samples were lyophilized for two days and sterilized using ethylene
oxide gas (EOG). The obtained solution was sterilized and is also referred to in this study
as “medium”.

2.8.2. Cytotoxicity Test

Firstly, the SA-AgNPs/CS gel and SA/CS gel were freeze-dried for 48 h, and 0.1 g of
the freeze-dried sample was added to 5 mL of medium and incubated for 72 h. We will
further refer to this filtrate as “extract”. The medium was removed from the 96-well plates
containing the BALB-3T3 clone A31 cells with a concentration of 1 × 103 cells/well (at
3 log phase). Then, 100 µL of the extract was added to the 96-well plates and incubated at
37 ◦C for 72 h. The SA/CS gel extract (a blank), the HDPE film extract (a negative control),
and the PU film with 0.25% ZDBC extract (a positive control) were tested under the same
conditions. Subsequently, the cells were treated with a new extract and incubated for
another 72 h. Finally, after incubation, the cell counts were determined using Cell Counting
Kit 8 (Dojindo, Kumamoto, Japan). The cell viability was determined using Equation (4):

Cell viability (%) = Abssample/Absblank × 100, (4)

where Abssample and Absblank are the extracts of the SA-AgNPs/CS gel (or negative control
or positive control) and the extract of the SA/CS gel, respectively. The average value and
the standard deviation were calculated from 3-time measurements and reported.

3. Results and Discussion
3.1. Reaction Mechanism of AgNP Formation

Forming uniform SA-AgNPs requires a reducing agent for Ag+ reduction and a
stabilizer to prevent AgNP aggregation. Herein, SA was used as the reducing agent and the
stabilizer when forming SA-AgNPs. The overall synthetic procedure for this experiment is
shown in Figure 1.
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According to previous reports, the mechanism of SA-AgNP formation can be divided
into two stages [35]. The first stage involves the reduction of Ag+ to AgNPs by the available
reduction groups. As nucleation centers in the second stage, the resultant AgNPs are said
to catalyze the reduction of the remaining Ag+ in the bulk solution and adsorb Ag on
their surface. This process is repeated to form large particles. SA stabilizes AgNPs by its
carboxy (–COO−) groups, preventing further aggregation; (the electrostatic repulsion by
the –COO− groups of Alg and steric hindrance by the Alg chains prevent aggregation) [28].
The formation of the gel could be completed after adding GDL. The pH of the prepared
SA-AgNPs mixed with basic CS solution gradually lowers. The resulting SA-AgNPs/CS
gel is formed successfully below the pKa of CS (~6.5) and retains its shape.

3.2. Confirmation of SA-AgNP Synthesis
3.2.1. Synthesis without Microwave Irradiation

UV-vis spectroscopy, a simple and sensitive method, was used to characterize the
SA-AgNPs by their excitation surface plasmons. Theoretical studies on the size dependence
of metallic spheres on UV-visible absorption have indicated that the surface plasmon reso-
nance band shows a red shift with increasing particle size and a blue shift with decreasing
particle size [36]. Colloidal silver aggregation causes a decrease in the main peak’s intensity,
with the appearance of an additional blue peak on the long wavelength side [37]. After the
reaction without microwave irradiation, the color of the SA-AgNPs changed. Figure 2a–c
show the SA-AgNP suspensions, their UV absorbance values, and the hydrogels fabricated
using the suspensions. After the experiment had been five times, the SA-AgNP suspensions’
color, UV spectra, and hydrogels were unique each time. Particularly, the UV spectra of the
solution, with a peak around 400 nm representing AgNPs, was observed only in experi-
ments No. 1 (sample 1©) and No. 2 (sample 2©), whereas a peak at 410 nm corresponding to
larger AgNPs was observed in experiment No. 3 (sample 3©). Experiments No. 4 (sample
4©) and 5 (sample 5©) did not show any clear peaks. This could be due to the small amount

of SA used, which was insufficient to simultaneously function as a reducing agent and a
stabilizer. Although ascorbic acid was added to the system, the SA did not wholly coat the
AgNPs in the system during the reaction. As this synthesis (without microwave irradiation)
was not reproducible, SA-AgNPs were synthesized with microwave irradiation for the
remaining experiments.
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3.2.2. Synthesis Using Microwave Irradiation

After microwave irradiation, the SA solution with AgNO3 changed from colorless to
light yellow to reddish-brown, according to the conditions of synthesis (Figure 3a–e). The
change in the color of the solution indicated the formation of SA-AgNPs. Figure 4a shows
the UV-vis spectrum of SA-AgNPs synthesized with different SA concentrations (0.1–2.0%)
and a fixed AgNO3 concentration (50 mM) at pH 9, with microwave irradiation at 80 ◦C for
8 min. The intensity of absorbance increased with an increase in the SA concentration from
0.1 to 0.5%, indicating an increase in the formation of SA-AgNPs, whereas it decreased
when the SA concentration was increased to 1% and 2%, indicating a smaller amount of
SA-AgNPs. Additionally, when 1% and 2% of SA was used, the absorption peak exhibited a
red shift to the longer wavelength side, indicating the formation of SA-AgNPs with a larger
particle size [38]. Microwave radiation was unable to optically vibrate the SA molecules at
high concentrations, thereby causing an inefficient acceleration of the SA molecule–AgNP
interaction. Thus, the optimal SA concentration for microwave synthesis is 0.5%.
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Subsequently, the formation of SA-AgNPs using 0.5% SA at different concentrations of
AgNO3 (10–500 mM) was evaluated. As shown in Figure 4b, the formation of SA-AgNPs
increased with an increase in the concentration of AgNO3 up to 50 mM, while precipitation
was observed beyond 100 mM (Figure 3b); significant precipitation occurred, facilitating
the separation of the water layer from the precipitate layer. In addition, SA produces
aggregates with metal ions [39]. This experiment confirmed the aggregation of SA at
high concentrations of Ag+; therefore, the optimal concentration of AgNO3 for microwave
synthesis was 50 mM, with the ABS peak of 410 nm corresponding to AgNPs.

High-pH solutions exhibited strong turbidity and a blue-shifted peak at pH 11 (Figure 4c);
moreover, the absorption peak intensity increased with an increase in the pH. These
phenomena could be attributed to the increased electrostatic exposure of the carboxy
groups of SA due to the higher pH of the solution [28]. The blue shift indicated a decrease
in particle size. It has been found that large amounts of AgNP with a small particle size
exhibit high cytotoxicity [40].
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At pH values less than 7, the solution did not exhibit a yellow color; however, it
was reddish-brown at pH 9. As mentioned previously and confirmed by the UV-vis
absorbance measurements, the color change indicated the formation of AgNP. In high-pH
solutions, Ag+ reacts with OH− to form a silver complex that is subsequently reduced to
AgNPs [41,42].

SA is a weak reducing agent, and the general external heating method requires a
longer reaction time than microwave heating. Consequently, the method is associated
with the agglomeration of AgNP due to the thermal decomposition of SA by prolonged
heating, which is a severe limitation that requires resolution. Here, the rapid and uniform
heating profile facilitated a microwave reaction with a short reaction time. As shown in
Figure 4d, the peak intensity of absorption increased with the reaction time. The peak
showed a larger red shift to the longer wavelength side after 15 min than that exhibited
after 8 min, indicating an increase in the size of AgNP particles [30]. The optimal reaction
time in this study was 8 min, consistent with the results of Zhao et al. [28]. Moreover,
according to a report by Peng et al. on the synthesis of AgNPs using bamboo hemicellulose
via microwaves, forming AgNPs with the reducing agent glucose requires a reaction time
of more than 2 min [43].

The effect of temperature on the morphology of AgNPs has been reported in previous
studies [44]. As shown in Figure 4e, the formation of AgNP increased with the reaction
temperature, and a slightly red-shifted peak was observed at a reaction temperature of 90 ◦C.
This could be attributed to a disruption of the SA coating layer due to the agglomeration of
AgNP because of the enhanced thermally induced molecular motion after the increase in
the temperature.

Figure 5 shows the TEM images of the SA-AgNP sample synthesized with 0.5% SA
and 50 mM AgNO3 at pH 9 and 80 ◦C, after a reaction time of 8 min. A uniform dispersion
of spherical SA-AgNPs was observed, with an average particle size of 9 ± 2 nm, indicating
the significant role of SA as a stabilizer. Contrariwise, AgNPs without the SA coating
exhibited self-agglomeration with larger diameters of 21 nm and a wider size dispersity of
13 nm. According to a report by Agnihotri et al., AgNPs with an average particle size of
5–100 nm exhibit antimicrobial properties against various bacteria, and those with particle
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sizes below 10 nm exhibit the best antibacterial activity against E. coli. [19]. Moreover, the
spherical shape of AgNPs gives higher bactericidal efficacy against E. coli. than rod-shaped
AgNPs [45]. The SA exhibited reducing and stabilizing properties; thus, the SA coating
facilitated the production of high-stability uniform SA-AgNPs with an average diameter
of 10 nm. The SA-AgNPs showed high antimicrobial activity [28]; thus, the SA-AgNPs
synthesized here were expected to exhibit good antimicrobial activity.
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Figure 5. TEM images of SA-AgNPs fabricated using 0.5% SA and 50 mM AgNO3 at pH 9 and 80 ◦C,
after 8 min of reaction: (a) with a scale bar of 100 nm and (b) with a scale bar of 20 nm. (c) The size
distribution of the SA-AgNPs. TEM images of the AgNPs fabricated without the SA coating using
50 mM AgNO3 at pH 9 and 80 ◦C, after 8 min of reaction: (d) with a scale bar of 100 nm and (e) with
a scale bar of 50 nm. (f) The size distribution of the AgNPs without the SA coating.

3.3. Preparation of the SA-AgNPs/CS Gel

Firstly, SA-AgNPs were synthesized by completely dissolving 0.05 g of SA in 10 mL
of DI water to achieve an SA concentration of 0.5%. Secondly, 1 mL of a 50 mM AgNO3
solution was added, and the pH value of the solution was adjusted to 9 by adding a 0.1 M
NaOH solution. The reaction mixture was then inserted into a microwave device at 80 ◦C
for 8 min to reduce the Ag+ and form SA-AgNPs. Afterwards, the mixture was cooled in
an ice bath to stop the reaction. During the reaction, the –COO− group of SA, acting as the
reducing and stabilizing agent, interacted with the Ag+, and then the Ag+ was changed
to Ag0 by microwave irradiation. After the SA-AgNPs had been obtained, CS was added
and mixed. Finally, GDL was added according to the previous method [10]. The pH of
the system gradually decreased to 6.5, which is the pKa value of CS. At this pH, NH2 is
protonated to –NH3

+, and the –NH3
+ interacts with the –COO− of SA. The SA-AgNPs/CS

gel was obtained as explained in Figure 1. The preparation of the SA-AgNPs/CS gels was
confirmed by FTIR, with color changes due to plasmon absorption by the AgNPs. The gel
containing SA-AgNP retained its shape and remained bright yellow, unlike the SA/CS gel
without SA-AgNPs, as shown in Figure 6a,b. Additionally, the mixture of SA-AgNPs and
CS without the addition of NaHCO3 and GDL did not form a gel, as shown in Figure 6c.
The mixture of SA-AgNPs and CS with the addition of NaHCO3 and without GDL also
did not form a gel, as shown in Figure 6d. The FTIR spectra of SA, CS, the SA-AgNP
solution, the SA/CS gel, and the SA-AgNPs/CS gel are shown in Figure 6e. The peaks at
1298 and 1412 cm−1 corresponded to the –COO− groups of the SA molecules. These peaks
overlapped to form a single peak at 1414 cm−1 in the spectrum of SA-AgNPs; the higher
wavelength shift of the peak indicated an increase in the binding force between AgNPs
and the –COO− groups. The band at 1371–1406 cm−1 in the SA/CS gel shifted to the
higher wavelength side in the SA-AgNPs/CS gel (to 1410 cm−1), indicating that the AgNPs
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interacted with the –COO− group of SA, consistent with the stabilization mechanism of
SA-AgNP [46].
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Figure 6. Digital photographs of (a) the SA-AgNPs/CS, (b) the SA/CS gel, (c) the mixture of SA-
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and the SA-AgNPs/CS gel.

3.4. Mechanical Properties and SEM Images of the SA-AgNPs/CS Gels

High antibacterial activity and low cytotoxicity are required for biomedical applica-
tions of a material, in addition to the high mechanical strength of the material. In our
previous work, the ratio of CS:SA in the SA/CS gel was fixed at 1:1 [10]. Here, the enhance-
ments in the strength of the SA/CS gel by varying the ratio of CS to SA were investigated.
The strength of the SA-AgNPs/CS gels is shown in Figure 7a,b.
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Figure 7. Young’s modulus of (a) the SA-AgNPs/CS and SA/CS gels (CS:SA = 0.75:1) and (b) the SA-
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(f) CS:SA = 0.75:1, and (g) CS:SA = 1:1.
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The SA-AgNPs/CS gel exhibited a higher Young’s modulus than the SA/CS gel
without SA-AgNPs. When the ratio of CS:SA in the SA-AgNPs/CS gels was varied (0.5,
0.75, and 1), the gel with a CS:SA value of 0.75 exhibited the most prominent Young’s
modulus, similar to the trend exhibited by the crosslinking densities of the gels (Figure 7c,d).
Furthermore, digital photographs of the SA-AgNPs/CS gel with different molar ratios of
CS:SA are shown in Figure 7e–g.

As shown in the SEM micrographs, the pore size of the SA-AgNPs/CS gel was smaller
than that of the SA/CS gel at all molar ratios of CS:SA (Figure 8). The average pore sizes of
all samples are shown in Table 1. Additionally, the enhancement of the Young’s modulus
of the SA-AgNPs could be attributed to the formation of uniform nucleation sites during
the formation of SA-AgNP. According to Zhang et al., the mechanical properties of the gels
can be improved by the inclusion of AgNP [47].
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Table 1. The average values of the pore size of the SA/CS gel and the SA-AgNPs/CS gels at different
molar ratios of CS:SA.

Sample Average Pore Size
(10−3 mm2)

SA/CS gel (CS:SA = 0.75:1) 0.58 ± 0.05
SA-AgNPs/CS gels (CS:SA = 0.5:1) 0.55 ± 0.02

SA-AgNPs/CS gels (CS:SA = 0.75:1) 0.37 ± 0.02
SA-AgNPs/CS gels (CS:SA = 1:1) 0.41 ± 0.02

3.5. Water Resistance of the SA-AgNPs/CS Gels

As shown in Figure 9a, the swelling ratios of the SA-AgNPs/CS and SA/CS gels
increased with time. The SA-AgNPs/CS gel exhibited a lower swelling ratio than the
SA/CS gel, possibly due to an increase in the crosslinking density due to the inclusion
of SA-AgNPs, as described in Section 3.4. When the ratio of CS:SA was varied, the SA-
AgNPs/CS gel with an CS:SA ratio of 0.75:1 exhibited the highest swelling ratio and
crosslinking density (Figure 9b). Thus, the increase in crosslink density due to the inclusion
of SA-AgNPs significantly influenced the swelling ratios of the gels. However, the weight
loss values show the opposite trend: gels with a lower residual weight exhibited a larger
swelling ratio, (Figure 9c,d). The low residual weights could be attributed to the utilization
of acetic acid and GDL during fabrication of the gel. Figure 9e shows the release of Ag+

from the SA-AgNPs/CS gels synthesized using 10 and 50 mM of AgNO3. A release of less
than 0.1 ppm of Ag+ for 7 days occurred when 10 mM of AgNO3 was used, whereas 50 mM
resulted in a release of Ag+ in the range of 0.075–0.1 ppm. Studies on the effects of the release
of AgNPs on cytotoxicity indicated that primary fibroblasts and hepatocytes isolated from
mice survived at concentrations higher than 20 ppm of AgNPs [48]. Gradually released Ag+

entered the cells and interacted with the thiol groups of the enzymes and proteins. This
affected their functions and protein synthesis, finally causing cell death. In this study, the
SA-AgNPs/CS gels released less than 20 ppm Ag+, signifying low cytotoxicity. In addition,
coating them with sugar chains enhanced the safety of the gels.
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3.6. Antibacterial Activities

AgNPs exhibited antimicrobial effects against a variety of bacteria [49]. In this exper-
iment, the antibacterial activity of the SA-AgNPs/CS gel was evaluated using the zone
of inhibition method, with several conditions, as shown in Figure 10. All samples, except
the sample obtained using 2% SA, showed an inhibition zone against E. coli and B. subtilis.
Tokura et al. reported that the antimicrobial activity of a CS oligomer with a molecular
weight of 9300 Da was likely caused by blocking the permeation of the nutrient through
the cell wall of bacteria [50]. The SA/CS gel without AgNPs did not exhibit sufficient
antibacterial activity (Figure 11), likely because the molecular weight of CS in this work
was approximately 5.3 × 104 Da, which was too large and could only block the nutrition
supply through the cell. Unlike the SA/CS gel, the SA-AgNPs/CS gels showed signifi-
cant antimicrobial ability against E. coli and B. subtilis because of the combination of the
antimicrobial abilities of both AgNPs and chitosan. The SA-AgNPs/CS gel fabricated with
10 mM AgNO3 showed 17 and 16 mm inhibition zones against E. coli and B. subtilis, respec-
tively, whereas the gel synthesized with 50 mM AgNO3 (a final SA-AgNP concentration of
20 ppm) showed 25 and 21 mm inhibition zones against E. coli and B. subtilis, respectively.
The average value and the standard deviation were calculated from three measurements
and are reported in Table 2. According to a report by Chen et al., PVA/SA/carboxymethyl
chitosan (PVA/SA/CMCS) hydrogels containing SA-AgNPs and synthesized using 0.05%
AgNO3 with 0.2% SA at 90 ◦C without microwave irradiation required a 12 h synthesis time.
The PVA/SA/CMCS hydrogels containing SA-AgNPs showed 21 and 20 mm inhibition
zones against E. coli and S. aureus, respectively [33]. Herein, the SA-AgNP/CS hydrogel
containing SA-AgNPs and synthesized using microwave irradiation with an 8 min syn-
thesis time showed high antimicrobial activity against E. coli and B. subtilis. It should be
emphasized that the reaction time was reduced using our method.
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Table 2. Average values of the inhibition zones of the SA/CS and SA-AgNPs/CS gels (fabricated
with 10 and 50 mM AgNO3).

Bacteria SA/AgNPs/CS
(10 mM)

SA/AgNPs/CS
(50 mM)

E. coli 17 ± 1 mm 25 ± 2 mm
B. subtilis 16 ± 2 mm 21 ± 1 mm

3.7. Cytotoxicity

The FTIR spectra of the SA-AgNPs/CS gel before and after sterilization with EOG were
used for the cytotoxicity experiment (Figure S1). The FTIR spectrum of the SA-AgNPs/CS
gel did not change after sterilization. Chen et al. reported that PVA/SA/CMCS hydrogels
containing SA-AgNPs synthesized using 0.05% AgNO3 with 0.2% SA at 90 ◦C for 12 h
without microwave irradiation exhibited a cell survival rate of 80%, which was slightly
lower than that without AgNPs, indicating low cell damage by the PVA/SA/CMCS/Ag
hydrogels [33]. In this research, BALB-3T3 clone A31 cells (mouse fibroblasts) were used
as the cell model to analyze the cytotoxicity of the SA-AgNPs/CS gel. Under the same
conditions, the SA/CS gel extract was a blank, a HDPE film extract was a negative control,
and a PU film with a 0.25% ZDBC extract was a positive control. The average value and the
standard deviation were calculated from three measurements and are shown in Figure 12.
The SA-AgNPs/CS gel with a final SA-AgNPs concentration of 20 ppm exhibited 87% cell
viability, which was slightly lower than that of the blank (SA/gel). The cell survival rate
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was still high, especially when compared with that of the positive control. This finding was
similar to that of other previous works [51]. Thus, it could be concluded that the SA-AgNPs
have low toxicity towards living organisms at low concentrations.
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4. Conclusions

In this study, SA was used as a stabilizer and a reducing agent for rapidly synthesizing
SA-AgNPs from Ag+ using microwave irradiation, followed by the fabrication of SA-
AgNPs/CS gels by mixing the SA-AgNPs with a basic CS solution. Usually, CS cannot be
dissolved in a basic solution. In this work, CS (as a basic solution) was prepared using
NaHCO3, and GDL was then added to the mixture of SA-AgNPs/CS with a low pH,
specifically below the pKa of CS (~6.5). This resulted in the successful formation of a
SA-AgNPs/CS gel that retained its shape. In addition, the gel with a CS:SA value of
0.75 exhibited the highest Young’s modulus of 6 kPa. The synthesized gels containing
20 ppm-SA-AgNPs showed good mechanical properties, high antibacterial activity against
E. coli and B. subtilis with inhibition zones of 25 and 21 mm, and a low cytotoxicity of 87%
cell viability. Thus, the SA-AgNPs/CS gels fabricated here, which had high antimicrobial
activity and biocompatibility, could be utilized as wound dressings and for numerous
other applications.
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