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Abstract: This study focuses on developing hydroxyapatite synthesized from a CaCO3-rich byprod-
uct of sugar beet processing called Carbocal® using a hydrothermal reactor. The purpose of this
biomaterial is to enhance the osteoinductivity of implantable surfaces and serve as a bone filler,
providing a sustainable and economically more affordable alternative. This research involved compo-
sitional analysis and micro- and macrostructural physicochemical characterization, complemented
with bioactivity and live/dead assays. The biphasic nature of the Carbocal®-derived sample was
significant within the context of the bioactivity concept previously proposed in the literature. The
bioactivity of the biomaterial was demonstrated through a viability test, where the cell growth was
nearly equivalent to that of the positive control. For comparison purposes, the same tests were
conducted with two additional samples: hydroxyapatite obtained from CaCO3 and commercial
hydroxyapatite. The resulting product of this process is biocompatible and possesses properties
similar to natural hydroxyapatite. Consequently, this biomaterial shows potential as a scaffold in
tissue engineering and as an adhesive filler to promote bone regeneration within the context of the
circular bioeconomy in the geographical area proposed.

Keywords: biphasic bioceramic; hydroxyapatite; Carbocal®; viability; bioactive coating; bone cement

1. Introduction

Any foreign body in the organism encourages the development of infections and,
consequently, the rejection of the body [1]. This phenomenon is particularly frequent in
dental implants. The glycoproteins present in the saliva coating these implants facilitate
colonization by microorganisms (especially streptococci), which then proliferate in the
oral cavity [2,3]. A similar situation occurs with prostheses in traumatology, for example,
in total knee arthroplasty (TKA) or hip arthroplasty (THA), where the materials used
have been based on stainless steels, titanium alloys, Cr-Co-Ni alloys, Vitalium®, and other
metals that are dangerous for humans [4]. In this case, the problem arises from a lack of
proven biocompatibility in the medium or long term. In these implantable components,
the objective is to enhance their longevity and promote their integration into the bone.
This is achieved by incorporating a material that is cemented to the metallic or non-
metallic implant surfaces, serving as a true osteoinductive barrier and providing protection
against infections. Despite the high success rate of these procedures, there are still 19%
of patients who report dissatisfaction with the procedures they have undergone and who
have prompted a review [5].

One strategy to be considered is the extraction of biocompatible implantable biomateri-
als from biowaste, to protect both environmental issues and human wellness. Since the first

J. Funct. Biomater. 2023, 14, 499. https://doi.org/10.3390/jfb14100499 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb14100499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0001-6016-809X
https://orcid.org/0000-0001-6982-2246
https://orcid.org/0000-0002-4763-9042
https://orcid.org/0000-0002-9950-0122
https://orcid.org/0000-0002-2325-5941
https://doi.org/10.3390/jfb14100499
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb14100499?type=check_update&version=1


J. Funct. Biomater. 2023, 14, 499 2 of 14

studies carried out [6–10], it has been proven that nature has provided biomaterials that,
through physico-chemical processes, have generated structured biocompatible compounds
such as Hydroxyapatite (HA) [11,12].

In the particular case of HA-based coatings, diffusion and plasma spray methods have
been applied [13]. HA is a mineral that occurs naturally in bones and teeth, and it has
been used as a bone filler in surgical interventions for years. HA has been widely used
in biomedical applications due to its excellent biocompatibility, osteoconductivity, and
similarity to the mineral component of natural bones [14]. However, the traditional process
of obtaining HA involves the use of animal bones, which can lead to ethical concerns and
environmental issues [15]. In addition, commercial hydroxyapatite has a very high cost of
close to EUR 400/100 g. This, in addition to the fact that approximately 6000 interventions
that require the use of bone filler are performed in the region of Andalusia (Southern Spain)
each year, has led researchers to explore alternative sources of HA, with a particular focus
on circular bioeconomy, sustainability, and clean production.

One promising approach is the use of a waste product from the sugar industry to
create HA, but there are few studies on its use [16]. In reference [17], the authors obtained
HA through the wet precipitation method of CaCO3 refined from sugarcane filter cake
(SFC) and orthophosphoric acid. The sugar industry, irrespective of the beet variety [18,19],
generates high volumes of byproducts/co-products/waste (bycow hereinafter), amounting
to 80% of the original raw material [20]. Approximately 140 g of sugar can be obtained from
each ton of beets, with the rest being recoverable byproducts/residues [21]. The bycows
that are suitable for recovery as part of other value-added products are the following ones:
“Carbocal®”, “dried pulp”, and “sugar beet leaves” (vegetable matter) [21]. At present,
these bycows have outlets as soil amendment and animal feed and also in the production of
cement for the construction sector, but a large fraction of them tend to end up in landfill sites.

Carbocal®, being a commercial byproduct from beet sugar processing, is similar
to filter cake [16]. It contains more than 80% CaCO3 (greater than the aforementioned
references), apart from some trace elements, and has a low market price and that makes
it more attractive for use in biomedical applications. This waste can be transformed by
a reaction to create synthetic HA.

Using sugar industry waste-derived HA as a bone filler in surgical interventions and
for covering prostheses can enhance the success rates of these procedures while reducing
the potential complications. Furthermore, the use of a waste-derived HA contributes to
sustainability efforts. It helps reduce the demand for natural resources and minimizes
the need for the environmentally harmful extraction processes typically associated with
traditional HA production.

By utilizing a waste product from the sugar industry, HA production can contribute to
waste reduction and promote the principles of circular economy, thus moving towards the
fulfilment of the Sustainable Development Goals required by the European Union. Instead
of being sent to a landfill site, it is repurposed into a valuable material, reducing the envi-
ronmental impact associated with waste disposal. By implementing eco-friendly extraction
techniques, minimizing the use of chemicals, and optimizing energy consumption, the
overall environmental footprint of the production process can be reduced.

In this view, the present work develops a hydroxyapatite-based biomaterial aimed at
use as a bone filling material and priming implantable surfaces to make them osteoinductive.
The biomaterial is synthesized from a CaCO3-rich byproduct of sugar beet processing called
Carbocal® using a hydrothermal reactor.

2. Materials and Methods
2.1. Materials

For this study, Carbocal® was acquired from the company AB Azucarera, a sugar beet
factory in the province of Cádiz (Andalusia, Spain) in 2022. The volume of annual production
and its consideration as waste, with no guaranteed valorization, are factors that make Carbocal®

a suitable byproduct. Table 1 summarizes its chemical composition and generation process.
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Table 1. Characteristics of Carbocal® [22].

Morphology Powder

Genesis Purification process of juice sweetened with lime hydroxide and CO2

Chemical composition >80% CaCO3; 7% organic matter; oligo-elements (N, K2O, P2O5 and Mg);
assimilable organic acids

Humidity <35%

Production 20,000 average annual tons

Two different sources of CaCO3 were used: Carbocal® and commercial CaCO3 (sup-
plied by Sigma-Aldrich (now Merck, Darmstadt, Germany)). It is a suitable bycow due
to its nature, volume of annual production, and consideration as a waste product with
no guaranteed valorization. Reagent-grade sodium dihydrogen phosphate monohydrate
provided by Sigma-Aldrich (now Merck, Darmstadt, Germany) was used as a source
for phosphate.

2.2. Methodology

Hydroxyapatite samples were prepared using hydrothermal phosphatization of CaCO3,
according to the following reaction [7,19]:

10 CaCO3 + 6 NaH2PO4 + 2 H2O→ Ca10(PO4)6(OH)2 + 6 NaHCO3 + 4 H2CO3 (1)

Briefly, the desired amounts of Carbocal® (or CaCO3) and NaH2PO4 (nominal Ca/P
ratio of 1.67) were added to 100 mL of milliQ water under continuous stirring and kept for
2 h. The dissolution of the precursors was carried out in a 200 mL glass beaker at 25 ◦C using
a magnetic stirrer (Thermo Fisher-Scientific, Waltham, MA, USA) with a stirring speed of
700 rpm, with a Teflon-coated magnetic bar (Labbox, Barcelona, Spain) with a length of
40 mm and a width of 8 mm. This solution was then transferred to a 250 mL Teflon vessel
using different portions of water, reaching a total volume of 200 mL. After total dissolution
of both reactants, the pH reached was 7. The Teflon vessel was hermetically sealed, placed
in a stainless-steel hydrothermal reactor (Mecaprec, Cádiz, Spain), and heated in an oven
(J.P. Selecta, Barcelona, Spain) at 200 ◦C for 24 h. After cooling to room temperature, the
solids were collected by centrifugation (3 min) and washed with milliQ water (Wasserlab,
Navarra, Spain). A ThermoFisher (Thermofisher, Waltham, MA, USA) Sorvall ST16 series
centrifuge with a swinging Bucket Rotor TX-400 model was used. This rotor can load
four vessels up to 570 g and has rotation speeds of up to 5000 rpm. The washing and
centrifugation process was repeated three times. Finally, the solids were oven-dried at
110 ◦C for 24 h, crushed in an agate mortar, and sieved using a 75-micron mesh.

Samples obtained from Carbocal® and CaCO3 are hereinafter referred to as HAcc and
HAct, respectively. For comparison, a commercial hydroxyapatite supplied by Aldrich was
also studied (HAref).

A. Microstructural Properties, Chemical Characterization, Structural Properties, and
Thermogravimetric Analysis

Fourier Transform Infrared Spectroscopy (FTIR) provided information related to the
presence or absence of specific functional groups, as well as the chemical structure of the
present compounds. A Bruker® Vertex 70 instrument equipped with a DTGS detector
(Bruker, MA, USA) was used. It allowed for the recording of FTIR spectra of solids in the
mid- and near-infrared ranges. For the acquisition of spectra, a standard spectral resolution
of 4 cm−1 within the range of 4000–400 cm−1 was used, as well as 64 accumulations
per sample.

The materials were analyzed, applying scanning electron microscopy (SEM) techniques
to investigate the morphology and the distribution of the phases forming the structures.
Images were acquired using a Nova NanoSEM microscope from FEI Company, equipped
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with an X-ray detector (Thermo Fisher Scientific, Hillsboro, OR, USA) working at 20 kV and
at a current of 68 µm. In order to protect the samples from the electron beam, the material
of interest was coated with 15 nm of Au by a 208 HR Sputter Coater Cressintong system
(Leica, Wetzlar, Germany) [23].

The chemical compositions of the different HA samples were determined by inductively
coupled plasma atomic emission spectroscopy (ICP-AES) using a Thermo Elemental plasma
atomic emission spectrometer (Intrepid model, Thermo Scientific, Waltham, MA, USA).

Powder XRD patterns were recorded on a Bruker D8 Advance A-25 diffractometer
(Bruker Corporation, Billerica, MA, USA), working in Bragg–Brentano geometry using
Cu-Kα as the radiation source. X-ray diffractograms were collected at room temperature
over the 2-theta range from 15 to 60◦, with a stepwise increment of 0.03◦ and an acquisition
time of 3 s per step. The XRD patterns were evaluated for solid-phase distribution and
crystallite sizes using Profex-5 software (version 5.2) at a refinement confidence for statistical
evaluation of χ2 ≤ 1.5 [24].

TGA was carried out to investigate the thermal stability of the HA samples. These
experiments were performed in a thermogravimetric analyzer (TAinstruments Q50) (TA
instruments, New Castle, DE, USA). Fresh samples were introduced into a microbalance
pan and heated up to 900 ◦C with a temperature ramp of 10 ◦C/min under an air/nitrogen
mixture (60/40 v/v, with a total flow of 100 mL/min).

B. Density, Relative Density, and Textural Properties

The density (n = 3) was determined according to method B of standard ASTM D
854-2006 [25]. A pycnometer (250 mL) and distilled water were used. Mass measurements
were carried out on a 0.001 g-precision balance, and the volume was calculated from their
dimensional values, which had previously been measured with a Vernier caliper. The
samples were dried to constant mass in an oven at a constant temperature of 110 ◦C for
24 h [26,27]. The relative density of the samples was evaluated from the volumetric mass
density of pellets, taking the theoretical density of HA as 3.156 g/cm3. The volumetric
mass density of pellets was estimated using the gravimetric method. The pycnometric
density of pellets was measured with a helium pycnometer Ultrapyc 1200 e (Quantachrome
Instruments, Boynton Beach, FL, USA) at 20.2 ◦C. Gaseous helium with a volume fraction
of at least 99.9999% was used.

The textural properties of the samples were determined by means of N2 adsorption–
desorption isotherms using a Quantachrome Autosorb IQ3 (Anton Paar, Graz, Aus-
tria). Prior to the measurement, the samples were degassed under vacuum for 6 h at
150 ◦C to remove physically adsorbed components and other adsorbed gases from the
sample surface. The specific surface area (SBET) was calculated using the multipoint
BET (Brunauer–Emmett–Teller) method. The pore volume was obtained using the BJH
method (Barrett–Joyner–Halenda) using the desorption branch isotherm obtained in the
adsorption experiment.

C. Cell Viability Assay

Finally, cell cultures were performed with human fetal osteoblastic cell lines (hFOBs
1.19) in the presence of the HA samples to determine whether the materials affected cell
viability. For this cell viability study, hFOBs were cultured in osteogenic media and viability
assays were performed at 24, 48, 72 h, and 7 days. In these assays, the cells were incubated
with MTS and the absorbance was subsequently quantified. As a negative control, before
the process, hFOB cultures were incubated with 70% methanol for 30 min. As a positive
control, hFOB cultures without any treatment were used.

The biocompatibility of HA samples was tested with human osteoblastic primary
cell hFOB cultures. Normal human fetal osteoblasts were commercial from ATTC (hFOB
1.19 cell line, CRL-11372TM) (Manassas, VA, USA).

hFOB cultures were grown in osteogenic media containing Dulbecco’s Modified
Eagle Medium culture (DMEM), with 10% fetal bovine serum (FBS) and antibiotic (G480
30 mg/µL). Cells were expanded by incubation at 35 ◦C in 75 cm2 flasks with 5% CO2.
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Viability assays were performed over 7 days. As a negative control, prior to the
labeling process, the hFOB cultures were incubated with 70% methanol for 30 min. As
a positive control, hFOB cultures were used without any treatment.

Prior to testing, the materials were sterilized using an autoclave at 120 ◦C for 20 min.
To assess viability, conditioned medium was used, consisting of basal culture medium
(DMEM—Gibco) supplemented with 1% FBS (Corning) and 1% antibiotic (G480 30 mg/µL—PAN
Biotech) to minimize cell division. Different dilutions of HA samples were formed in this
medium to obtain different concentrations, ranging from 15 mg/mL to 100 mg/mL.

For the viability assay, cells were cultured with complete medium in 96-well plates at
a concentration of 2× 104 cells/well. These plates were incubated at 35 ◦C with 5% CO2 for
24 h. After this time, the cells were adhered to the well surface, and the complete medium
was removed and replaced with conditioned medium in the cases of positive control (PC)
and negative control (NC) and with the HA samples’ solutions in conditioned medium at
different concentrations in the rest of the wells, all in duplicate. The plates were incubated
again at 34 ◦C with 5% CO2.

To measure viability, the MTS assay was used. Prior to labeling, as a negative control,
the cells were incubated with 70% methanol for 30 min. A total of 20 µL of MTS was added
to all wells and incubated at 34 ◦C for 1 h. After this time, absorbance was measured at
490 nm using the Varioskan LUX plate reader (Thermo Fisher Scientific). This process was
performed at 24, 48, 72 h, and 7 days of incubation with the different HA solutions. The
test was carried out on n = 3 replicas on 3 different samples for each HA solution.

Statistical Analysis

Differences in viability between the different HA samples were analyzed comparing
the means of the groups with the ANOVA parametric test of comparison of means. To
detect differences, a significance level of 0.05 was used. To carry out all the analyses, the
SPSS statistical program (IBM Corp, Armonk, NY, USA, 2015, version 24, licensed by the
University of Cádiz) was used.

3. Results and Discussion

The chemical composition of the materials studied at macroscopical level, mainly
regarding the Ca/P ratio, was analyzed using ICP-AES. The results indicated atomic Ca/P
ratios of 1.45, 1.66, and 1.59 for the HAcc, HAct, and HAref samples, respectively. These
values were lower than the stoichiometric value expected for pure HA (1.67). This effect
was particularly significant in the case of the HAcc sample and can be explained in terms
of a partial substitution of the PO4

3− groups by CO3
2− ions [28], or it may be due to the

coexistence of HA with additional phases having different Ca/P ratios (e.g., Ca3(PO4)2,
tricalcium phosphate, TCP) [29].

The infrared spectroscopy technique is commonly used for the characterization of
apatite-type materials. Figure 1 shows the FTIR spectrum obtained for the HAcc, HAct, and
HAref samples, where all the vibrations characteristic of the HA phase can be identified [30].
Thus, for example, the typical vibrations of the PO4

3− ions were observed at 963 cm−1

(ν1), 1027, 1095 (ν3), and 563, 601 (ν4) [30–32]. The peaks at 633 and 3570 cm−1 were
assigned to characteristic OH bands of HA [33]. In addition, the peak at 873 cm−1 and
the broad doublet around 1415–1455 cm−1 indicated the presence of CO3

2− groups and,
in particular, of the so-called B-type groups, which resulted from a partial substitution of
PO4

3− by CO3
2− ions [34]. This doublet was not visible in the case of the reference sample,

suggesting the absence of this type of carbonate in its structure. As is widely known,
the HA that forms part of the bone is also a B-type carbonated phase so, in principle, it
would be reasonable to expect a positive contribution from this composition in terms of
biocompatibility [35]. No additional peaks that may have resulted from the extraneous
substitution of functional groups or contamination were detected.
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Figure 1. FTIR spectrum corresponding to the HAcc, HAct, and HAref samples.

The crystalline structures of the investigated materials were unraveled using the XRD
technique. Figure 2 shows the XRD diffractograms corresponding to the HAcc, HAct, and
HAref samples. The diffractograms revealed the presence of the hexagonal hydroxyapatite
structure (HA). This is a unique phase observed for HAct and HAref. However, in the case
of the HAcc sample, which was the one prepared using Carbocal®, peaks corresponding to
β-tricalcium phosphate (TCP) were clearly observed. No additional phases (such as free
calcium oxide) were identified.
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The results from the XRD analysis, as determined through phase refinement using
Profex 5 software (version 5.2), are gathered in Table 2.

Table 2. Mineral phase distribution (% w/w), network parameters, and crystallite sizes as determined
by phase refinement analysis of XRD diffractograms.

Sample

Hydroxyapatite (HA) β-Tricalcium Phosphate (TCP)

% w/w Lattice
Parameters (Å)

Crystallite
Sizes (nm) % w/w Lattice

Parameters (Å)
Crystallite
Sizes (nm)

HAcc 75.17
a: 9.4160 (1,0,0):22.2

24.83 a:10.3523
c: 37.1275

(1,1,1):42.4
c: 6.8877 (0,0,1):39.5

HAct 100
a: 9.4112 (1,0,0):39.8

0 -- --
c: 6.8982 (0,0,1):58.2

HAref 100
a: 9.4288 (1,0,0):85.9

0 -- --
c: 6.8728 (0,0,1):150.8

These analyses confirmed the biphasic character of the HAcc sample, which showed
the following composition: 75% w/w HA and 24.83% w/w β-TCP. The lattice parameters
estimated for the three samples were typical for hexagonal HA- and β-TCP-type struc-
tures [32,36]. Nanometric crystallite sizes ranging to the order of 22–58 nm, similar to the
ones reported for HA in bones [37], were estimated for the synthesized samples (HAcc and
HAct). The crystallinity was higher in the case of the sample used as a reference (HAref),
as deduced from the average crystallite size obtained for this sample.

The biphasic character of the sample prepared from Carbocal residue (HAcc) became
important in the framework of the concept of bioactivity proposed by Daculsi in France,
and Lynch, Nery, and LeGero in the USA in the 1980s [38]. As is well known, this concept
was based on the singular properties of biphasic calcium phosphate ceramics (so-called
BCP). BCP bioceramics consist of mixtures of hydroxyapatite (HA) (more stable) and beta-
tricalcium phosphate (β-TCP) (more soluble) of varying HA/b-TCP ratios. This material,
which is structurally similar to the HAcc prepared in this work, gradually dissolves in
the body, generating new bone formation as it releases Ca2+ and PO4

3− ions into the
biological environment, which promotes the mineralization and formation of new bone.
In addition, both phases are expected to be biocompatible, which is an essential property
to avoid adverse reactions and promote integration with the surrounding tissue. BCP is
commercially available in Europe, Brazil, Japan, the USA, and Australia as a bone graft or as
bone substitute materials for orthopedic and dental applications under various trademarks
(BCP®, MBCP®, Triosite®, Hatric®, Eurocer®, Biceram®, Bicalfoss®).

Figure 3 shows the thermogravimetric curves obtained for the three samples heated
from room temperature up to 900 ◦C. The weight losses were about 5–6% for the synthetized
samples (HAcc and HAct), while for the reference it was about half (2.5%). For better
identification of the different weight loss processes, the derivative curves were also included.
The small peaks appearing in the 35–200 ◦C range corresponded to adsorbed water, which
was almost negligible in the case of the reference sample. The release of water from the
lattice was associated with the weight loss process occurring in the 200–400 ◦C range.
As can be seen, this process was much faster in the case of the hydroxyapatite prepared
from Carbocal®. Two additional peaks at higher temperatures (600–900 ◦C) were probably
related to the dihydroxylation and decarboxylation processes [39].
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Figure 4 shows SEM micrographs of the materials analyzed in the present work.
Figure 4a corresponds to the HAcc sample and shows that two main morphologies were
present in the HAcc powder, including flat sheets (region marked as B) and more spherical
morphologies of smaller sizes (region marked as A). In comparison, the reference sample,
HAref, also showed the two morphologies mentioned (see Figure 4d), although it seemed
that the flat sheets were of larger size. Regarding the HAct sample, SEM imaging showed
a wider distribution of morphologies and sizes, as exhibited in Figure 4g. In the literature,
flake-like morphologies have been observed upon calcination of waste poultry eggshells,
and it has been demonstrated that it is not HA but another type of calcium phosphate-based
biomaterial [40]. In that study, micrographs of powder obtained at a higher temperature and
identified as a mixture of HA and monetite using XRD showed a more rounded morphology,
similar to that observed in Figure 4a,d. EDX analyses were carried out to investigate the
composition of the studied materials. These demonstrated that all the samples consisted
of Ca, P, and O, as expected (it should be mentioned that the SEM holder was composed
of an alloy of Al and Mg, and because of that, these elements also appeared in the spectra
in different amounts based on the proximity of the holder to the region of analysis). The
EDX analyses that were carried out also showed that the composition of the materials
varied for the different morphologies found. Figure 4b,e correspond to the flat sheets in the
HAcc and HAref samples, respectively, and here it was observed that the P/Ca ratio was
larger than that found in Figure 4c,f, corresponding to the spherical morphologies in the
mentioned samples. In the HAct sample, because the different morphologies were mixed
in the powder, separate spectra for the different morphologies were not possible to acquire
(see Figure 4h). The family of phosphate compounds is quite large, having different Ca/P
ratios according to the material composition. In particular, the Ca/P ratio for HA was 1.67.
Different Ca/P ratios in the range of approx. 1.5–2 were found in our EDX-SEM analyses of
the different materials, with a ratio of 1.6 being found for the round morphologies in a few
cases, which corroborates the result of 1.56 obtained using XRF compositional analysis
and the presence of Mg at 1.3% [26]. Care should be taken in the quantification of the
composition of mixed compounds using SEM, as signals from adjacent materials can be
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obtained together with that related to the compound of interest, leading to an averaging of
the element content. Our results point to the existence of HA mixed with other phosphates,
which is somewhat expected. In the literature, compounds with different compositions are
obtained when extracting HA from waste materials. For example, HA synthesized from
non-separated biowastes (animal bones) using heat treatments showed Ca/P ratios in the
range of 1.58–1.94% for sintered samples, with the ratio for the raw materials being 2.79 [41].
In a different study, the ratios of Ca/P were found to be 1.56 and 1.88 for treated pig bone
and as-synthesized HA, respectively, at 1000 ◦C [41]. In a study focused on the synthesis
of HA from marine shell waste, Ca/P ratios of between 2.1 and 1.75 were obtained, and
the difference from the theoretical ratio of 1.67 was attributed to traces of carbonate still
present in the samples [42]. In other cases, however, HA has been obtained with a lesser
amount of other compounds, such as when is it obtained from waste bovine bone using
an alkaline digestion method, which provided a Ca/P molar ratio of 1.75, which is similar
to previous reports using fresh bovine bones [43]. Regarding a potential compatibility of
the material obtained with human tissue, it should be highlighted that no heavy metals
were found in the EDX analyses performed, which is promising for biological applications.
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3.1. Density, Relative Density, and Textural Properties

According to the pycnometer test, taking into account the different ratios deter-
mined with EDX and ICP, the value obtained for the average density of the grains was
2.69 g cm−3 ± 0.005, which is quite close to the mineral content of a healthy trabecular
bone [2,44–46]. The relative density was 85.45%, which is similar to [3,32] for 100% HA
before sintering and slightly higher than that obtained in [4,35], although in those studies,
composites with a lower percentage of HA by weight were used. Considering that the syn-
thesized HA came from Carbocal® and was basically composed of CaCO3, whose density is
averaged at 2.71 g cm−3 (density of calcite) [5,47], and CaHPO4 2H2O = 2.31 g × cm−3 [48],
a maintenance of the initial density of the composite after undergoing the reaction and
drying processes was observed.

The textural properties of HAcc can play an important role in the integration of these
materials into nanocomposite matrices for different purposes, such as for the fabrication
of bone prostheses. For the textural characterization of the samples, the technique of
volumetric adsorption–desorption of nitrogen at a temperature of 77K was used. The
adsorption–desorption isotherms are shown in Figure 5. As can be seen, the adsorption
branch resembled a Type IV isotherm according to the IUPAC classification [49]. Moreover,
an H3-type hysteresis loop was observed. Loops of this type are typical of non-rigid aggre-
gates of plate-like particles [50]. The calculated BET surface areas were 32, 27, and 5 m2 g−1

for the HAcc, HAct, and HAref samples, respectively. The lowest value obtained for HAref
agreed with its higher crystallinity obtained using XRD. Values between 5 and 44 m2 × g−1

(depending on the reaction time) were reported for a hydroxyapatite synthesized using
CaCO3 and NaH2PO4 as precursors [51].
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The distributions of the pore radii were plotted according to the BJH nitrogen desorp-
tion (inset in Figure 5). Peaks centered over 20 Å and 200 Å were observed, the latter being
of higher intensity, mainly in the case of the HAcc material. As shown in the figure, the
porosity of the reference sample was rather low, which was in good agreement with its
very low surface area.
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3.2. Cell Viability Assay

None of the HA samples or concentrations used significantly affected the viability
of the cell line tested according to the results obtained from the MTS assay (Figure 6).
Taking the positive control as 100% viability, no significant decrease in cell viability was
found at any of the concentrations tested. On the contrary, the negative control showed an
absorbance that did not exceed 40% in any of the cases.
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Figure 6. Human osteoblast viability after 24 h, 48 h, 72 h, and 7-day incubation with different
concentrations of HA samples. Culture medium without HA was used as the positive control
(C+ 100% viability), while 70% methanol was used as the negative control (C−).

As can be seen in Figure 6, osteoblast culture in the presence of HAct, which was
obtained from CaCO3, resulted in a lower viability in all cases. The ANOVA test showed
that there were significant differences between samples (F = 28.175, p < 0.05), while a post
hoc Tukey test found a significant reduction in cell viability in the presence of HAct.
However, in the presence of HAcc, which was obtained from Carbocal®, the viability was
similar to the viability in the presence of commercial HAref at all times measured. This
similar viability result may be due to the available surface area of the HAcc, which was
obtained from Carbocal®.

It is worth mentioning that the presence of HAcc, at certain concentrations, promoted
cell growth, with values that exceeded the positive control without these differences
being significant.

On the other hand, the presence of HAcc in the osteoblast culture did not produce
a halo of cell growth, as shown in Figure 7. While in the positive control, the cells were
homogeneously distributed throughout the well, in the presence of HAcc, the cells tended
to cluster around the HAcc. Thus, there was no halo of cell growth around the material,
and cells were found all over the well. This is beneficial, as metallic prostheses can lead to
aseptic loosening of the prosthesis due to the lack of bone cell growth around it [52].
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4. Conclusions

Orthopedic surgery and traumatology (OST) continues to face challenges related to
the biocompatibility of the materials used, with 19% of patients expressing dissatisfaction
with the procedures performed. The present work describes the production process of
HAcc from a byproduct of sugar beet processing called Carbocal®. HAcc has been proven
to present similar physicochemical and microstructural properties to those of natural HA.
This ensures that it provides sufficient support and stability when used as a bone filler or
as a prosthesis cover, mimicking the characteristics of natural bones. This shows a positive
contribution from this composition in terms of biocompatibility due to the presence of
a B-type carbonated phase. It has demonstrated the same cell viability as natural HA when
compared to a commercial HA. This means that it supports the growth and proliferation of
osteoblasts, the cells responsible for bone formation. The biocompatibility of this material
ensures that it integrates well with the surrounding tissues, minimizing the risk of adverse
reactions and promoting successful bone regeneration.

Since the sugar industry generates around 200,000 tons per year of Carbocal®, the use
of synthetic HA derived from this waste product offers a sustainable and environmentally
friendly alternative to traditional HA for bone filler and prosthesis covering applications.
Its ability to promote the growth of osteoblasts, combined with its favorable material prop-
erties, makes it an attractive alternative with a reduced environmental impact compared to
traditional methods of HA production, contributing to the circular bioeconomy by utilizing
waste materials in a resource-efficient manner.

5. Patents

A patent registration application related to this manuscript will be filed.
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