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Abstract: To explore the potential applicability of chitosan (CTS), we prepared aldehyde chitosan
(CTS-CHO) with chitosan and sodium periodate via oxidation reaction and then a chitosan-based
hydrophilic and antibacterial coating on the surface of poly (lactic acid) (PLA) film was developed
and characterized. The oxidation degree was determined by Elemental analyser to be 12.53%, and
a Fourier transform infrared spectroscopy was used to characterize the structure of CTS-CHO. It
was evident that CTS-CHO is a biocompatible coating biomaterial with more than 80% cell viability
obtained through the Live/Dead staining assay and the alamarBlue assay. The hydrophilic and
antibacterial CTS-CHO coating on the PLA surface was prepared by ultrasonic atomization assisted
LbL assembly technique due to Schiff’s base reaction within and between layers. The CTS-CHO
coating had better hydrophilicity and transparency, a more definite industrialization potential, and
higher antibacterial activity at experimental concentrations than the CTS coating. All of the results
demonstrated that the ultrasonic atomization-assisted LbL assembly CTS-CHO coating is a promising
alternative for improving hydrophilicity and antibacterial activity on the PLA surface. The functional
groups of CTS-CHO could react with active components with amino groups via dynamic Schiff’s base
reaction and provide the opportunity to create a drug releasing surface for biomedical applications.

Keywords: chitosan; PLA; hydrophilic; antibacterial; coating

1. Introduction

PLA is an aliphatic polyester and an environmentally friendly polymer. PLA is
constructed from lactic acid (2-hydroxy propionic acid) building blocks [1,2]. Given its
renewability, absorbability [1], biodegradability [3], and biocompatibility [4], it is widely
applied in the biomedical field, such as absorbable surgical sutures [5], scaffolds [6–8], drug
delivery systems [9,10], personal protective equipment [11,12], food packaging [13,14],
and clothing fabrics and textiles [15]. PLA has been studied widely in the biomedical
field during the global COVID-19 pandemic. However, the poor hydrophilicity limits
its application in some fields, such as clothing, and medical devices [16], because the
hydrophobic property leads to the absorption of non-specific protein and promotes bacterial
adhesion [17,18]. Modification of the PLA surface can significantly improve the surface
properties such as wettability, biocompatibility, and functionality of PLA [19–21].

Numerous surface modification strategies have been explored to improve the hy-
drophilicity of PLA, including physical, chemical, plasma, and radiation treatments.
Among these methods, plasma-treatment is an effective tool for surface activation be-
fore grafting of bioactive components onto material surfaces [22–28]. For example, in Park
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et al.’s study [29], plasma treatment and hydrophilic acrylic acid grafting made hydrophilic
functional groups successfully adapt on the surface of scaffolds [30]. Gutierrez-Villarreal
et al. grafted N-vinylpyrrolidone onto PLA using benzophenone as the initiator and
improved the hydrophilicity of PLA [31].

The LbL assembly technique allows coatings to be built based on the interactions of
selected materials. Interactions exploited in the LbL method include covalent interactions,
hydrogen bonds, and electrostatic attraction [32]. Ultrasonic atomization technology, which
can convert the liquid into aerosols, has also been explored for developing multi-layered
coatings [33]. The LbL assembly technique has been considered one of the most appropriate
methods for preparing multilayer films incorporated with therapeutic molecules.

PLA’s antibacterial activity is one of the most important considerations, particularly in
the fields of medical devices and food packaging. Among the various antibacterial materials
which are commonly used on the PLA surface, natural polymers show great potential due
to their excellent biocompatibility and degradability. Over the past decade, increasing
research has gained insight into the antimicrobial activity of CTS, which is composed
of N-acetyl-
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films were coated with chitosan oil by coaxial electrospinning, combining the mechanical
properties and biodegradability of PLA substrates with the antioxidant and antimicrobial
properties of the chitosan–oil nano coatings [16]. However, the affinity of CTS to the
surface of PLA is limited due to its poor solubility, high viscosity, and easy aggregation.
Additionally, acidic solvents used to dissolve CTS are not suitable for industrial production.
CTS-derived polymers fabricated through chemical functionalization have achieved the
desired properties of polymer and coating, as well as industrial production. In particular,
those CTS-derived polymers with antimicrobial activity have been extensively studied
for the use on PLA surfaces for medical devices or food packaging [34,35]. However, the
antibacterial coating on PLA surface prepared with aldehyde-chitosan (CTS-CHO) using
ultrasonic atomization assisted LbL assembly technique has not been reported.

In a recent study, the CTS-CHO was fabricated through chemical functionalization.
CTS-CHO demonstrated the potential for industrial production of antibacterial coating
due to its excellent properties, such as antibacterial activity, and solubility. Then an LbL
assembly coating was prepared by ultrasonic atomization-assisted technique. The study
process, including the preparation and characterization in this work is outlined in Scheme 1.
The characterization of CTS-CHO was performed using Fourier transform infrared spec-
troscopy (FT-IR) and an Exeter elemental analyser. The solubility, zeta-potential, stability,
viscosity, and aggregation profiles of CTS and CTS-CHO were evaluated. Furthermore, the
biocompatibility of CTS-CHO and CTS was assessed using Live/Dead staining assay and
alamarBlue assay. After plasma treatment, active groups, such as hydroxyl and carboxyl
groups, were generated on the PLA film surface. Then the bioactive inks prepared with
CTS-CHO and CTS were sprayed on the surface of the PLA layer-by-layer through ultra-
sonic atomization, respectively. Due to the presence of aldehyde groups and amino groups
in the structure of CTS-CHO, Schiff’s reaction occurred within and between layers. The
transparency, antibacterial activity, and hydrophilicity of ultrasonic atomization-assisted
LbL CTS-CHO coating and CTS coating on the PLA surface were then compared.

2. Materials and Methods
2.1. Materials

Chitosan with medium molecular weight, LB agar, and LB broth were purchased
from Sigma-Aldrich (Dublin, Ireland). PLA film (0.5 mm) was purchased from Esun
(Shenzhen, China). Sodium periodate and ethylene glycol were purchased from Thermo
Fisher Scientific (Dublin, Ireland). Glacial acetic acid was supplied by Aladdin (Dublin,
Ireland). Dialysis tubing (cut-off molecular weight: 8 kDa) were supplied by Spectrum Lab
(Dublin, Ireland). E. coli and HEK 293 cells were supplied by ATCC. Cell culture medium
was purchased from Invitrogen (Dublin, Ireland). Live/Dead staining kit was supplied by
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Biosciences (Dublin, Ireland) and an alamarBlue cell viability assay kit was purchased from
Sigma-Aldrich (Dublin, Ireland), respectively.
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2.2. Fabrication of Antibacterial PLA Film
2.2.1. Preparation of CTS-CHO

CTS-CHO was fabricated using chitosan (CTS) and sodium periodate via oxidation
reaction, as reported previously [36].

2.2.2. Bioactive Ink Formulation

The CTS-CHO freeze-dried sponge was dissolved in deionized water to the desired
concentrations and vortexed for 30 min. 0.1 mol/L acetic acid solution was used to dissolve
the CTS. Then the CTS solution was stirred for 24 h to ensure complete dissolution.

2.2.3. Preparation of Coatings

The coating was prepared with a coating workstation (UAC120 Ultrasonic Atomizer
System, Hangzhou, China). Prior to coating, PLA films were treated by plasma for 30~60 s
under 30~80 W power. The plasma treatment was carried out in the oxygen atmosphere
holding in a cylindrical chamber. The infusion rate was 0.5 mL/min, and the guide gas
pressure was 0.01 MPa. After 20 times repeated coating, the films were placed in the open
air to dry.

2.3. Characterizations
2.3.1. CTS-CHO

Aldehyde chitosan was characterized by Fourier transform infrared spectrometry and
an Exeter elemental analyser.

The infrared spectrograms of CTS and CTS-CHO were obtained by an ALPHA FT-IR
spectrometer with an ATR accessory (Bruker, Dublin, Ireland). The samples were placed
in the sampling area. The resolution was set to 4 cm−1. The spectrogram (32 scans) was
recorded from 4000 cm−1 to 400 cm−1. The sample spectra were then subtracted from
the background.

In this study, quantitative flash combustion was used for element analysis. After
freeze-drying, CTS-CHO was kept in a desiccator before elemental analysis. An Exeter
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elemental analyser (CE440, Coventry, UK) was used to conduct this measurement. The
oxidation degree (Fox) was calculated as below:

N
C

=
FA + (1 − FA)·(1 − Fox)

2Fox + 6
(1)

where Fox is the oxidation degree, FA is acetylated unit content, C is the carbon percentage,
N is the nitrogen percentage.

2.3.2. Bioactive Ink

The properties of bioactive inks were characterized by a zetasizer, viscometer,
and microscope.

The viscosity of the ink was measured at 25 ◦C and 100 rpm with a rotational viscome-
ter (AMETEK, Brookfield, MA, USA). The particle size of the inks was measured using a
zetasizer before and after filtering with a 0.45 µm filter (Zetasizer Pro, Malvern, Ireland).
Aggregation profiles of the ink were observed under a microscope (Olympus, Ireland). The
zeta potential of the inks was tested using a zetasizer (Zetasizer Pro, Malvern, Ireland). The
particle size of the ink was tested at predetermined time points using a zetasizer (Zetasizer
Pro, Malvern, Ireland).

2.3.3. Coating

The properties of the coatings were characterized by a digital camera, and contact
angle goniometer, etc.

A digital camera was used to record the transparency of films, including the PLA film
before and after plasma treatment, CTS and CTS-CHO coating on the PLA film surface. The
measurement of the water contact angle was conducted using a Contact Angle Goniometer
(Ossila, London, UK).

The antibacterial activity of plasma-treated PLA film, PLA films with CTS and CTS-
CHO coating were tested according to a modified method based on ISO 22196. Briefly, a
colony of E. coli was cultivated in LB broth overnight at 37 ◦C. The bacterial suspension was
diluted with LB broth to a 0.5 McFarland concentration (~1.5 × 108 CFU/mL). The bacterial
solution was diluted to 1.5 × 105 CFU/mL with LB broth to conduct the further experiment.
10 mL of bacterial solution was added into an ultrasonic atomizing sprayer. The PLA films
with CTS and CTS-CHO coating were then cut into 5 cm × 5 cm squares and placed in the
sterilized dishes. As a control, plasma treated PLA film without any coating was used and
operated in the same way as described above. The bacterial solution was sprayed onto the
Z-shaped films 3 times. Then 10 mL of LB broth was added to the dish with plasma-treated
PLA film after inoculation. Then, 10-fold serial dilutions of the bacterial solution were
performed with LB broth. 1 mL of each diluent was placed into two dishes, and 20 mL
of LB agar was poured in. After gently swirling, the dishes were incubated for 2 days at
35 ◦C. After the bacterial solution was sprayed onto the films, 4 cm × 4 cm sterilized PE
films were cut and placed onto the PLA films with coating and the plasma treated PLA
films. 2 mL of sterilized water was dropped around the PLA films with coating and plasma
treated PLA film to avoid bacterial solution drying. Then the dishes were incubated for
24 h at 37 ◦C. A pipette was used to remove the water from around the films. To recover the
bacteria, 10 mL of LB broth was added to the dishes. 10-fold serial dilutions of the bacterial
solution were performed with LB broth. 1 mL of each diluent was placed into two dishes
and followed by 20 mL of LB agar. After gently swirling the dishes, they were incubated at
35 ◦C for 2 days. Then the antibacterial activity was calculated according to the equations
in ISO 22196.

AlamarBlue assay and Live/Dead staining assay were used to evaluate the cytotoxicity
of materials (CTS, CTS-CHO) against HEK293 cells. CTS and CTS-CHO were dissolved in
sodium acetate buffer (25 mM, pH 5.2) and the stock solution was obtained after extraction
for 24 h at 37 ◦C. Then 0.22 µm filters were used to filter the stock solutions for sterilization
and the sterilized stock solutions were diluted with complete cell culture medium to various
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concentrations. 1 × 105 cells/well of HEK 293 cells were inoculated in a 96-well microplate
with complete medium at 37 ◦C (5% CO2). After overnight incubation, CTS or CTS-CHO
solutions were used to replace the culture medium. After 24 h of incubation, 20 µL of
alamarBlue reagent was added to each well. The fluorescence excitation wavelength was
read at 570 nm by a microplate reader after 3 h of incubation. The negative control group
consisted of cells grown in medium containing alamarBlue reagent. Live/Dead cell staining
assay was performed according to the manufacturer’s protocol after 24 h incubation. 100 µL
of staining solution was used to replace the culture medium at predetermined time points.
Then DPBS was used to wash staining reagent away after 30 min incubation (25 ◦C). A
fluorescence microscope was used to record the images.

3. Results and Discussion
3.1. Characterization of CTS-CHO

To confirm that the functionalization was successful, FT-IR was used to characterize
the CTS and the CTS-CHO. The characteristic bands were shown in Figure 1. The stretching
vibrations at 3283, 2924, 1647, and 1558 cm−1 are attributed to the O-H, C-H, C=O, N-H, and
C-O-C linkages, which is consistent with previous literature reports. The band at 1725 cm−1

in CTS-CHO was the characteristic peak of aldehyde groups. Other bands, such as those at
3283, 2924, 1647, and 1558 cm−1, were not significantly altered in the oxidation reaction.
These results were consistent with those reported in the literature [37–40]. Therefore, the
C2-C3 linkage was cleaved in the GlcN unit, and the dialdehyde was formed in the structure
of chitosan, as shown in Figure 1.
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Figure 1. FT-IR spectra. (A) CTS. (B) CTS-CHO.

An elemental analyser was used to test the percentages of C, H, and N in the structure
of CTS and CTS-CHO. The oxidation degree is defined as the dialdehyde percentage per
100 GlcN units. According to the literature, the oxidation degree was calculated with
Equation (1). The oxidation degree was 12.53% (Table S1).

3.2. Characterization of Bioactive Inks

To select the appropriate concentrations of CTS and CTS-CHO to conduct further
study, the viscosity was measured by a rotational viscometer. A promising property of
CTS-CHO is that its water solubility improved significantly compared to CTS. Presumably
the hydration of aldehyde groups improved the solubility dramatically. Therefore, the
CTS solution and CTS-CHO solution were prepared by dissolving materials in acetic acid
solution and deionized water respectively. As shown in Table 1, the viscosity of the CTS
solution increased with concentrations (from 1 mg/mL to 10 mg/mL). However, there
was no obvious difference in the viscosity of the CTS-CHO solution (from 1 mg/mL to
10 mg/mL). The viscosity of the CTS-CHO solution was significantly lower than that of CTS
solution at the same concentration. The appropriate ink viscosity is critical for ultrasonic
atomization spray coating. High viscosity ink may cause ultrasonic atomizer pipe clogging,
and uneven coating. Therefore, 10 mg/mL CTS-CHO solution and 1 mg/mL CTS solution
were used in this study.
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Table 1. Viscosity of bioactive inks, including CTS solution and CTS-CHO solution.

Sample Concentration (mg/mL) Viscosity (cp)

CTS
1 47.64
5 269.6

10 399.1

CTS-CHO
1 7.64
5 7.73

10 7.82

Chitosan can only be dissolved in acidic solutions at a pH below 6.0. However, ac-
cording to the literature, a certain degree of aggregation exists even in a dissolved chitosan
solution [41]. The CTS solutions consist of numerous intermolecular aggregates and molec-
ularly dispersed polymer chains. Therefore, the uniformity of the deposited the CTS coating
may be affected. Moreover, polysaccharide solutions usually exhibit a strong tendency to
aggregate, including the CTS molecules in aqueous solvents. Ultracentrifugation, extensive
filtering of solutions, and changes in solvent conditions such as temperature of exposure
to acidic proteases, ionic strength, and pH are normally used to remove large aggregates.
However, strong aggregation still cannot be prevented [29,42–46].

To observe the aggregation profiles of the CTS and CTS-CHO solution at a concen-
tration of 1 mg/mL and 10 mg/mL, the particle size was measured using a zetasizer and
microscope. As shown in Figure 2A–D, the obvious aggregation phenomenon of CTS was
observed in the original solution and even the filtered solution. There are some particles
over 20 µm in size after filtering with a 0.45 µm filter. The same results were observed
for the particle size obtained from the zetasizer in Figure 2E,F. As the relative amount of
amide groups decreased, the aggregation of CTS-CHO was significantly reduced, as shown
in Figure 2G–L. After filtering, the majority of CTS-CHO particles were around 141 nm
in size, but quite a few CTS particles were around 2 µm. Compared with CTS, the slight
aggregation of CTS-CHO reduced the risk of pipe blockage and uneven coating.
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Figure 2. Aggregation profiles of CTS and CTS-CHO solution before and after filtering with a 0.45 µm
filter. (A–D) Aggregation profiles of CTS solution (1 mg/mL) under a microscope. (G–J) Aggregation
profiles of CTS-CHO (10 mg/mL) under a microscope. (E,F) Particle size of CTS solution (1 mg/mL)
measured by zetasizer. (K,L) Particle size of CTS-CHO solution (1 mg/mL) measured by a zetasizer.
Scale bar: 20 µm. Particles in red circles indicated the aggregation.
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The antibacterial activity of CTS depends on its positive charge. Positive charges
bind to the negatively charged bacterial cell wall, causing damage to the cell wall and the
alteration of the permeability of the cell membrane [47]. Chitosan then attaches to the DNA
of bacterial cells and inhibits DNA replication, leading to bacteria death. Therefore, the zeta
potential of the CTS solution and CTS-CHO solution was evaluated using a zetasizer. The
results are shown in Table S2. The potential of the 1 mg/mL CTS solution was 10.9 mv while
the 10 mg/mL CTS-CHO solution has a potential of 28.8 mv. The results demonstrated that
both CTS and CTS-CHO have positive charges, and thus possess potential antibacterial
activity. These results were consistent with our previous report [36].

The stability of the inks also affects the ultrasonic atomization coating. As this study
is the first report on the application of the CTS-CHO as an antibacterial coating material,
the particle size of the solutions at predetermined time points was measured by zetasizer
to observe the stability of CTS-CHO solution. The particle size was around 140 nm, and
the PDI was around 0.25 (as shown in Figure 3). Both particle size and PDI showed no
significant changes at 8 h, and only a slight increase at 24 h.
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Figure 3. Stability of the CTS-CHO solution.

All of the results demonstrated that the bioactive inks prepared with CTS-CHO are a
promising candidate for antibacterial coating material in the biomedical, food packaging
and personal protection fields.

3.3. Characterization of Coatings

The photos of pristine PLA film, plasma treated PLA film, CTS coating and CTS-CHO
coated PLA film were taken with a digital camera. The pristine PLA film and plasma treated
PLA film showed high visible light transparency (see Figure 4A,B). Interestingly, with the
20 bilayers of the CTS-CHO coating, it is still possible to see the background beneath the
film without any visible shelter or obscured area (see Figure 4D). However, the CTS coated
PLA film showed poor transparency (see Figure 4C). The reduction of molecular weight
and the improvement of solubility after the oxidation reaction enable the CTS-CHO coating
to possess high transparency.

To evaluate the surface hydrophilicity, the water contact angle was measured with a
contact angle goniometer. The results were shown in Figure 4E, where the contact angle
of pristine was 77.9◦, and that of plasma treated PLA film was reduced significantly to
14◦. 83◦. Water contact angles of CTS coating and CTS-CHO coating were 83.0 and 28.1◦,
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respectively, which means that the hydrophilicity of the CTS-CHO coating was higher than
that of the CTS coating.
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A modified method based on ISO 22196 was used to evaluate the antibacterial ac-
tivity in this study. As shown in Figure 5A–C, there were no bacterial colonies on the
dishes after 48 h incubation for both the CTS-CHO coatings sprayed 10 times and 20 times.
The antibacterial activity (R) of the CTS-CHO coating was around 4 in the experimental
condition in this study. Therefore, when the CTS-CHO coating thickness reaches a cer-
tain level, the antibacterial activity will not increase with the spraying times and coating
thickness. Figure 5D–F showed that the antibacterial activity of the CTS-CHO coating was
significantly higher than that of the CTS coating. A large number of positively charged
amino groups enable chitosan to have excellent antibacterial activity. After the oxida-
tion reaction, the CTS−CHO still contains many amino groups which contribute to the
antibacterial activity.
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Figure 5. Antibacterial activity of CTS coating PLA film and CTS−CHO coating PLA film against
E. coli. (A,D) Plasma treated PLA films. (B) CTS-CHO coating PLA film (10 times). (C) CTS-CHO
coating PLA film (20 times). (E) CTS-CHO coating PLA film (20 times). (F) CTS coating on the surface
of PLA film (20 times).
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AlamarBlue measurement and Live/Dead staining assay were used to assess the
cytotoxicity of the materials. The sodium acetate buffer (25 mM, pH = 5.2) was used to
dissolve CTS and CTS-CHO to make sure that the experimental conditions were consistent.
The cell viability results (>90%) indicated that the cytotoxicity of CTS-CHO didn’t increase
after oxidation (Figure 6A,B).
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Figure 6. Cytocompatibility. (A,B) AlamarBlue measurement (n = 3). (C–J) Live/Dead staining
assay of CTS (24 h). (K–R) Live/Dead staining assay of CTS–CHO (24 h). Scale bar: 50 µm. Red
fluorescence indicated dead cells. Green fluorescence indicated living cells.

Live/Dead assay was conducted after co-culturing CTS and CTS-CHO solution for
24 h. A fluorescence microscope was used to observe the outcomes. After 24 h following
treatment with CTS solution and CTS−CHO solution, most HEK 293 cells were viable
(Figure 6C–R). According to ISO 10993, the materials were non-cytotoxic.

4. Conclusions

A hydrophilic, antibacterial coating based on aldehyde chitosan was developed us-
ing nebulization assisted LbL assembly technology via Schiff’s base reaction. Aldehyde
chitosan was fabricated via an oxidation reaction with chitosan and sodium periodate.
According to the FT-IR spectra, aldehyde groups were introduced into chitosan successfully
after the oxidation reaction. The oxidation degree of aldehyde chitosan in this study was
12.53%. The results of viscosity, zeta potential, particle size, and stability showed that alde-
hyde chitosan was a promising candidate for bioactive inks used in antibacterial coating
fields. An ideal coating on the surface of the PLA film with hydrophilic, transparent prop-
erties and antibacterial activity was designed and characterized. The better transparency,
lower water contact angle, higher antibacterial activity, and biocompatibility demonstrated
that CTS-CHO coating will be an alternative to CTS as a material for antibacterial coating in
the biomedical field, food packaging field, and personal protective field. Drug embedded
layers can be assembled to realize drug loadings on the surface for sustained release. This
study also represents one of the steps before further investigation for clinical use.
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