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Abstract: With the development of nanotechnology, various types of polymer-based drug delivery
systems have been designed for biomedical applications. Polymer-based drug delivery systems
with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted
effects and combined with other therapeutic and imaging agents for cancer theranostics. As an
effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied
due to its rich surface amines and excellent water solubility. In this work, we summarize the surface
modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of
PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery
systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider
the outlook and challenges relating to PEI-based drug delivery systems.
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1. Introduction

Cancer is a human disease characterized by abnormal cell proliferation and metastasis
and poses a very significant threat to human health. Its occurrence is closely related to
harmful environment, bad lifestyle, and heredity. Early diagnosis and treatment of cancer
is the most important strategy to improve survival rates. Recently, nanotechnology has
attracted extensive attention in the biomedical field, particularly in the early diagnosis and
treatment of cancer [1,2].

The development of novel multifunctional nanoparticles (NPs) for cancer theranostics
is one of the most important trends in the development of nanomedicine [3–6]. Compared
with traditional drug delivery systems, NP-based drug delivery systems can not only
improve the water solubility and stability of drugs, but also influence the distribution
of drugs in vivo owing to the nanosized effects of NPs [7]. In addition, the kinetics of
drug release can be controlled through material design and surface modifications. More
importantly, targeted molecules can be modified on the surface of NPs to specifically
target tumor sites, thereby improving the bioavailability of drugs and reducing toxicity
to off-target tissues [8]. To date, various NPs have been developed for construction of
NP-based drug delivery systems including liposomes [9,10], micelles [11], nanogels [12,13],
radionuclide-labeled NPs [14,15], and metal NPs [16–19].

Polyethyleneimine (PEI) is a cationic polymer molecule composed of abundant amine
groups and two aliphatic carbons, and because of its specific structure and properties
it has been widely used to stabilize or modify various inorganic hybrid NPs [20]. As a
cationic polyamine, PEI can interact with or bind to anionic residues of DNA templates and
polymerase through electrostatic interaction, thus significantly improving their transfection
efficiency [21]. In addition, the strong positive surface potential of PEI presents obvious
cytotoxicity to cells because of its abundant amine groups [21]. Therefore, neutralizing the
surface potential of PEI through various chemical or physical modifications can effectively
reduce its cytotoxicity and improve biocompatibility. It is worth noting that these surface
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modifications not only improve the biocompatibility of PEI, but also enable it to acquire
other functions, such as biomarker and targeting.

Currently, there are very few recent and systematic reviews concerning PEI-based
drug delivery systems for cancer theranostics. In this paper, we first summarize PEI modi-
fications, including biocompatibility and functional modifications. Secondly, the synthesis
of PEI-based NPs for biomedical applications is introduced. Thirdly, we comprehensively
review the applications of PEI-based drug delivery systems in cancer treatment, imaging,
and theranostics. Finally, the current challenges and further prospects related to PEI-based
drug delivery systems are discussed.

2. Overview of PEI

PEI is a commercially widely used cationic polymer containing primary, secondary,
and tertiary amino groups in a ratio of 1:2:1 with strong positive charges [22]. PEI can
be synthesized as linear PEI (Figure 1a) or branched PEI (Figure 1b) with a molecular
weight ranging from 700 Da to 1000 kDa according to the degree of polymerization [23].
PEI can be easily prepared using an AB-type monomer via a simple one-step reaction [24].
In addition, PEI can be considered a low-cost option compared to dendrimers with the
same molecular weight [25]. PEI has been widely used in different fields because of its
unique structure and abundant amino groups. For example, in industry, PEI can be used
as a flocculant to remove oil present in synthetically produced water, or as a wet strength
agent in paper-making and the manufacture of shampoo [26,27]. In biomedicine, PEI is
widely used in enzyme immobilization [28], virus immobilization on cellulose [29], cell
adhesion [30], gene transfection [31], and the synthesis of NPs to enhance their stability
and anticancer efficacy [32].
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Figure 1. Schematic diagram of the chemical structures of (a) linear and (b) branched PEI.

Branched PEI is a hyperbranched polymer synthesized using the monomer method;
that is, the cationic polymer is obtained by acid-catalyzed ring-opening polymerization
of aziridine monomers [33]. Each branch of secondary amines in the branched chain
of hyperbranched PEI has 3–35 nitrogen atoms on average. This branch distribution
can form a spherical internal structure, which can encapsulate NPs, drug molecules,
and other small molecules. Furthermore, the lone pair electrons of nitrogen atoms in
branched PEI can stabilize metal ions via coordination interaction. Therefore, branched PEI
has a wide range of applications in gene transfection [34–36], drug delivery [37,38], and
molecular imaging [25,39].

Linear PEI contains only secondary amines, whereas branched PEI contains various
types of amines, i.e., primary, secondary, and tertiary. Linear PEI is solid at room tempera-
ture, in contrast to branched PEI which is liquid at all molecular weights [20]. Linear PEI is
a high-charge cationic polymer and has been widely used in biomedical fields. For example,
linear PEI has antibacterial properties against various pathogens and can therefore be used
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as a bacteriostatic agent [40,41]. Additionally, as a cationic polymer, linear PEI can form a
polymer with nucleotides for gene transfer [42]. Compared with branched PEI, linear PEI
is an effective nonviral gene vector with higher cell viability and transfection efficiency [43].
We have presented a balanced picture of the PEI studies including advantages and limits
in Figure 2.
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Figure 2. A balanced picture of PEI studies including advantages and limits.

3. PEI Modifications

As a cationic polymer, PEI contains abundant amino groups and as a result has a
certain degree of cytotoxicity. Cationic PEI enters cells by adhering to negatively charged
transmembrane heparanproteoglycans, which can cause cell damage through membrane
destabilization [44]. Additionally, the internalized PEI causes apoptotic cell death by form-
ing pores in the mitochondrial membrane [45,46]. PEI is not well-degraded in organisms,
and its cytotoxicity is closely related to its molecular weight and branching degree [47].
Branched PEI with a higher molecular weight has a higher cytotoxicity. The surface amines
of PEI can be shielded with simple modifications, thus significantly improving the bio-
compatibility of PEI [21]. At present, the surface amines of PEI are mainly shielded with
covalent bonds such as carboxylation, acetylation, and hydroxylation, or with electrostatic
modification of negatively charged proteins. However, currently, there is a lack of system-
atic research to contrast the benefits and challenges of these approaches for the surface
modifications of PEI. For example, Wen et al. improved the biocompatibility of PEI through
carboxylation, acetylation, hydroxylation, and PEGylation [21]. These methods effectively
reduced or shielded the positive charge of the PEI, thus reducing cytotoxicity. As shown in
Figure 3, various functional groups including polyethylene glycol (PEG), folic acid (FA),
hyaluronic acid (HA), fluorescent tags, and protein can be modified with PEI for biomedical
applications [24,25,48–58]. We summarize PEI modifications for biomedical applications in
recent years in Table 1.
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Table 1. Summary of PEI modifications carried out in recent years.

Modification Types Aims Ref.

Carboxylation modification Gene delivery, absorption of
heavy metals in sewage. [60–63]

Acetylation modification
Gene delivery efficiency

improvement, cytotoxicity
reduction.

[63–65]

Hydroxylation modification

Biocompatibility
enhancement, gene delivery,
transformation improvement

of NPs.

[66–68]

PEG modification Stability and transfection
efficiency improvement. [69–71]

FA modification Tumor-targeted delivery. [72,73]

HA modification Tumor-targeted gene delivery,
stability improvement. [74,75]

Protein modification Gene delivery, protein
transduction. [76–78]

FI modification Fluorescence imaging. [57]

3.1. Carboxylation Modification

PEI is a representative nonviral vector for gene delivery because the proton sponge of
PEI can protect nucleic acids from nuclease digestion [79,80]. Carboxylation can effectively
improve the biocompatibility of PEI, and carboxylated PEI is often used for gene delivery.
For example, Nakamura et al. constructed a gene vector by forming an amide bond
between the carboxyl group of a peptide and the primary amino group of PEI [60]. The
carboxyl-modified PEI was used as a gene carrier in response to tumor-specific activation
of protein kinase C alpha (PKCα) to release plasmid DNA (pDNA) for gene expression. In
another study, Nam et al. conjugated polylactic-co-glycolic acid (PLGA) with a carboxyl
terminal group to PEI to synthesize novel amphiphilic block copolymers self-assembled in
water [81]. This work indicated that PEI–PLGA aggregates were easily adsorbed to the cell
surface and transferred to the cytoplasm, and thus could be used as effective drug carriers.



J. Funct. Biomater. 2023, 14, 12 5 of 27

3.2. Acetylation Modification

Similarly, acetylation modification can also reduce the cytotoxicity of PEI and improve
the efficiency of gene delivery [63,64]. Calarco et al. found that acetylation of PEI signifi-
cantly reduced the cyto- and genotoxicity of PEI-based NPs [65]. The acetylated PEI-based
NPs promoted DNA intake and reduced the production of reactive oxygen species (ROS)
responsible for DNA damage. In our previous work, we found that acetylation modification
effectively reduced the positive charges of PEI and thus improved its biocompatibility for
cancer imaging and therapy applications [24,54–58].

3.3. Hydroxylation Modification

The introduction of hydroxyl groups on the PEI surface is often used in the fields of
gene and drug delivery. Wu et al. synthesized biodegradable chitosan-g-PEI-g-PEG-OH
copolymer for gene transfection [66]. The PEI-grafted chitosan significantly reduced the
toxicity of the PEI and had no effect on gene transfection efficiency. Hydroxyl modification
on the PEI surface can improve its tolerance to serum and reduce the cytotoxicity of the
nucleic acid carrier. Notably, the hydroxyl group could act as a bridge to link PEI to
other functional groups such as FA, antibodies, and other targeted molecules. Chen et al.
reported that hydroxyl-modified PEI showed lower cytotoxicity and better serum-resistant
capacity than free PEI for the delivery of nucleic acids [67]. In HeLa cells containing serum,
the transfection efficiency of hydroxy-modified PEI was 29 times higher than that of free
PEI. Furthermore, the hydroxyl-modified PEI/siRNA complexes displayed a stronger
knockdown effect in CT26 cells.

3.4. PEG Modification

PEG is widely used in drug delivery systems because of its high water solubility,
nonimmunogenicity, and excellent biocompatibility [82]. Different types of PEGs with
various chain lengths have been conjugated with PEI to improve the stability and trans-
fection efficiency of PEI [69]. Studies have shown that the degree of PEGylation and the
molecular weight of PEG have a significant influence on the properties of PEI [24]. The
stability and transfection efficiency of PEI/DNA complexes were affected by graft length
and the PEG side chains [69,70]. PEG side chains stabilized PEI/DNA complexes in the
presence of salt; however, intracellular gene delivery was also interrupted by longer PEG
side chains because of their more effective spatial obstruction [70]. Short PEG side chains
with a molecular weight of 350 Da stabilized the PEI/DNA complex without reducing
transfection efficiency [69]. Cracium et al. reported that the PEGylation of PEI reduced the
surface charges of the polymer, thus improving its solubility, but also reduced nonspecific
ionic interactions between the complex and the target cells [71].

3.5. FA Modification

Targeted drug delivery systems effectively deliver drugs to the lesion, thereby reducing
the damage to normal tissue. FA molecules specifically target cancer cells expressing high
levels of FA receptors, which are found on the surface of various types of human cancer
cells such as HeLa and KB cells [83]. It is well known that FA-modified NPs have higher
specificity and cellular internalization capacity for cancer cells expressing high levels of
FA receptors [84,85]. Yang and coworkers conjugated PEI with FA and oleic acid (OA) as
a carrier of LOR-2501 for antisense oligonucleotide delivery [72]. Here, OA significantly
improved the transfer efficiency of LOR-2501. FA-modified PEI–OA showed a higher level
of cellular uptake than PEI and PEI–OA. In our previous work, FA was used to modify PEI
through a PEG spacer as a nanoplatform to load the anticancer drug doxorubicin (DOX)
for targeted chemotherapy of tumors in vivo (Figure 4a) [57]. As shown in Figure 4b, HeLa
cells treated with the FA-targeted PEI/DOX complexes captured more DOX than those
treated with the nontargeted PEI/DOX complexes. In addition, under the same conditions,
the FA-targeted PEI/DOX complexes were more likely to disrupt the cytoskeleton than the
nontargeted PEI/DOX.
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Reproduced with permission of [57]. Copyright 2017, the Royal Society of Chemistry.

3.6. HA Modification

HA is the main component of polysaccharide and extracellular matrix with high
biodegradability and biocompatibility [86,87]. In addition, it is a broad-spectrum target-
ing ligand that targets cancer cells overexpressing CD44 receptors [86–89]. Therefore,
HA-targeted NPs are often designed for biomedical applications [50,90–95]. Furthermore,
HA-modified NPs can effectively prevent plasma protein adsorption and prolong the
blood circulation time of NPs [96]. PEI with high positive charges was shielded with
HA via electrostatic interaction to deliver DNA effectively and safely into human mes-
enchymal stem cells (hMSCs) [74]. The HA-shielded PEI/pDNA complexes were easily
internalized by the hMSCs and HeLa cells, and the effect was weakened by pretreatment
with an anti-CD44 monoclonal antibody. In another study, Liang et al. constructed a
self-assembled ternary complex using pDNA, branched PEI, and HA-epigallocatechin
gallate (HA-EGCG) conjugates for targeted gene delivery, as shown in Figure 5a [75]. HA
not only stabilized the pDNA/PEI complexes through the strong DNA-binding affinity
of green tea catechins, but also improved their transport to cells overexpressing CD44
through receptor-mediated endocytosis. The HA-modified pDNA/PEI complexes pro-
moted nuclear transport of pDNA more efficiently in CD44-overexpressed cells than the
uncoated complexes (Figure 5b). Similar to FA, the HA molecule can also be used to modify
PEI through a PEG spacer for biomedical applications [50]. In addition, HA can be di-



J. Funct. Biomater. 2023, 14, 12 7 of 27

rectly chemically conjugated with PEI via 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide
hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry for cancer theranostics [92].
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3.7. Protein Modification

The high stability and gene transfection rate of PEI/pDNA complexes require the
condensation of pDNA into the nanocomplexes. Histone is one kind of protein that has been
used for conjugation with PEI via EDC/NHS chemistry for gene delivery [76]. Histone-
modified PEI as a carrier showed low cytotoxicity and could effectively bind and condense
pDNA. Katayama et al. found that PEI could be modified with different types of peptides
through click chemistry in response to PKCα (Figure 6) [77]. The content and quantity of
peptide in PEI/peptide conjugates had significant effects on gene transfection. Because
of the negative surface charge of living cells, absorption-mediated endocytosis enables
efficient uptake of cationic proteins by cells. Other proteins, such as the RGD peptide, can
be modified on the surface of PEI via a PEG bridge for targeted imaging applications [58].J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 8 of 29 
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4. Synthesis of PEI-Based NPs

NP-based drug delivery systems with high biostability, targeting, and biodegrada-
tion have significantly improved clinical efficacy [97–100]. Compared with traditional
drug delivery systems, NP-based drug delivery systems can not only improve the water
dispersibility and stability of drugs, but also significantly change the distribution and
metabolism of drugs in vivo because of their specific size range (1–100 nm). In addition,
the way of drug release can be controlled by appropriate design of delivery vehicles, drug
molecule types, and loading modes, so as to achieve the best therapeutic effect. More
importantly, in view of the specific receptor expression of cancer cells, NP-based drug
delivery systems can be modified with targeted ligands to deliver drugs to specific tumor
sites, thereby improving drug bioavailability and reducing toxicity to normal tissues.

PEI plays a crucial role in the construction of multifunctional NPs because of its unique
structural features and abundant amino groups. Owing to the presence of hydrophobic
cavities in hyperbranched PEI, small molecules, metal ions, and metal oxides can be ef-
fectively encapsulated to form stable NPs [25,55,56,58,101–105]. For example, Sun et al.
used PEGylated PEI to coat carbon nano-onion clusters (CNOCs) for cancer theranos-
tics [106]. The coating of PEGylated PEI can promote the phagocytosis efficiency of cells
to the CNOCs. The CNOCs–PEI–PEG showed a cell uptake rate of 2.13 pg/cell, which
was much higher than that of PBS and free CNOCs. The CNOCs–PEI–PEG was used as a
photothermal and photoacoustic (PA) imaging agent for cancer theranostics because of its
excellent photothermal conversion and cell phagocytosis efficiency.

In addition, the positively charged amino groups on the PEI surface can be bound
to organic or inorganic anionic materials using electrostatic interaction. The lone electron
of the amino group on the PEI surface can also coordinate with different metal atoms
or metal ions to stabilize metal ions, metal oxides, or metal elements. For instance, Liu
et al. conjugated PEI to the GO surface via amide bonds, which significantly improved the
physiological stability and gene transfection rate of the GO [107]. Sun et al. used linear
PEI as a reducing and stabilizing agent to prepare AuNPs in a water bath at 60 ◦C, and
studied the particle size changes of the AuNPs by regulating the feeding ratio of PEI and
gold salt [108]. Wang et al. systematically studied the preparation method of AuNPs based
on hyperbranched PEI [109]. Note et al. further studied the influencing factors of the size of
AuNPs based on hyperbranched PEI, and found that AuNPs with a particle size of less than
10 nm could be obtained in either the aqueous or microemulsion phase when heated to
100 ◦C [110]. The addition of strong reducing agents, such as sodium borohydride, resulted
in preparation of AuNPs with diameters ranging from 2–5 nm. In our previous work, we
used PEGylated PEI to entrap and stabilize AuNPs (PP–AuNPs, as shown in Figure 7) or
metal ions (gadolinium and technetium ions) for in vivo CT or CT/MR (or SPECT/CT)
dual-mode imaging of mice [25,55,56,58]. PEI also can stabilize iron oxide NPs and silver
NPs for biomedical applications [111–119].
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5. PEI-Based Drug Delivery Systems

Since the FDA first approved liposomal amphotericin B as a delivery system in
1990, various delivery systems have been developed for the treatment of different dis-
eases [120]. The development of nanotechnology provides more options for the design of
drug delivery systems.

As a cationic polymer, PEI can coat or conjugate drug agents, and numerous amino
groups on its surface can be modified with various functional modifications [121]. For
example, targeting agents, such as FA [122,123], HA [124,125], lactic acid [126,127], transac-
tivating protein [128], and antibodies [129,130], modify PEI to target specific cancer cells;
fluorescent labeling molecules, such as fluorescein isothiocyanate (FI), modify PEI for cell
marking [57]; and biocompatible agents, such as PEG and oligosaccharides, can improve
the biocompatibility of PEI [56,131–134]. The internal cavity of hyperbranched PEI and the
large number of amino groups on the surface can be readily constructed as a nanoplatform
which can effectively stabilize or entrap small biological molecules (e.g., DNA, siRNA,
drugs) or metal ions. The unique physicochemical properties and low price of PEI promote
its wide application in biomedicine.

5.1. PEI-Based Drug Delivery Systems for Cancer Treatment

PEI is a class of large-molecular-weight polymers, among which hyperbranched PEI
has a hydrophobic cavity, dendritic three-dimensional structure, and plentiful positively
charged amino groups on the surface, which provide the conditions for further chemical
modifications [21,135–137]. PEI is an effective drug carrier for cancer treatments such as
chemotherapy and gene therapy because of its unique structure, commercial availability,
and low price. Table 2 provides a detailed summary of PEI-based drug delivery systems
for cancer therapy.

5.1.1. Chemotherapy

Multidrug resistance (MDR) is the most common cause of tumor chemotherapy failure,
and low drug delivery efficiency is an important cause of MDR. Because of its unique
structure, PEI can effectively coat or conjugate anticancer drug molecules [138]. In addition,
amino groups on the PEI surface can be functionalized to achieve targeted drug delivery,
which further improves the efficiency of drug delivery [139]. Forrest et al. used PEG-
modified PEI to stabilize superparamagnetic iron oxide NPs, and then linked DOX with
a pH-sensitive hydrazone bond to inhibit the MDR effect [140]. In addition, they studied
the effect of different pH on the release of DOX. It was found that DOX release was greater
under acidic conditions (pH 4–5), and a DOX nanocomposite system (NP–DOX) had a more
sustained drug-release function than free DOX. As shown in Figure 8, for drug-sensitive
C6 cells, free DOX was mainly concentrated in the nucleus, whereas NP–DOX was mainly
concentrated around the nucleus. For drug-resistant C6-ARD cells, the fluorescence signal
of free DOX was not obvious, whereas the fluorescence signal of DOX could still be clearly
seen in the nucleus and cytoplasm of drug-resistant cells treated with NP–DOX. This
indicated that NP–DOX had a good ability to inhibit the MDR effect. Therefore, PEI-based
NP–DOX can effectively enter the cytoplasm and nucleus, and has better antitumor efficacy
than free DOX. Huang et al. synthesized star-block copolymer PEI-g-(PLG-b-PEG) with
hyperbranched PEI as the core, poly(l-glutamic acid) (PLG) as the inner shell, and PEG as
the outer shell [141]. This copolymer was used as a carrier to coat DOX via electrostatic
adsorption. It was found that DOX/PEI complexes could continuously release DOX under
a certain pH condition, and the cumulative released amount of DOX increased as the
pH decreased. In another study, Tsai et al. prepared PLGA NPs loaded with DOX via
electrostatic interaction [142]. Then, cationic PEI and anionic polyacrylic acid (PAA) were
alternately deposited on the surface of the PLGA/DOX complexes. Because of the proton
sponge effect of PEI, the modification of PEI improved the cellular uptake efficiency and
endosomal/lysosomal escape effect of the complexes. In addition, PAA modification
resulted in pH-dependent drug-release properties of the complexes. In our previous work,
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we used targeted molecules, such as HA and FA, to modify PEI to coat DOX for targeted
drug delivery [50,57].
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Recently, the codelivery of nucleic acids and drugs by PEI-mediated drug delivery
systems has provided a new therapeutic strategy for cancer treatment with higher antitumor
activity. For example, twin-arginine translocation (TAT) protein (or FA)-modified PEG-PEI
was conjugated with the anticancer drug DOX through a hydrazone bond and loaded with
nucleic acids to construct a dual drug-treatment system for combined chemotherapy and
gene therapy in order to destroy cancer cells more effectively [128,143].

5.1.2. Gene Therapy

Gene therapy involves the alteration of genes inside cells in order to treat diseases or
medical disorders. Vectors for gene therapy need to have not only good biocompatibility
and stability, but also a strong gene aggregation effect.

As a common nonviral vector for gene therapy, PEI can condense into a complex with
pDNA and escape in vivo through the proton sponge effect, thus effectively improving
gene transfection efficiency [144]. However, high cytotoxicity limits the application of PEI in
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gene therapy. To overcome this issue, Wang et al. modified PEI with lithocholic acid (LCA)
and HA to reduce its cytotoxicity and used it as a pDNA vector for gene therapy [145].
Here, LCA stabilizes the pDNA/PEI complexes, and HA, a naturally occurring anionic
polysaccharide, shields the PEI from additional cationic charges to reduce the cytotoxicity
and prevent the pDNA/PEI complexes from binding to serum proteins [146]. In another
work, cysteamine-modified AuNPs/siRNA/PEI/HA complexes were designed using
a layer-by-layer method for target-specific intracellular delivery of siRNA [147]. The
complexes had no obvious cytotoxicity, and their gene-silencing efficiency was very high:
up to 80% in the presence of 50 vol % serum. Furthermore, the complexes reduced the level
of ApoB mRNA by about 20% in a dose-dependent manner.

PEG is a biocompatible polymer that has often been conjugated onto the surface of
PEI to reduce its cytotoxicity. For instance, Cao et al. reported on PP–AuNPs with different
Au atom/PEI molar ratios for pDNA gene transfection [51]. It was found that PP–AuNPs
had no significant effect on the gene transfection of PEI, and the cytotoxicity of PP–AuNPs
was lower than that of PEI alone. Other agents such as negatively charged agents can also
be used to modify PEI to improve its biocompatibility. Zhang and colleagues modified
the PEI/DNA complex with negatively charged sodium alginate (Alg) for gene delivery
(Figure 9a) [148]. By introducing Ca2+ ions to neutralize the carboxyl groups on the surface
of Alg, the biocompatibility and stability of Alg were effectively improved, and the obtained
Ca2+/Alg–PEI–DNA was an effective gene delivery system. The long circulation time of
Ca2+/Alg–PEI–DNA complexes in the blood enhanced the permeability and retention (EPR)
effect of the complexes which improved their accumulation in tumor sites (Figure 9b).
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Table 2. PEI-based drug delivery system for cancer treatment.

Therapeutic
Modalities

Therapeutic
Agents

Cell Line
Models In Vivo Models Ref.

Chemotherapy

DOX HeLa HeLa [57]
MTX HCT 116 / [138]
PTX HepG2 / [139]
DOX C6 / [140]
DOX HeLa HeLa [143]
DOX 4T1, HepG2 / [149]
DOX A549 / [142]

DOX, siRNA MDA-MB-231,
HeLa, EAT EAT [150]

DOX SKBR3 SKBR3 [151]

Gene therapy

pDNA
HeLa,

16HBE14o−,
HepG2

/ [144]

pDNA Huh7 Huh7 [145]
DNA NIH/3T3 / [45]

pDNA HeLa / [51]
DNA HeLa, CT26 CT26 [148]

mRNA B16-OVA B16-OVA [152]

Other therapies

RNase A MDA-MB-231 / [153]
Oxidized

mesoporous
carbon

nanospheres,
pDNA

MCF-7 MCF-7 [154]

CAT-Ce6 T24 T24 [155]
GO, DTX,

anti-miRNA21 MDA-MB-231 / [156]

CuS, DTX, CpG 4T1 4T1 [157]
pDNA, 9B9 mAb SMMC-7721 SMMC-7721 [158]

5.1.3. Other Therapies

PEI-based drug delivery systems are also used for other therapies, such as photother-
mal therapy (PTT), photodynamic therapy (PDT), immunotherapy, and combination ther-
apy [159–164]. For example, Huang et al. reported that PEI-coated oxidized mesoporous
carbon nanospheres were designed for combined PTT and gene therapy of tumors [154]. In
another study, Li et al. assembled fluorinated PEI (F–PEI) and chlorin e6 (Ce6)-conjugated
catalase (CAT–Ce6) into an NP for PDT of orthotopic bladder tumors postintravesical
instillation [155]. The designed NPs showed significant transmembrane, transmucosal, and
intratumoral penetration compared with CAT–Ce6 alone or nonfluorinated CAT–Ce6/PEI
NPs. Because CAT–Ce6/F-PEI NPs penetrate bladder tumors to decompose endogenous
H2O2, they can effectively relieve tumor hypoxia. Therefore, compared with hemato-
porphyrin, intravesical infusion of CAT–Ce6/F–PEI NPs can significantly improve the
photodynamic treatment effect and reduce systemic toxicity of orthotopic bladder tumors.
In another study, oxidized mesoporous carbon nanospheres were used as photothermal
agents with strong NIR absorption. Here, PEI was used to coat the nanospheres and com-
bined with pDNA for combined gene therapy and PTT. Additionally, the nanosphere-based
photothermal effect enhanced gene release, thus improving gene therapy. Yang et al. used
PEI-modified GO and loaded it with DTX and anti-miRNA21 for chemo-gene-photothermal
therapy of triple-negative breast cancer (TNBC) [156]. The nanocomposites showed strong
stability, high drug loading efficiency, and excellent nucleic acid absorption capacity. More
importantly, the synergistic therapy significantly inhibited the growth and migration of
TNBC cells. PEI-coated mesoporous copper sulfide loaded with docetaxel and immunoad-
juvant CpG was used for targeted synergistic phototherapy and immunotherapy [157].
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The nanocomplexes showed a good PDT effect and photothermal conversion ability under
650 nm and 808 nm irradiation, respectively. In addition, the nanocomplexes significantly
inhibited tumor growth without obvious side effects. A low dose of DTX loaded in a
nanocomplex can promote cytotoxic T lymphocyte (CTL) infiltration, enhance the efficacy
of anti-PD-L1 antibody, inhibit myeloid derived suppressor cells (MDSCs), and polarize
MDSCs to M1 phenotype, thus enhancing the antitumor efficacy in vivo.

5.2. PEI-Based Drug Delivery System for Cancer Imaging

Contrast agents are widely used in molecular imaging to enhance imaging resolution.
Owing to its unique physicochemical structure, PEI can effectively stabilize or encapsulate
various agents for cancer imaging applications. A variety of imaging contrast agents can be
constructed based on PEI including computed tomography (CT), magnetic resonance (MR),
and single-photon emission CT (SPECT) imaging [59,165]. This section summarizes the
progress of research concerning the use of PEI to construct multifunctional nanosystems as
contrast agents for single-modal and multimodal molecular imaging. Table 3 summarizes
PEI-based imaging or imaging-guided cancer therapies.

5.2.1. CT Imaging

CT imaging, as a well-established diagnostic imaging technology, has not only strong
penetration, high density, and spatial resolution, but also a very convenient image recon-
struction process [166,167]. Iodine-based small molecule contrast agents (e.g., Omnipaque)
are the most-used contrast agents in clinical diagnostic imaging [168]. However, these
iodine-based small molecules have disadvantages such as nephrotoxicity, a short imaging
time, and nonspecificity [169–171]. With the development of nanotechnology, a large num-
ber of NP-based contrast agents such as AuNPs [24,172], bismuth sulfide NPs [173,174],
tungsten sulfide nanosheets [175], copper sulfide NPs [176], and ytterbium-based NPs [166]
have been designed to overcome these defects.

PEI-entrapped AuNPs can significantly improve the stability of AuNPs and can be
used as an effective CT contrast agent with better X-ray attenuation performance and
longer blood circulation time. In our previous work, we used PP–AuNPs for blood pool
and tumor CT imaging applications [24]. In this work, PP–AuNPs were synthesized using
partially PEGylated PEI as a template, followed by acetylation of the remaining surface
amines of PEI. The formed PP–AuNPs with an average size of 1.9–4.6 nm had excellent
water dispersibility, colloidal stability, and biocompatibility. Compared with clinically used
iodinated small-molecular contrast agents such as Omnipaque, the PP–AuNPs showed
higher X-ray attenuation properties and a longer half-decay time (11.2 h in rats), resulting in
an imaging time of up to 75 min, thus enabling enhanced blood pool CT imaging. Similarly,
AuNPs can be used as effective contrast agents for CT imaging in tumor models because of
the EPR effect. Wang et al. optimized the composition and dosage of PP–AuNPs for blood
pool, tumor, and lymph node CT imaging [53]. In another work, FA, as a targeted ligand,
was modified with PP–AuNPs for targeted tumor CT imaging [25]. Olifirenko et al. studied
the potential applicability of PEI-coated Eu2O3 (PEI@Eu2O3) and Dy2O3 (PEI@Dy2O3) NPs
for enhanced CT imaging [177]. Preliminary cytotoxicity assays on L-929 cells showed
that PEI@Eu2O3 and PEI@Dy2O3 had no significant toxicity at concentrations below 100
µg/mL. Clinical CT analysis showed that PEI@Eu2O3 NPs (about 8 HU mM−1) exhibited
higher X-ray attenuation efficiency than PEI@Dy2O3 NPs (about 5 HU mM−1).

5.2.2. MR Imaging

MR imaging technology is an advanced medical diagnostic imaging technology devel-
oped in the 1970s with noninvasion, high spatial resolution, and strong tissue penetration,
and has thus been widely used in the detection of various human diseases [178,179]. MR
imaging contrast agents are an important part of the technology that can improve imaging
contrast and sharpness [180]. Commonly used MR contrast agents are divided into signal-
enhancing T1-weighted MR contrast agents (e.g., gadolinium agents, manganese dioxide,
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ultra-small iron oxide NPs, etc.) [181–183] and signal-attenuating T2-weighted MR contrast
agents (e.g., magnetic iron oxide NPs) [184].

Studies have found that small-molecule gadolinium agents demonstrated short half-
decay time, which greatly limited their applications [185,186]. The abundant amines
on the surface of PEI can covalently modify a Gd chelator, so as to effectively chelate
gadolinium ions for T1-weighted MR imaging. Zhou et al. modified the Gd chelator
diethylenetriaminepentaacetic acid (DTPA) on the surface of PEGylated PEI, then chelated
Gd ions, and finally acetylated the remaining amines to enhance biocompatibility and
prolong circulation time [187]. The prepared PEG-PEI.NHAc-DTPA(Gd) could be used not
only for T1-weighted MR blood pool imaging, but also for T1 MR imaging of tumors, as
shown in Figure 10.
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Magnetic iron oxide NPs are widely used in molecular imaging, but readily aggregate
because of their magnetic properties [59,188,189]. Therefore, surface coating of magnetic
iron oxide NPs is required to improve their stability in a physiological environment. PEI
is an excellent candidate for surface coating of magnetic iron oxide NPs, providing a
hydrophilic surface coating that can effectively enhance the contrast of T2-weighted MR
imaging [190]. Wang and colleagues constructed an amphiphilic PEI conjugated with
indocyanine dye Cy5.5, which was used to coat hydrophobic magnetic iron oxide NPs to
form a multimodality nanoprobe for cell imaging [191]. The PEI-coated magnetic iron oxide
NPs were effectively internalized into the cytoplasm of MCF-7/Adr, and the T2 relaxivity
of labeled cells (98.2 s−1) was much higher than that of unlabeled cells (2.3 s−1).

5.2.3. SPECT Imaging

Nuclear medical imaging uses radionuclide-labeled imaging agents or radiopharma-
ceuticals, which are introduced into the body of living organisms, thus making it possible
to monitor physiological and biochemical processes in real time [192]. Compared with
traditional morphological imaging (e.g., B-mode ultrasound, CT, and MR imaging), nuclear
medical imaging is functional imaging, which can monitor and reflect metabolic and blood
flow changes, specific receptor density, and changes in the activity of organs or tissues in
real time [193]. Positron emission tomography (PET) and SPECT are examples of nuclear
medicine imaging that receive the γ rays emitted by radionuclide agents [194]. However,
the spatial resolution and the accumulation rate of small-molecule radionuclide agents in
target tissues are still not sufficiently high [195].

To overcome these disadvantages, labeling radionuclides on a PEI-based nanoplatform
can effectively enhance their imaging performance. As an example, Zhu et al. constructed
multifunctional poly (cyclotriphosphazene-co-PEI) nanospheres (PNSs) labeled with ra-
dionuclide 131I through 3-(4′-hydroxyphenyl) propionic acid-OSu for SPECT imaging of
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tumors [196]. The PNSs displayed a high 131I label efficiency of up to 76.05 % and a fa-
vorable colloidal/radio stability. Furthermore, PNSs effectively accumulated at the tumor
site, resulting in higher-contrast SPECT imaging of the tumors. It should be noted that
SPECT imaging often needs to be combined with other imaging modalities to improve the
diagnosis of tumors, as explained below.

5.2.4. Multimodal Imaging

Each imaging modality has its own inherent advantages and disadvantages. For
example, CT imaging has the advantages of low cost, high spatial resolution and short
image acquisition time, and can provide high-resolution 3D tomography information. How-
ever, CT imaging also has some inherent issues, such as poor soft-tissue resolution, high
radioactivity during the detection process, and some nephrotoxicity when contrast agents
are used at high concentrations [197]. The advantages of MR imaging are high soft-tissue
resolution and sensitivity without damage from ionizing radiation. However, MR imaging
has low sensitivity, low spatial resolution, long scanning times, and nephrotoxicity due to
the use of gadolinium [180,198]. PET and SPECT imaging can obtain physiological and
biochemical information from tumor sites, but struggle to achieve high resolution in terms
of anatomical information. Given that each imaging mode has its own shortcomings, a
single imaging mode can no longer meet the needs of accurate disease diagnosis. Therefore,
combining two or more imaging modes is a developing trend in disease diagnosis.

By organically combining CT and MR imaging elements, multifunctional CT/MR
dual-modal imaging contrast agents have been designed that can exploit the advantages of
the two imaging modalities and further improve the sensitivity and accuracy of disease
diagnosis. For example, Shi et al. used PEGylated PEI to entrap AuNPs and stabilize
Fe3O4 NPs to construct a CT/MR dual-modal imaging contrast agent and successfully
applied it to MR and CT imaging of blood pools and organs in vivo [49]. Shi et al. also used
PEGylated PEI as a template to load AuNPs and gadolinium oxide (Gd2O3) NPs for dual-
modal CT and MR imaging of tumors [83]. The formed PEI@Au/Gd2O3 NPs had excellent
colloidal stability and cytocompatibility, and displayed high X-ray attenuation efficiency
and r1 relaxivity, enabling them to be used in dual-modal CT/MR imaging of tumors. In
our previous work, PEG was modified by PEI and then linked to a Gd chelator (DOTA),
which was used as a template to synthesize AuNPs and chelate Gd ions, and finally the
PEI were completely acetylated for dual-modal CT/MT imaging applications [56]. The
prepared Gd-PP–AuNPs had a particle size of 4.0 nm and displayed excellent colloidal
stability and biocompatibility. Because the imaging elements Au and Gd were in a single
nanoplatform, the Gd-PP–AuNPs displayed a good X-ray attenuation coefficient and r1
relaxation rate, laying the foundation for in vivo CT and MR imaging. For in vivo CT
imaging, only veins can be visualized at low doses, whereas at high doses both veins
and arteries can be visualized. For in vivo MR imaging, both arteries and veins can be
visualized simultaneously even at low doses, but higher resolution can be obtained at
higher doses. We also studied FA ligand-modified Gd-PP–AuNPs for targeted tumor
dual-modal CT/MR imaging [54].

The organic combination of functional imaging (PET or SPECT) and structural imaging
(CT or MR) can obtain a larger amount of tumor imaging information, which is a developing
trend in disease diagnosis. For instance, Zhao et al. selected PEI as a platform to entrap
AuNPs and label them with radioactive 99mTc for SPECT/CT imaging in vivo [105]. It
was found that the acetylated 99mTc-PP–AuNPs were mainly concentrated in the lungs,
liver, and spleen, whereas hydroxylated 99mTc-PP–AuNPs were mainly concentrated in
the blood, heart, kidneys, and inferior vena cava. Therefore, it was reasonable to assume
that PEI could serve as a versatile nanocarrier to load both AuNPs and 99mTc for dual-
modal SPECT/CT imaging of different organs in the body. When further combined with
RGD protein, the PEI-based nanosystem can be used for efficient, targeted CT/SPECT
dual-modal imaging of different αvβ3-integrin-receptor-overexpressing tumors [58].
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PA imaging can effectively image the structure and function of biological tissues, which
provides a key method to study the morphological structure, physiological and pathological
characteristics, and metabolic function of biological tissues, and is particularly suitable
for the early detection and monitoring of cancer [199]. Indocyanine green (ICG) is a near-
infrared fluorescent dye that has been approved by the Food and Drug Administration for
PA imaging applications. Guo and coworkers reported that fluorinated PEI was modified
with lactobionic acid and ICG, and labeled with radionuclide 99mTc for 19F-MR/SPECT/PA
trimodal imaging of the liver in mice [193]. The nanocomposites were rapidly distributed
and eliminated, and the radioactivity was mainly accumulated in the liver. Encapsulation
of the ICG in the nanocomposites did not change its optical properties. In addition, the
nanocomposites were designed for liver disease diagnosis through the targeted triple
imaging of liver cells by lactobionic acid modification.

Table 3. PEI-based imaging or imaging-guided cancer therapy.

Imaging Types Imaging Agents Cell Line Models In Vivo Models Ref.

CT

AuNPs A549 A549 [53]
AuNPs MCF-7 MCF-7 [200]
AuNPs HeLa HeLa [201,202]

Bi2Se3 NPs A549, U14 U14 [203]

MR

Gd ions KB KB [187]
Superparamagnetic

iron oxide
nanocrystals

MCF-7/Adr / [191]

Superparamagnetic
iron oxide NPs Chondrolyte cells / [204]

Ultrasmall iron
oxide NPs 4T1 4T1 [104]

Gd(OH)(3)-doped
Fe3O4 NPs KB / [205]

Fe3O4 NPs HepG2 HepG2 [206]
Fe3O4 NPs U87MG, HeLa U87MG, HeLa [90]

SPECT
131I 4T1 4T1 [196]

99mTc C6 C6 [207]

MR/CT

AuNPs, Gd2O3 HeLa HeLa [208]
Fe3O4@Au
nanostars HeLa HeLa [92]

Fe3O4@Au
nanocomposites KB / [49]

Au-Gd NPs HeLa HeLa [54,209]

MR/PA Gd/CuS KB KB [210]

SPECT/CT

99mTc, AuNPs HCC-LM3 HCC-LM3 [58]
99mTc, AuNPs SKOV-3 / [105]
AuNPs, 131I C6 C6 [121]

MR/CT/PA Fe3O4 NPs, Au
nanostars HeLa HeLa [211]

MR/SPECT/PA 19F,99mTc, ICG HepG2 HepG2 [193]

CT/MR/upconversion
luminescence

Yb3+- and
Gd3+-doped

UCNPs
A2780 A2780 [212]

5.3. PEI-Based Drug Delivery Systems for Cancer Theranostics

The development of nanotechnology provides new strategies with regard to the combi-
nation of therapeutic drugs and imaging agents for imaging-guided cancer therapy, namely
cancer theranostics [18,213,214]. As a highly cationic polymer, PEI has the advantages
of low cost, easy surface functionalization, stable chemical properties, and high loading
of small molecules and NPs, enabling it to be used to construct PEI-based drug delivery
systems for cancer theranostics. As an example, Shi et al. used an inverse mini-emulsion
method to prepare PEI-based hybrid nanogels for incorporation with ultrasmall iron oxide
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NPs and the anticancer drug DOX for T1 MR imaging-guided chemotherapy of tumors [104].
The nanogels displayed excellent water solubility and colloidal stability, high DOX loading
efficiency (51.4%), and a pH-dependent release of the DOX with an accelerated release rate
under acidic pH. Compared to free ultrasmall iron oxide NPs, the nanogels showed a much
higher r1 relaxivity at 2.29 mM−1 s−1. Additionally, under the guidance of T1-weighted
MR imaging, the nanogels effectively inhibited tumor growth. HA-modified PEI-stable
Fe3O4@Au core–shell nanostars (NSs) were used for trimodal CT-, MR-, and photothermal-
imaging-guided PTT of tumors (Figure 11a) [92]. Here, HA-modified PEI provided the NSs
with desirable colloidal stability, biocompatibility, and targeted specificity to cancer cells
overexpressing CD44 receptors. With the Fe3O4 core NPs and Au star shell, the NSs could
be used as a contrast agent for efficient MR and CT imaging of tumors in vivo (Figure 11b,c).
Furthermore, because of the NIR absorption property, the NSs could also be used as a
nanoprobe for thermal imaging (Figure 11d,e) and PTT of tumors (Figure 11f–h).
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Figure 11. (a) Schematic illustration of the preparation of Fe3O4@Au-PEI-HA NSs. (b) T2-weighted
MR, (c) CT, and (d) photothermal images of the tumors after intratumoral injection of the NSs.
(e) The temperature curves of PBS and the NSs as a function of the laser irradiation time. The
relative (f) tumor volume, (g) body weight, and (h) survival rate of tumor-bearing mice after different
treatments. Reproduced with permission of [92]. Copyright 2014, Elsevier Ltd.

Laponite (LAP) is a synthetic biodegradable nanoclay with a large specific surface area
and cation exchange capacity [215]. Combining LAP with PEI not only can improve the
drug loading rate of the complex, but also produce good stability. Zhuang and colleagues
created PEI-modified LAP using a polylactic acid-PEG-COOH spacer. The PEI-LAP was
used as a nanoplatform to embed AuNPs and load DOX for targeted CT imaging and
chemotherapy of tumors [201]. The formed nanocomplexes displayed excellent colloidal
stability and a high drug loading efficiency of up to 91.0 ± 1.8%, which significantly
inhibited the growth of tumors and reduced the side effects of DOX. Alkoxyphenyl acyl-
sulfonamide (APAS) as a zwitterionic polymer can enhance the cellular uptake of NPs at
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the pH of tumor microenvironment [216]. Zhu et al. used APAS-linked PEI as a vehicle
to entrap AuNPs and labeled it with radioactive 131I to enhance dual-modal SPECT/CT
imaging-guided radiotherapy of tumors [121]. Because of the charge conversion property
of APAS, the AuNPs can change from neutral to positively charged in a weak acid envi-
ronment, thus promoting cellular uptake. In addition, after 131I labeling, the therapeutic
agents can enhance SPECT/CT dual mode imaging and radiotherapy of tumors in vivo.

6. Outlook and Conclusions

Owing to its unique structure and satisfactory water solubility, PEI has a wide range
of applications in biomedical fields, such as drug delivery, medical imaging, and gene
therapy. Specifically, PEI effectively coats or covalently binds small drug molecules or
nucleic acids for drug and gene delivery, or loads imaging agents for tumor diagnosis,
such as AuNPs for CT imaging and magnetic iron oxide NPs for MR imaging. In addition,
PEI can be loaded with multiple imaging agents for multimodal imaging. For example, a
CT/SPECT dual-modal imaging agent was constructed from PEI-loaded AuNPs combined
with radioactive 99mTc [58]. Furthermore, PEI can also simultaneously load drug molecules
and imaging agents for cancer theranostics.

Notably, because it contains abundant amines, the surface of PEI is easy to function-
alize, for example, by modification with targeted ligands to construct specific targeted
nanoplatforms, with fluorescent reagents to achieve the labeling of cells or animal organs,
and with some biological proteins or PEG to improve drug loading capacity. For instance,
for PEI25K alone, each molecule can only load 50 moles of AuNPs, whereas PEGylated PEI
can effectively load 400 moles of AuNPs per PEI [24,53].

Since the first successful PEI-mediated oligonucleotide transfer conducted by the
group of Jean-Paul Behr, PEI has been derivatized to improve the physicochemical and
biological properties of polyplexes [217]. Several PEI transfection agents have been made
commercially available, including ExGen500 and jetPEI [218]. Meleshko et al. complexed
pDNA with linear PEI at a low molecular weight (8 kDa) for vaccine delivery [219]. This
is the first application of PEI as a vector for an idiotypic DNA vaccine in human phase
I clinical trials to have been approved by the regional regulatory authorities of the State
Committee on Science and Technology of the Republic of Belarus. Although PEI is probably
the most promising second-generation non-viral vector, several critical issues need to
be addressed before its clinical translation for cancer theranostics. First, PEI itself has
obvious cytotoxicity, and various surface modification methods can be used to improve
its biocompatibility. However, there is still a lack of systematic research on how to select
appropriate surface-modification methods according to the specific research purposes.
Second, the type and molecular weight of PEI seriously affect the loading efficiency of
drugs, but the relationship among them is still unclear. Third, although various types
of targeting agents have been developed, their drug delivery efficiency is still very low
(less than 5%). The delivery efficiency of PEI-based drug delivery systems should be
improved for cancer theranostics applications. Fourth, current research on PEI-based
drug delivery systems is mainly focused on cell or subcutaneous tumor models, and there
is a lack of exploration of their applications to orthotopic or human-excision orthotopic
tumors. Lastly, PEI-based drug delivery systems have unnoticeable short-term toxicity at
the animal level through appropriate surface modifications, but their long-term biosafety
and biodegradability should be fully investigated. Designs of PEI-based drug delivery
systems that are biodegradable or reduced in size within the renal filtration threshold for
rapid renal clearance are encouraged.
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