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Abstract: Coronary vessel layer structure may have a considerable impact on plaque stress/strain
calculations. Most current plaque models use single-layer vessel structures due to the lack of
available multilayer segmentation techniques. In this paper, an automatic multilayer segmentation
and repair method was developed to segment coronary optical coherence tomography (OCT) images
to obtain multilayer vessel geometries for biomechanical model construction. Intravascular OCT
data were acquired from six patients (one male; mean age: 70.0) using a protocol approved by
the local institutional review board with informed consent obtained. A total of 436 OCT slices
were selected in this study. Manually segmented data were used as the gold standard for method
development and validation. The edge detection method and cubic spline surface fitting were applied
to detect and repair the internal elastic membrane (IEM), external elastic membrane (EEM) and
adventitia–periadventitia interface (ADV). The mean errors of automatic contours compared to
manually segmented contours were 1.40%, 4.34% and 6.97%, respectively. The single-layer mean
plaque stress value from lumen was 117.91 kPa, 10.79% lower than that from three-layer models
(132.33 kPa). On the adventitia, the single-layer mean plaque stress value was 50.46 kPa, 156.28%
higher than that from three-layer models (19.74 kPa). The proposed segmentation technique may
have wide applications in vulnerable plaque research.

Keywords: coronary; vulnerable plaque; coronary plaque models; multilayer vessel geometry

1. Introduction

Intravascular optical coherence tomography (OCT) is a new imaging modality that
has been rapidly developing in recent years. It provides unprecedented resolution up
to 10 µm, compared to 150–200 µm by intravascular ultrasound (IVUS). It is not only
proven to be reliable and widely used in more and more clinical settings [1,2], but also
brings advances and breakthroughs to vulnerable plaque research using biomechanics,
allowing for more accurate cap thickness quantification and the construction of more
realistic models. Nonetheless, the biggest obstacle of OCT is its low penetration depth. That
is why some researchers have developed methods to combine IVUS and OCT together to
obtain the complete plaque geometry, with IVUS providing the entire vessel wall geometry
and OCT providing high-accuracy near-lumen plaque features, especially cap thickness,
inflammations and erosion [3,4].

Despite the penetration limitation of OCT, more and more researchers have exploited
the abundant information that OCT provides. OCT consensus illustrates the inaccuracy of
the statement that OCT has a constant penetration depth [5]. The fact is, OCT penetration
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depth ranges from 0.1 mm to 2.0 mm and is heavily tissue-dependent. Particularly for
high-attenuation tissues such as lipid-rich plaques, light is obscured. For lower-attenuation
tissues such as fibrous and calcium, OCT can see deeper structures clearly. A study also
showed that more than 180 degrees of external elastic lamina can be recognized in 95% of
OCT slices [6]. The enormous visible vessel segments can be taken advantage of to repair
the entire vessel wall.

It is well known that arteries have a three-layer structure: intima, media and adventitia.
OCT can actually discriminate the three layers based on image intensity variations [6].
Different layers have different pixel intensities and generate a “light–dark–light” structure
in OCT images. It would be a considerable advance if a multilayer vessel wall structure
could be obtained from OCT images and used in vulnerable plaque research [7–9]. Different
layers also have different mechanical properties [10–13]. The multilayer plaque structure
will have a significant impact on plaque stress/strain distributions when multilayer models
are used for calculation [14].

Recent studies have tried different methods to segment the coronary plaque and
vessel wall from OCT images. Athanasiou et al. introduced an automatic segmentation
method, which is able to segment four different tissue types in coronary plaque OCT
images: calcium (CA), lipid tissue (LT), fibrous tissue (FT) and mixed tissue (MT) [15]. They
also applied the edge detection algorithm and ellipse fitting to identify the internal elastic
membrane and estimate its bounding area. The method was updated to 3D space using
a linear elastic spring mesh method to fully segment the diseased segments for the first
time [16]. Zahnd et al. used an original front propagation scheme depending on grayscale
gradient information to segment intima, media and adventitia simultaneously in healthy
vessel segments [17]. Kafieh et al. introduced a method using a coarse-grained diffusion
map for the layer segmentation of retinal OCT images, which has shown robustness even in
low contrast and poor layer-to-layer gradient images [18]. Other researchers also put effort
into the automatic characterization of OCT plaques using artificial intelligence [19,20].

To the best of our knowledge, the above techniques have not been used to repair three-
layered vessel walls simultaneously with subsequent multilayer biomechanical model
construction. Three-layer vessel wall models are rarely considered in current modeling
research due to the lack of usable segmented multilayer vessel image data.

In this paper, an automatic multilayer segmentation and repair method was developed
to segment coronary OCT images to obtain multilayer vessel geometries for biomechan-
ical model construction. Manually segmented data were used as the gold standard for
automatic segmentation method development and validation. The edge detection method
and cubic spline surface fitting were applied to detect and repair the internal elastic mem-
brane (IEM), external elastic membrane (EEM) and adventitia–periadventitia interface
(ADV). The segmented and repaired vessel slices were then used to construct 3D thin-
slice models to demonstrate the impact of the multilayer vessel structure on the plaque
stress/strain calculation.

2. Materials and Methods
2.1. Data Acquisition and Processing

Five existing de-identified intravascular optical coherence tomography (OCT) data
sets for patients (n = 5) with coronary heart diseases were obtained from Cardiovascular
Research Foundation (CRF). One additional patient OCT data set was acquired from
Southeast University Affiliated Zhongda Hospital using protocol approved by Southeast
University Zhongda Hospital Institutional Review Board (approval code 2019ZDKYSB046)
with informed consent obtained. A total of 436 OCT slices from 6 patients (1 male; mean
age: 70.0) were used in this study, with demographic data shown in Table 1. OCT images
were acquired with ILUMIEN OPTIS System and Dragonfly JP Imaging Catheter (St. Jude
Medical, Westford, MA, USA). The spatial resolution of the acquired OCT images was
4.5 µm. Slices with poor image quality were removed from this research.
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Table 1. Patient demographic data. BP: blood pressure; RCA: right coronary artery; LCX: left
circumflex artery; LAD: left anterior descending artery; HT: hypertension; DM: diabetes mellitus;
HL: hyperlipoproteinemia.

Patient Age Sex Vessel
Segment BP (mmHg) Number of

Slices Comorbidities

P1 80 F RCA 138/71 75 HT DM
P2 65 F RCA 149/63 90 DM
P3 74 F RCA 151/62 76 HT DM HL
P4 62 F RCA 117/79 75 HL
P5 72 M LCX 143/80 60 HT DM HL
P6 67 F LAD 113/60 60 Not available

2.2. Multilayer Automatic Segmentation

Multilayer vessel wall manual segmentation was performed by trained experts using
ImageJ 1.52v software, and served as the gold standard for automatic segmentation method
development and validation. Figure 1a gives a flow chart showing the main steps of
multilayer automatic segmentation and surface-repairing process using codes based on
MATLAB (MATLAB R2021a, MathWorks, Natick, MA, USA). A sample slice showing
definitions of lumen, three layers and three boundary contours was given. Details can also
be split into three parts as follows.
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Figure 1. (a) Flow chart showing main steps of automatic multilayer segmentation and repair; (b) a
sample slice showing definitions of lumen, three layers and three boundary contours.

Part A. Image preprocessing: Intensities of original OCT images were adjusted by
changing the window width to increase the contrast of three layers so that intensity gra-
dients between layers were increased and layer boundaries could be better identified.
Guidewire artifacts were removed following the method in [16]. Images of one pullback
were stacked in polar coordinates to prepare for subsequent segmentations.

Part B. Lumen detection: Lumen was detected using Otsu’s thresholding method
in each slice [21]. The threshold was given by maximizing between-class variance and
minimizing in-class variance, and was then used in the binary classification of vessel tissues
and lumen. Image morphological manipulations, using a square structure element whose
width was 4 pixels, were performed successively to erase small noises and jump points
in the image. Plaque OCT images are often spotty due to irregular plaque morphologies
and scattered plaque tissue components and noises and jump points caused by guidewire
attachment or residual blood. Small spotty pieces should be removed so that the segmented
contours can be used for biomechanical model constructions. Contour smoothing was
performed for all slices using a moving average method with a bandwidth of 50 pixels.
Figure 2 shows the original and smoothed contours of a sample slice with bandwidths of
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20, 50 and 100 pixels. The figure shows that 20 pixels were not enough and that smoothing
using 50 pixels was sufficient for modeling use.
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Part C. Layer edge detection: The graphical basis of detecting different vessel layers
is that intima, media and adventitia have different optical properties and pixel intensi-
ties in OCT images, and image intensities change most dramatically at layer boundaries.
Figure 3a,b show the “light–dark–light” three-layer structure in a healthy vessel slice.
Figure 3c,d demonstrate that intensity and intensity gradient had clear patterns in radial
direction. From lumen to vessel out-boundary, intensity followed a trend of going up and
down twice. Intensity gradient had a similar trend, forming two peaks and two valleys,
each representing the boundary between lumen and intima, intima and media, media
and adventitia, adventitia and other peripheral tissues. The boundary between intima
and media is called internal elastic membrane (IEM), which is a thin membrane mainly
composed of elastin. The boundary between media and adventitia is called external elastic
membrane (EEM). The boundary between adventitia and other peripheral tissues is called
adventitia–periadventitia interface (ADV).
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(b) magnified OCT image. A “light–dark–light” three-layer structure can be clearly seen; (c) radial
intensities of OCT image; (d) radial intensity gradient of OCT image. Gradient reaches its peak
or valley at layer boundary; (e) OCT images and the segmented contours were stacked in polar
coordinates; (f) the whole vessel wall was repaired using known contour segments. Red: contour
segments. Magenta: repaired surface.

The four boundaries were identified by edge detection based on Canny method, which
searches out true edges in large gradient positions amongst large noise [22]. All OCT
images were firstly flattened relative to lumen to better align pixels in the same radial depth
and increase the efficiency of edge detection [16]. Then, the double thresholds of Canny
method and the radius of Gaussian smoothing were continually adjusted by a grid search
program to determine the optimal parameters for edge detection. IEM and ADV were
detected by the valleys of first derivative; EEM was detected by the peak of first derivative.
The whole three-layer structure, as well as the middle of media, were detected by the peak
of second derivative, implying a rough candidate region to detect edges. Of all the detected
edges, manual selection was performed in the first slice of a pullback to choose the true
(seed) edges, and the rest were considered noise edges. Under the assumption that edges
between continuous slices do not change dramatically, edges close enough to the seed
edges radially in the next slice were specified as the true edges. The remaining slices were
performed in the same manner until layers of the whole pullback were segmented.

2.3. Surface Repairing

The segmented contours were reverse-flattened first relative to lumen [16]. In 3D
polar coordinate space, contours of three layers were stacked and formed three surfaces
with holes, as Figure 3e,f showed. Detected contours represent visible vessel inner wall,
while the holes represent the invisible parts. The surfaces were then repaired by cubic
spline-fitting method to obtain the parts of the vessel wall missing in OCT image [23].

After the repair, the complete surfaces were smoothed and transformed from polar
coordinate system to Cartesian coordinate system. Contours of three layers are now
complete in all the slices, including those obscured by lipid or other tissues.

2.4. Multilayer 3D Thin-Slice Models

Three-dimensional (3D) thin-slice models were constructed for 10 selected slices from
one patient using automatically segmented slices obtained from our programs. Both
multilayer and single-layer models were constructed to show plaque stress/strain results
and the impact of three-layer segmentation on plaque stress/strain calculations. Since OCT
data were acquired under in vivo conditions when the vessel was axially stretched and
under in vivo pressure, a 5% axial shrink–stretch and a circumferential pre-shrink process
were performed to obtain in vivo slice morphology [4]. Vessel tissues were assumed to
be hyperelastic, anisotropic, nearly incompressible, and homogeneous. Lipid core was
assumed to be hyperelastic, isotropic and nearly incompressible. Modified Mooney–Rivlin
material models were used to describe the material properties of vessel tissues, including
isotropic and anisotropic parts. The strain–energy density functions for tissue material
properties are given below:

Wiso = c1(I1 − 3) + c2(I2 − 3) + D1[exp(D2(I1 − 3))− 1] (1)

Waniso = Wiso +
K1

K2

{
exp
[
K2(I4 − 1)2

]
− 1
}

(2)

where I1 = ∑(Cii), I2 = 1
2
[
I2
1 − CijCij

]
, I1 and I2 are the first and second invariants of

right Cauchy–Green deformation tensor C =
[
Cij
]
= FTF, F =

[
Fij
]
=
[
∂xi/∂aj

]
; (xi) is

current positionl
(
aj
)

is original position; I4 = λθ
2cos2 ϕ + λz

2sin2 ϕ, where λθ , λz are the
principal stretches associated with circumferential and axial direction and ϕ is the angle
between the fiber reinforcement and the circumferential direction in individual layers;
c1, c2, D1, D2, K1 and K2 are material parameters. Parameter values in the literature
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were used in this paper: Lipid: c1 = 0.5 kPa, c2 = 0 kPa, D1 = 0.5 kPa, D2 = 1.5; intima:
c1 = −262.76 kPa, c2 = 22.9 kPa, D1 = 125.9 kPa, D2 = 2.0, K1 = 7.19 kPa, K2 = 23.5; media:
c1 = −5 kPa, c2 = −20 kPa, D1 = 20 kPa, D2 = 2.8, K1 = 168 kPa, K2 = 57,ϕ = 24.9◦; adventitia:
c1 = 6.16 kPa, c2 = 0 kPa, D1 = 0.03 kPa, D2 = 30, K1 = 10 kPa, K2 = 54,ϕ = 75.3◦ [11,13,24,25].
Uniaxial axial and circumferential stress–stretch plots for intima [24], media [13] and
adventitia [11] are given by Figure 4.
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The thin-slice models were solved by a finite-element software ADINA 9.6 (Ad-
ina R & D, Watertown, MA, USA) following our established procedures [24]. Because
stress/strain are tensors, maximum principal stress and maximum principal strain (called
stress and strain from here on, respectively) were chosen as their scale representatives for
stress/strain comparisons.

2.5. Data Extraction and Analysis

Since plaque slices may have irregular and nonuniform geometries, each slice was
divided into 4 quarters, with each quarter containing 25 evenly spaced nodal points on the
lumen. Each lumen nodal point was connected to a corresponding point on vessel wall
using a piecewise equal-step method to deal with irregular nonuniform plaque morpholo-
gies [26]. Figure 5 gives an illustration for the definition of layer thickness of the three layers.
Specifically, intima thickness was defined as the length of the line segment connecting
lumen and IEM. Media and adventitia thicknesses were defined similarly. Layer thickness
data were extracted from the 100 nodal points for each slice (total 436 slices from 6 patients)
to compare their differences between automatic and manual segmentations. Plaque stress
and strain data were also extracted from those nodal points of their corresponding thin-slice
models for analysis.
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Figure 5. Schematic plot demonstrating the piecewise equal-step method for three-layer thickness
and the quarter-dividing method. IEM: intima elastic membrane; EEM: external elastic membrane;
ADV: adventitia–periadventitia interface.

Layer thickness data of the three layers of all slices were stored in matrix Tq(i, j, k),
where q = 1, 2, 3 represents intima, media and adventitia, respectively; i is the point-index
for the 100 points in a given slice; j is the slice-index for the slices for a given patient; and
k is the patient index for a given patient (k = 1, . . . , 6). Equation (3) calculates the slice
mean thickness of q-layer (q = 1, 2, 3) of j-th slice from Patient k. Equation (4) calculates
the patient mean thickness of q-layer (q = 1, 2, 3) of all slices from Patient k. Equation (5)
calculates the mean thickness of q-layer (q = 1, 2, 3) for all slices from all patients.

Slice mean thickness for q − layer =
1

100

100

∑
i=1

Tq(i, j, k), j and k fixed; (3)

Patient mean thickness for q − layer =
1

100
× 1

m
×

m

∑
j=1

100

∑
i=1

Tq(i, j, k), k fixed; (4)

Mean thickness of q − layer for all patients =
1

100
× 1

m
× 1

n
×

n

∑
k=1

m

∑
j=1

100

∑
i=1

Tq(i, j, k) (5)

Thickness error was defined as the relative error between automatic contour thickness,
represented by the matrix Ta

q (i, j, k), and manual contour thickness, represented by matrix
Tm

q (i, j, k). Equation (6) calculates the thickness error of q-layer Errorq(j, k) (q = 1, 2, 3) of
j-th slice of Patient k. Equation (7) calculates the thickness error of q-layer Errorq(k) (q = 1, 2,
3) of Patient k. Equation (8) calculates the thickness error of q-layer Errorq (q = 1, 2, 3) for
all patients.

Errorq(j, k) =
1

100 × ∑100
i=1

(
Ta

q(i, j, k)− Tm
q (i, j, k)

)
1

100 × ∑100
i=1 Tm

q (i, j, k)
× 100% , j and k fixed; (6)

Errorq(k) =
1
m

m

∑
j=1

Errorq(j, k), k fixed; (7)
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Errorq =
1
n

Errorq(k) (8)

3. Results
3.1. Comparison of Layer Thickness between Automatic and Manual Segmentations

Table 2 gives patient thickness values for automatic and manual segmentations from
the six patients and errors of automatic segmentations compared to the gold standard
(manual segmentation). Errors were calculated using Formulas (6)–(8) with point-to-point
differences. Slice-averaged errors with slice standard deviations for each patient are demon-
strated in Table 2. Patient-averaged errors with standard deviations are given after P6.
Figure 6 gives 10 sample OCT slices selected from one patient, showing their manual and
automatic contour differences. It shows that manual and automatic contours were very
close. Layer thickness varied greatly from layer to layer and from patient to patient. Intima
(which is really the thickened intima, or plaque) had the largest thickness and variance,
with an average thickness of 0.6464 ± 0.2222 mm. Intima thickness of P3 (0.8183 mm) was
more than twice of that of P4 (0.3963 mm), showing large patient variation. Mean layer
thicknesses of media and adventitia were 0.2426 ± 0.0596 mm and 0.2234 ± 0.0587 mm,
respectively. Automatic contours derived from our program showed a similar layer thick-
ness compared to manual contours, with 0.6240 ± 0.2174 mm, 0.2290 ± 0.0519 mm and
0.2324 ± 0.0477 mm each for intima, media and adventitia. The relative errors of three
layers were mostly less than 10%, with a mean error of −1.40 ± 8.13%, −4.34 ± 11.17%
and 6.97 ± 12.00% for intima, media and adventitia, respectively. Negative errors indicated
that thicknesses of automatic contours were smaller than those of manual contours. Intima
had the smallest error, while media and adventitia had a slightly larger error and variance.
This is expected, since accuracy for intima should be better than that for media and ad-
ventitia due to OCT penetration limitation. An alternative explanation could be that the
absolute placement of the relevant contours is equally accurate/inaccurate for all layers,
but because the intima is the thickest layer in these patients, the relative errors (computed
by Equation (6)) ended up being smallest. Media thickness tended to be underestimated,
while adventitia thickness tended to be overestimated.

Table 2. Summary of layer thickness values and slice-averaged errors of 6 patients with slice standard
deviations.

Patient
Intima (mm) Media (mm)

Auto Manual Error Auto Manual Error

P1 0.6298 ± 0.0948 0.6661 ± 0.1009 −4.82 ± 4.30% 0.2585 ± 0.0455 0.2655 ± 0.0335 −5.27 ± 5.20%
P2 0.7262 ± 0.2575 0.7794 ± 0.2346 −4.09 ± 5.71% 0.2662 ± 0.0270 0.2880 ± 0.0203 −7.38± 7.58%
P3 0.7763 ± 0.2151 0.8183 ± 0.1945 −5.04 ± 7.21% 0.2613 ± 0.0215 0.2871 ± 0.0241 −8.76 ± 5.24%
P4 0.4268 ± 0.1478 0.3963 ± 0.1416 9.00 ± 5.11% 0.2146 ± 0.0472 0.2386 ± 0.0565 −9.30 ± 4.11%
P5 0.6439 ± 0.0935 0.6246 ± 0.0989 4.37 ± 5.13% 0.1934 ± 0.0102 0.1845 ± 0.0237 7.03 ± 14.65%
P6 0.4973 ± 0.1740 0.5390 ± 0.1674 −7.25 ± 6.40% 0.1493 ± 0.0082 0.1526 ± 0.0279 1.80 ± 16.93%

Patient-Averaged
Mean ± SD 0.6240 ± 0.2174 0.6464 ± 0.2222 −1.40 ± 8.13% 0.2290 ± 0.0519 0.2426 ± 0.0596 −4.34 ± 11.17%

Patient
Adventitia (mm) Total Vessel (mm)

auto manual error auto manual error

P1 0.2429 ± 0.0325 0.2151 ± 0.0319 13.49 ± 5.55% 1.1312 ± 0.1227 1.1467 ± 0.1225 −1.32 ± 3.24%
P2 0.2377 ± 0.0451 0.2231 ± 0.0563 8.96 ± 10.87% 1.2301 ± 0.2968 1.2904 ± 0.2713 −5.29 ± 4.55%
P3 0.2217 ± 0.0441 0.2073 ± 0.0429 8.63 ± 11.00% 1.2593 ± 0.2115 1.3127 ± 0.2028 −4.16 ± 3.94%
P4 0.2097 ± 0.0465 0.2037 ± 0.0641 7.76 ± 9.87% 0.8510 ± 0.2310 0.8386 ± 0.2409 −1.91 ± 3.21%
P5 0.2745 ± 0.0402 0.2994 ± 0.0428 −5.64 ± 16.01% 1.1119 ± 0.0857 1.1085 ± 0.1003 0.53 ± 4.70%
P6 0.2112 ± 0.0531 0.2036 ± 0.0531 5.37 ± 9.19% 0.8578 ± 0.1952 0.8952 ± 0.1794 −4.49 ± 5.50%

Patient-Averaged
Mean ± SD 0.2324 ± 0.0477 0.2234 ± 0.0587 6.97 ± 12.00% 1.0855 ± 0.2650 1.1124 ± 0.2711 −2.26 ± 5.00%
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Figure 6. Sample manual and automatic contours derived from OCT images. (a) Original OCT
images; (b) manual contours; (c) automatic contours.

Although the mean errors are somewhat informative, they likely obscure local/regional
errors that may have been substantially higher (as evidenced, in part, by the standard devi-
ation values). Given that local vessel wall and plaque characteristics are so important for
clinical assessment and prognosis, the 90th percentile of the absolute value of the errors for
each patient/layer are given by Table 3. The errors were based on slice-averaged results.
Pointwise errors could be a little larger.

Table 3. The 90th percentile of the absolute thickness errors for 6 patients.

Patients IEM (mm) EEM (mm) ADV (mm)

P1 9.78% 12.84% 18.08%
P2 11.65% 13.16% 20.34%
P3 17.68% 13.19% 20.00%
P4 14.90% 13.06% 19.33%
P5 11.47% 32.58% 29.12%
P6 14.57% 28.42% 16.54%

3.2. Point-to-Point Manual and Automatic Contour Distances of Lumen, IEM, EEM and ADV

Table 4 gives distances between corresponding manual and automatic contours (using
point-to-point calculation) to show automatic contour locations relative to their correspond-
ing manual contours. Negative values mean that automatic contours had smaller radii
than manual contours in polar coordinates. Distance and standard deviation of lumen
contours were the smallest, with an average distance of −0.0081 ± 0.0310 mm. The dis-
tances of IEM, EEM and ADV contours were −0.0279 ± 0.0539, −0.0689 ± 0.0563 and
−0.0153 ± 0.0356 mm, respectively. Table 4 could also lead to a possible explanation for
why media and adventitia thickness errors tended to have opposite signs in Table 2. For
P1–P3, EEM contours had large negative values, which meant that the automatic method
may be consistently placing the EEM contour slightly closer to IEM. For P4, the IEM contour
errors were positive and led to a negative media thickness error.

Table 4. Point-to-point manual and automatic contour distances of lumen, IEM, EEM and ADV.

Patient Lumen (mm) IEM (mm) EEM (mm) ADV (mm)

P1 −0.0037 ± 0.0421 −0.1075 ± 0.0660 −0.1423 ± 0.0790 0.0147 ± 0.0626
P2 0.0140 ± 0.0279 −0.0392 ± 0.0453 −0.1164 ± 0.1021 −0.0690 ± 0.0668
P3 0.0160 ± 0.0312 −0.0259 ± 0.0479 −0.0942 ± 0.0777 −0.0302 ± 0.0449
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Table 4. Cont.

Patient Lumen (mm) IEM (mm) EEM (mm) ADV (mm)

P4 0.0377 ± 0.0412 0.0613 ± 0.1438 −0.0104 ± 0.1346 0.0117 ± 0.1147
P5 −0.0547 ± 0.0484 −0.0213 ± 0.0360 −0.0123 ± 0.0304 −0.0372 ± 0.0571
P6 0.0177 ± 0.0547 −0.0348 ± 0.0542 −0.0381 ± 0.0655 0.0184 ± 0.0859

Mean ± SD −0.0081 ± 0.0310 −0.0279 ± 0.0539 −0.0689 ± 0.0563 −0.0153 ± 0.0356

3.3. Impact of Multilayer Segmentation on Plaque Stress/Strain Calculations

Table 5 provided mean stress values of the 10 slices from three-layer and single-
layer models and their differences using three-layer values as baseline values. Nega-
tive percentage means that the single-layer model provided an underestimate for the
stress/strain value(s) calculated. The single-layer mean plaque stress value from lumen was
117.91 ± 5.55 kPa, 10.79% lower than that from the three-layer models (132.33 ± 8.40 kPa).
However, on the out-boundary (adventitia), the single-layer mean plaque stress value was
50.46 ± 37.20 kPa, 156.28% higher than that from the three-layer models (19.74 ± 1.78 kPa).

Table 5. Summary of stress difference between multilayer and single-layer models.

Slice
Lumen Out Boundary

Multilayer
(kPa)

Single-Layer
(kPa) Error Multilayer

(kPa)
Single-Layer

(kPa) Error

1 134.07 115.97 −13.50% 20.49 48.09 134.69%
2 138.01 120.51 −12.68% 21.97 51.38 133.87%
3 114.53 105.99 −7.46% 16.57 42.31 155.33%
4 140.41 121.70 −13.33% 21.91 53.86 145.78%
5 135.68 119.49 −11.93% 20.05 51.69 157.84%
6 134.47 119.16 −11.39% 18.91 50.80 168.59%
7 138.08 122.93 −10.97% 20.17 53.35 164.51%
8 136.50 122.96 −9.92% 20.39 54.05 165.14%
9 131.47 119.76 −8.91% 19.80 52.31 164.16%

10 120.03 110.68 −7.79% 17.13 46.74 172.94%

Mean ± SD 132.33 ± 8.40 117.91 ± 5.55 −10.79 ± 2.20% 19.74 ± 1.78 50.46 ± 37.20 156.28 ± 13.82%

Table 6 gives mean strain values of the 10 slices from three-layer and single-layer
models and their differences. The single-layer mean plaque strain value from lumen was
0.1916 ± 0.0034, 4.88% lower than that from the three-layer models (0.2015 ± 0.0050). On the
out-boundary (adventitia), the single-layer mean plaque strain value was 0.1064 ± 0.0058,
13.40% lower than that from three-layer models (0.1228 ± 0.0066).

Table 6. Summary of strain difference between multilayer and single-layer models.

Slice
Lumen Out-Boundary

Multilayer Single-Layer Error Multilayer Single-Layer Error

1 0.2022 0.1895 −6.26% 0.1202 0.1027 −14.56%
2 0.2039 0.1922 −5.76% 0.1248 0.1075 −13.88%
3 0.1903 0.1843 −3.14% 0.1087 0.0941 −13.41%
4 0.2046 0.1925 −5.91% 0.1296 0.1116 −13.86%
5 0.2032 0.1921 −5.46% 0.1267 0.1095 −13.60%
6 0.2036 0.1929 −5.25% 0.1254 0.1087 −13.36%
7 0.2058 0.1954 −5.08% 0.1277 0.1113 −12.83%
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Table 6. Cont.

Slice
Lumen Out-Boundary

Multilayer Single-Layer Error Multilayer Single-Layer Error

8 0.2047 0.1953 −4.58% 0.1272 0.1113 −12.45%
9 0.2019 0.1938 −4.02% 0.1236 0.1078 −12.79%
10 0.1949 0.1883 −3.37% 0.1146 0.0994 −13.24%

Mean ± SD 0.2015 ± 0.0050 0.1916 ± 0.0034 −4.88 ± 1.07% 0.1228 ± 0.0066 0.1064 ± 0.0058 −13.40 ± 0.62%

Figure 7 demonstrates the stress/strain distributions from three-layer and single-layer
models using a sample slice. It shows that the maximum plaque stress from the three-layer
model was 26% higher than that from the single-layer model (226.05 kPa vs. 178.91 kPa),
while the maximum strain values from both models were almost identical (0.199 vs. 0.198).
The cap stress/strain values did not show much difference.
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4. Discussion
4.1. Multilayer Automatic Coronary Plaque OCT Segmentation, Repairing and Its Significance to
Vulnerable Plaque Research

Mechanical forces play an important role in coronary plaque initiation, progression
and its eventual rupture, which often leads to critical clinical events such as heart attack
and acute coronary syndrome (ACS). Accurate calculation of plaque stress/strain is of
vital importance to vulnerable plaque research, including plaque progression prediction,
vulnerability assessment, plaque rupture prediction and patient diagnosis, management
and treatment plan optimization. Plaque stress/strain calculations depend on plaque
morphology, components, pressure conditions and plaque tissue material properties. Most
current plaque models use single-layer vessel structures, primarily due to image modality
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resolution limitations. The development and acceptance of OCT in clinical practice provide
the possibility of obtaining multilayer vessel geometries. The multilayer automatic coronary
plaque OCT segmentation and repairing technique proposed in this paper make it possible
to use three-layer models to improve the accuracy for plaque stress/strain calculations. It
will have a considerable impact on plaque progression and vulnerability predictions.

Automation is also one of the contributions of this work. The manual annotation of
OCT vessel wall is extremely laborious, especially multilayer annotation. As different layer
boundaries are close to each other and are hard to discriminate by naked eyes, it takes
huge time and labor cost to annotate multilayers, and also brings in accidental errors. We
demonstrated that multilayer thicknesses were precisely quantified using our automated
process around the whole vessel wall with relative errors of 1.40%, 4.34% and 6.97% (for
intima, media and adventitia, respectively) compared to manual segmented contours (gold
standard), respectively.

4.2. Limitations

Some limitations of this study include: (a) Small patient size—this is a pilot study, and
a larger-scale study is needed to further validate the feasibility of this method and bring it
into clinical practice. (b) The method is not able to automatically characterize other plaque
components such as lipid and calcification. Plaque components were manually annotated
in this study. More advanced technologies such as artificial intelligence and neural network
should be integrated to achieve entire automatic OCT segmentation. (c) Three-dimensional
thin-slice models were used for model construction efficiency. Full 3D models should
be used for better accuracy. (d) Tissue material properties used parameter values from
the literature since patient-specific material properties were not available. (e) Layered
plaques have different layer patterns, which is confusing for edge detection. This is a
major error source [27–29]. (f) Some artifacts (such as sudden axial removal of OCT
guidewire because of heart motion during acquisition) can also lead to spatial discontinuity
in sequential slices, resulting in the wrong region to select true edges. (g) The whole
analysis process for a patient, including automatic segmentation, repairing and thin-slice
modeling, needs about 3–4 h. We will continue to try to shorten the analysis time and get
closer to clinical implementations.

4.3. Future Challenges and Directions

More precise and higher-quality coronary plaque images are essential to vessel recon-
struction and modeling. With the development of biomedical technologies, more advanced
imaging modalities, such as a dual catheter combining both IVUS and OCT, are becoming
available, providing better vessel images [30]. In terms of modeling, quantification of vessel
material property has always been a pain point, and more accurate and patient-specific
material parameters are needed. There is also a balance between model accuracy and model
construction cost that we need to keep. Automation of modeling and data processing are
needed for clinical implementation. A multilayer fluid–structure interaction (FSI) model
is desirable to have and has great potential for studying the biomechanical behavior of
different layers considering both solids and fluids. However, labor cost is a big concern. The
automation of the 3D thin-slice model can greatly shorten the distance between laboratorial
experiments and clinical practice.
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