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Abstract: Tobramycin is a potent antimicrobial aminoglycoside and its effective delivery by encapsulation
within nanoparticle carriers could increase its activity against infections through a combination of
sustained release and enhanced uptake. Effective antimicrobial therapy against a clinically relevant
model bacteria (Pseudomonas aeruginosa) requires sufficient levels of therapeutic drug to maintain a drug
concentration above the microbial inhibitory concentration (MIC) of the bacteria. Previous studies have
shown that loading of aminoglycoside drugs in poly(lactic-co-glycolic) acid (PLGA)-based delivery
systems is generally poor due to weak interactions between the drug and the polymer. The formation of
complexes of tobramycin with dioctylsulfosuccinate (AOT) allows the effective loading of the drug in
PLGA-nanoparticles and such nanoparticles can effectively deliver the antimicrobial aminoglycoside
with retention of tobramycin antibacterial function.
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1. Introduction

Pseudomonas aeruginosa is an aerobic gram negative bacterium which can survive in a variety of
environments [1]. P. aeruginosa infections in immune competent patients tend to arise through physical
trauma or surgical complications [2,3]. The majority of serious infections involve patients in which the
normal functioning of the immune system has been compromised (e.g., AIDS and cystic fibrosis [4,5]),
or cases involving complications caused by the administration of broad spectrum antibiotics which can
disrupt the normal protective mucosal flora [6]. P. aeruginosa infection is increasingly prevalent and is
responsible for 16% of nosocomial pneumonia infections, 10% of bloodstream infections and 8% of
surgical wound infections reported [7].

There is a market need for systems capable of the controllable delivery of hydrophilic drugs [8].
Many drugs have been shown to achieve greater therapeutic efficacy through loading within
nanoparticulate drug delivery systems based on their potential for precise targeting and sustained
release [9–11]. However, this formulation remains difficult to achieve for highly polar, water-soluble
drugs. While the hydrophilicity of a drug can offer advantages including improved bioavailability
and absorption [12], this can lead to poor loading within polymer-based nanoparticles if interactions
between the drug and the polymer are weak [13].
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Yet, the formulation of antibiotic-loaded nanoparticles has been applied to address a variety
of diseases [14–16], with such formulations showing a number of advantages over conventional
administration (including enhanced antibacterial effect and targeting) [17]. The targeted delivery and
sustained release of the drug over time permit specific delivery to the diseased site, allowing for the
reduction in the frequency of dosing and reduction in the off-site toxicity experienced with certain
drugs [18].

Aminoglycosides are a class of drug molecules which are generally prescribed for the treatment
of bacterial infections, e.g., to the lungs to treat respiratory conditions [19,20]. This family of highly
polar drugs shares a similar chemical scaffold although subtle spatial and functional group changes
lead to differences in the therapeutic activity of the drug [19]. Tobramycin (Figure 1) is most commonly
prescribed for the treatment of infections with P. aeruginosa [21]. Its antibacterial activity is mediated
through binding to the 30 s ribosomal subunit in gram negative bacterial strains [22], while rapid
efflux is accomplished by phosphorylation [23–25]. The incorporation of aminoglycoside drugs within
PLGA-based carriers has previously proven challenging [26] due to the lack of complementary polar
groups on the backbone of PLGA to interact with the aminoglycosides (i.e., weak polymer-drug
interactions) [27]. Furthermore, non-aqueous solvents are commonly required for the formation of the
nanoparticles. These often prove to be poor solvents for the aminoglycosides and therefore a limiting
factor in the formulation process.
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Alternative solvents can be employed to improve the loading of hydrophilic drugs within
hydrophobic polymers (e.g., supercritical fluids) [28]. However, this relies upon the co-dissolution of
the drug and the polymer within the supercritical fluid which remains challenging [29].

Poly-lactic-co-glycolic acid (PLGA) has been utilised for a variety of sustained release drug
delivery systems [30–32], for example, the aminoglycoside antibiotic gentamicin [33]. Studies have
shown that the incorporation of such drugs in PLGA nanoparticles can offer enhanced therapeutic
benefit in biological models of disease [34]. However, the overall loading of the hydrophilic drugs
can limit the therapeutic benefit because of weak polymer–drug interactions [35,36]. This observation
motivates the investigation of methods that can increase polymer–drug interactions with the view of
enhancing the level of drug-loading within the nanoparticles. Chemical modifications of the drug can
enhance polymer–drug interactions while also retaining the activity of the drug [37]. An alternative
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approach is the co-formulation with a surfactant [38], which was used successfully for the preparation
of liposomal formulations of tobramycin to treat infections with P. aeruginosa [39–43].

The anionic surfactant AOT is FDA approved for human therapy [44] and has been used to
extract various hydrophilic drugs and proteins into organic media [45–47]. To facilitate the detection of
non-chromophoric drugs in the aqueous media, we prepared a fluorescent tobramycin derivative, and here
we report the results of our studies investigating the co-formulation of non-chromophoric tobramycin and
AOT, enabling its encapsulation within, and release from, PLGA nanoparticles (including a comparison of
the constitutional and electronic physical descriptors of tobramycin, the fluorescent tobramycin derivative
and their AOT-complexes [48,49]). The PLGA-based nanoparticles delivered tobramycin from the PLGA
nanoparticles to the clinically relevant model bacteria (P. aeruginosa) at levels above the microbial inhibitory
concentration (MIC) of the bacteria.

2. Results and Discussion

2.1. Tobramycin Formulation

The uptake efficiency of tobramycin by PLGA is governed by drug–polymer interactions.
We evaluated two forms of PLGA: PLGA RG502H and PLGA RG503. PLGA RG502H is more
hydrophilic and was previously shown to trap hydrophilic drugs more efficiently [33]. PLGA nanoparticle
production has been the subject of many investigations and excellent reviews [50,51]. In this study we
formulated nanoparticles using water-in-oil-in-water (w/o/w) emulsion [52] and solid-in-oil-in-water
(s/o/w) emulsion [53] methodologies, and their properties and tobramycin loading are reported in Table 1.
Both methodologies resulted in loading of tobramycin within the nanoparticles (albeit relatively low
concentrations of drug in the particles). We observed that the w/o/w formulation methodology resulted
in the generation of smaller particles (determined by Dynamic Light Scattering, DLS) than the s/o/w
methodology, and that the s/o/w methodology also resulted in higher levels of tobramycin loading; and
as expected the nanoparticles generated from the more hydrophilic PLGA derivative (RG502H) had a
moderately higher zeta potential and drug loading (although this was not statistically significant).

Table 1. Particle properties and tobramycin loading achieved with PLGA RG502H and RG503
nanoparticles with the S/O/W and W/O/W formulation strategies.

PLGA
Derivative Formulation

DLS
Particle Size

(nm)
PDI Zeta Potential

(mV)

Tobramycin Loading in
PLGA Nanoparticles

(µg/mg)
% Loading

RG503 w/o/w 267.4 ± 5.3 0.14 ± 0.02 −7.8 ± 2.2 2.7 ± 0.4 4.5 ± 0.7
RG502H w/o/w 259.8 ± 6.8 0.18 ± 0.04 −9.6 ± 3.2 3.9 ± 0.3 6.5 ± 0.5
RG503 s/o/w 345.8 ± 17.2 0.16 ± 0.08 −8.2 ± 2.8 3.4 ± 0.7 5.7 ± 1.2

RG502H s/o/w 364.8 ± 22.4 0.22 ± 0.11 −9.4 ± 3.3 4.4 ± 0.6 7.3 ± 1.0

With a view to increase the loading of tobramycin within the PLGA nanoparticles, we investigated
the co-formulation of the drug with a surfactant (AOT) that has previously been used to increase
the loading of other hydrophilic drugs within PLGA nanoparticles. This was achieved by increased
lipophilicity of the drug-AOT complexes generated through ionic interactions; in this case the anionic
sulfonate of the AOT and the cationic amine of tobramycin) [54–56]. To assess the lipophilicity of
the tobramycin-AOT complexes, the extraction of tobramycin into organic solvents was assessed
by a variety of methods. A fluorescent tobramycin derivative (B) was synthesized (Scheme 1, and
Supplementary Information Figures S1–S13) which facilitated the visual observation of its extraction
into the aqueous layer of a dichloromethane-water bilayer (Figure 2).
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Figure 2. Organic extraction of the fluorescent derivative of tobramycin in the presence (left) and
absence (right) of AOT: top layer water, bottom layer dichloromethane.

The physical descriptors (constitutional and electronic) of tobramycin, the fluorescent tobramycin
derivative and their AOT-complexes are calculated (Table 2). The selected descriptors were molecular
weight, total polar surface area, number of hydrogen bond donors, number of hydrogen bond
acceptors, molecular globularity, molecular flexibility and LogP (O/W) [48,49].

The significant changes in molecular descriptors upon conjugation of the fluorophore to tobramycin
(particularly total polar surface area, molecular globularity, molecular flexibility and the LogP (O/W)
value) meant that we did not carry out encapsulation or release studies with the fluorescent derivative
as it would lead to inaccurate predictions of the encapsulation and release of the non-fluorescent
tobramycin, that would be clinically relevant. Consequently, tobramycin extraction into a selection
of non-aqueous solvents was quantified by reaction of tobramycin with ortho-phthaldialdehyde and
2-mercaptoethanol and subsequent fluorescence spectroscopy [57] with results displayed in Table 3.
In the light of this data and literature precedent [58], we used dichloromethane for the remaining
loading experiments. As expected, we observed that the molar ratio of AOT:tobramycin played a role
in the extraction of tobramycin into dichloromethane, with complete extraction above a molar ratio of
0.1 AOT:tobramycin (Figure S14).
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Table 2. The physical descriptors (constitutional and electronic) of tobramycin, the fluorescent
tobramycin derivative and their AOT-complexes.

Species Molecular
Weight (g/mol)

Total
Polar SA

No. H Bond
Acceptors

No. H Bond
Donors

Molecular
Globularity

Molecular
Flexibility

LogP
(O/W)

Tobramycin
derivative 467.520 420.078 14 10 0.123 9.277 −6.412

Fluorescent
tobramycin
derivative

878.756 694.379 15 10 0.163 12.913 −1.894

AOT-Tobramycin
complex 912.085 694.379 16 10 0.252 29.588 −1.342

AOT-Fluorescent
tobramycin

complex
1323.321 852.276 17 10 0.218 29.376 −3.176

Table 3. Extraction of tobramycin into non-aqueous solvents in the absence/presence of AOT.

Solvent Dielectric Constant % Extraction in the
Absence of AOT

% Extraction in the
Presence of AOT

2-butanol 17.26 0 ± 0 90.3 ± 5.7
Chloroform 4.81 0 ± 0 100 ± 0

Dichloromethane 8.93 0 ± 0 100 ± 0
Ethyl acetate 6.02 0 ± 0 100 ± 0

Toluene 2.38 0 ± 0 100 ± 0

It was also expected that there would be a pH dependence on the extraction of tobramycin into
dichloromethane. The sulfonic acid of AOT is deprotonated at most pH values, and we observed that
at low pH values (pH 2 and 4), the amines displayed on tobramycin were fully protonated and the
tobramycin was completely partitioned in the dichloromethane (Figure 3). Above pH 5 we observed
some tobramycin remained in the aqueous phase as not all the amines were fully protonated, with
only 59% of the drug extracted into the dichloromethane phase at pH 12.
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To assess if the increased solubility of tobramycin in non-aqueous solvents (Table 3, Figures 2 and 3)
and the changes in molecular descriptors (particularly molecular globularity, molecular flexibility
and the LogP (O/W), in Table 2) correlated to increased uptake of tobramycin within the PLGA
nanoparticles [50,59,60], we prepared solutions of PLGA nanoparticles from O/W emulsions (with
the oil phase composed of solutions of PLGA and tobramycin:AOT complexes in dichloromethane).
In contrast to the experiments undertaken in the absence of AOT, the PLGA derivative had no
statistically significant effect on the particle properties or tobramycin loading (Table 4). The particle size
and zeta potential of the nanoparticles were observed to increase as the concentration of PLGA in the
emulsions increased. The zeta potential values of the nanoparticles appeared to be dependent on the
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PLGA derivative, with the PLGA RG502H (carboxyl terminated PLGA chains) particles having lower
zeta potential values than PLGA RG503 (methyl ester terminated PLGA chains), although this was not
statistically significant. High loading was observed for all the formulations being tested (>89%). With
a view to sustaining the release of the tobramycin from the particles (with minimal burst release from
drug close to the surface of the particles) we chose to use the nanoparticles derived from emulsion
formulations containing 30 mg of PLGA RG502H for subsequent experiments.

Table 4. Properties and tobramycin uptake of PLGA RG502H and PLGA RG503 nanoparticles.

PLGA
Derivative

Mass of
PLGA (mg)

Particle Size
(nm) PDI Zeta Potential

(mV)

Tobramycin Loading in
PLGA Nanoparticles

(µg/mg)
% Loading

RG502H 10 229.4 ± 21.6 0.23 ± 0.09 −11.2 ± 3.1 274.2 ± 9.6 91.4 ± 3.2
RG502H 20 434.5 ± 52.5 0.42 ± 0.11 −11.8 ± 3.2 96.4 ± 2.9 96.4 ± 2.9
RG502H 30 469.2 ± 57.2 0.39 ± 0.06 −12.2 ± 2.8 57.5 ± 1.3 95.8 ± 2.2
RG503 10 295.6 ± 46.4 0.26 ± 0.10 −8.5 ± 3.3 269.4 ± 7.2 89.8 ± 2.4
RG503 20 437.2 ± 49.6 0.39 ± 0.07 −9.1 ± 2.3 96.8 ± 3.4 96.8 ± 3.4
RG503 30 474.2 ± 57.2 0.46 ± 0.14 −9.4 ± 2.7 57.9 ± 1.9 96.5 ± 3.2

2.2. In Vitro Tobramycin Release Studies

As the treatment of chronic infections with P. aeruginosa generally requires prolonged exposure to
the antimicrobial for efficient therapy, the sustained release properties of the tobramycin-AOT loaded
PLGA RG502H nanoparticles (prepared from emulsions containing 30 mg of PLGA RG502H) were
tested (Figure 4). The slightly high rate of tobramycin release over the first few hours was ascribed to
the release of tobramycin located close to the surface of the nanoparticles (ca. 10% of the total load of
tobramycin); however, after this initial release from the surface, the internal tobramycin was released
at a much slower rate and this over a period of days, with less than half the total payload delivered in
2 weeks (Figure 4) offering potential for use of less drug and lower dosing frequency which would be
expected to enhance patient compliance (i.e., economic, environmental, health and societal impacts).
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The effect of tobramycin release from the PLGA RG502H nanoparticles loaded with tobramycin-AOT
complexes was tested against P. aeruginosa (Figure 5). Unloaded PLGA RG502H nanoparticles showed no
activity against P. aeruginosa (Figure 5A), whereas the free tobramycin showed dose dependent toxicity
towards the P. aeruginosa (Figure 5B), with the MIC of the tobramycin at 1.25 µg/mL. Importantly,
the PLGA RG502H nanoparticles loaded with tobramycin-AOT complexes showed activity in a dose
dependent manner (Figure 5C). The MIC of the tobramycin encapsulated in the nanoparticles was
shown to be 1.25 µg/mL, identical to that of free tobramycin, confirming that no loss of activity was
detected following encapsulation. The full release of tobramycin would be achieved over days in the



J. Funct. Biomater. 2019, 10, 26 7 of 14

absence of cells (Figure 5); however, once internalized in the cells, the release of tobramycin would be
likely to be enhanced by enzymatic degradation of the PLGA [61].J. Funct. Biomater. 2019, 10, x FOR PEER REVIEW 7 of 14 
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Researchers based in industry and academia have invested significant effort into the development
of active ingredient delivery systems. Systems that deliver their payloads at a predetermined rate
and control the level of active ingredient within target tissues above the minimum effective level for
prolonged periods help to reduce the dosing frequency (and concomitantly problems with patient
compliance), which offer economic, environmental, health and societal impacts. There is a market need
for delivery systems with sustained release of polar antimicrobials capable of eradicating bacterial
growth in patients with weak immune systems [62–68]. Here we describe one method of loading high
levels of antimicrobials in PLGA nanoparticles and demonstrate their efficacy against P. aeruginosa
in vitro, using transient drug–polymer interactions for encapsulation and slow-release, and we envisage
such systems to have potential for the treatment of respiratory infections [69,70].

3. Materials and Methods

3.1. Materials

Tryptone, sodium chloride (bacteriological grade) and yeast extract were purchased from Oxoid
Ltd, Basingstoke, Hampshire, England. Formvar carbon films on copper were purchased from
Agar scientific (Stansted, UK). The polymers: PLGA Resomer RG502H (50:50 lactide:glycolide, acid
terminated); PLGA Resomer RG503 (50:50 lactide:glycolide, ester terminated); Poly(vinyl alcohol)
(PVA), 87–89% hydrolysed with molecular weight 13–23 KDa; and all other consumables were
purchased from Sigma-Aldrich (Gillingham, UK) unless otherwise stated.

3.2. Preparation of the Fluorescent Tobramycin Derivative and Its Use for Visualisation of Bilayer
Extraction Experiments

3.2.1. Synthesis of 4-(2-hydroxyethoxy)benzaldehyde

4-Hydroxybenzaldehyde (1, Scheme 1) (1.50 g, 12.28 mmol, 1.0 eq), 2-bromoethanol (1.31 mL, 18.42
mmol, 1.5 eq) and K2CO3 (5.10 g, 36.85 mmol, 3.0 eq) were solubilized in DMF (15 mL). The reaction
mixture was stirred for 6 h at 100 ◦C and then poured into water (15 mL) and extracted with chloroform
(3 × 25 mL). The organic layers were combined and dried over Na2SO4. The solvent was removed
under reduced pressure and purified using biotage column chromatography (Hexane/EtOAc) 6:4) to
give 2.15g (93%) of 4-(2-hydroxyethoxy)benzaldehyde as a colorless oil. 1H NMR (400 MHz, CDCl3): δ
ppm 9.89 (1H, s, HC=O), 7.85 (2H, d, J = 9.3 Hz, Ar), 7.03 (2H, d, J = 8.7 Hz, Ar), 4.18 (2H, t, J = 9.0 Hz,
OCH2CH2OH), 4.02 (2H, t, J = 9.3 Hz, OCH2CH2OH).13C NMR (125 MHz): δ ppm 190.9 (HC=O),
163.7 (Ar), 132.0 (Ar), 130.2 (Ar), 114.9 (Ar), 69.6 (OCH2CH2OH), 61.2 (OCH2CH2OH), (ES) m/s:
C9H10O3: Calculated [M+H]+ 189.0528, actual [M+H]+ found 189.0519.
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3.2.2. Synthesis of (3, 5-dimethyl-1H-pyrrol-2-yl)-(tetramethyl-4, 4-difluoro-4-bora-3a,
4a-diaza-indacene) methyl] phenoxy] ethanol

4-(2-Hydroxyethoxy) benzaldehyde (2, Scheme 1) (1.50 g, 0.01 mol, 1.0 eq) and 2-4-dimethylpyrrole
(1.95 mL, 0.02 mol, and 2.0 eq) were solubilised in dry DCM (200 mL) under an atmosphere of N2. TFA
(cat) added to the solution and the reaction mixture was left stirring at room temperature overnight.
After disappearance of the aldehyde monitored using TLC, a solution of DDQ (2.00 g, 0.01 mol, and
1.0 eq) in dry DCM (5 mL) was added and stirring was continued for 30 min at room temperature. To
the mixture was then added triethylamine (9.60 mL, 0.07 mmol, 7.6 eq) and left stirring for 15 min, after
which BF3.OEt2 (9.60 mL, 0.08 mmol, 8.6 eq) was added drop wise at 0 ◦C. The stirring was continued
overnight; then the solution was concentrated under reduced pressure and purified using biotage
column chromatography (DCM/EtOAc) 0–10%) to yield 0.96 g (25%) of the fluorophore as fine orange
needles. 1H NMR (400 MHz, CDCl3): δ ppm 7.18 (2H, d, J = 8.0 Hz, Ar), 7.03 (2H, d, J = 8.8 Hz, Ar),
5.98 (2H, s, 2 × C=CHC), 4.15–4.14 (2H, m, OCH2CH2OH), 4.02 (2H, t, J = 4.4 Hz, OCH2CH2OH),
2.55 (6H, s, 2× CH3CN) 1.43 (6H, s, 2 × CH3C=C).13C NMR (125 MHz): δ ppm 159.3 (Ar), 155.3 (Ar),
143.1 (Ar), 141.7 (Ar), 131.8 (Ar), 129.3 (Ar), 127.4 (Ar), 121.1 (Ar), 115.1 (Ar), 69.3 (OCH2CH2OH), 61.3
(OCH2CH2OH), 14.5 (2 × CH3CN and 2 × CH3C=C). 19F NMR (376MHz): δ ppm −143.3 ppm (B-F2, q,
J = 31.3 Hz) (ES) m/s: C21H24BF2N2O2: Calculated [M+H]+ 385.1899, actual [M+H]+ found 385.1911.

3.2.3. Synthesis of tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]phenoxy]ethyl
(4-nitrophenyl) carbonate

To a solution of (3, Scheme 1) (0.50 g, 1.30 mmol, 1.0 eq) in dry DCM (15 mL) was added
4-nitrobenzyl chloroformate (0.34 g, 1.69 mmol, 1.3 eq) and TEA (0.36 mL, 2.60 mmol, 2.0 eq).
The reaction mixture was left stirring for 2 h or until complete disappearance of the starting compound
by TLC. The reaction mixture was concentrated and purified using biotage column chromatography
(DCM/MeOH) 0–5%) to yield 300.3 mg (42%) of PNP-BODIPY as orange needles. 1H NMR (400 MHz,
CDCl3): δ ppm 8.30 (2H, d, J = 9.2 Hz, Ar), 7.42 (2H, d, J = 8.8 Hz, Ar), 7.21 (2H, d, J = 8.4 Hz, Ar),
7.05 (2H, d, J = 8.4 Hz, Ar), 5.98 (2H, s, 2 × C=CH-C), 4.69 (2H, t, J = 4.5 Hz, OCH2CH2OC=O), 4.34
(2H, t, J = 4.5 Hz, OCH2CH2OC=O), 2.55 (6H, s, 2 × CH3-C-N), 1.43 (6H, s, 2 × CH3-C=C).13C NMR
(125 MHz): δ ppm 158.70 (O=C=O), 155.5 (Ar), 155.4 (Ar), 152.5 (Ar), 145.6 (Ar), 143.0 (Ar), 141.4 (Ar),
131.8 (Ar), 129.5 (Ar), 128.0 (Ar), 125.4 (Ar), 125.0 (Ar), 122.2 (Ar), 121.2 (2 × C=CH-C), 115.6 (Ar), 115.2
(Ar), 67.3 (OCH2CH2OC=O), 65.5 (OCH2CH2OC=O), 14.6 (2 × CH3CN & 2 × CH3C=C). 19F NMR
(376MHz): δ −146.2 (B-F2, q, J = 31.6 Hz), (ES) m/s: C28H27BF2N3O6: Calculated [M+H]+ 550.1950,
actual [M+H]+ found 550.1947.

3.2.4. Synthesis of the Fluorescent Tobramycin Derivative (B) Used for Visualizing Bilayer Extraction

Tobramycin (free base) (45 mg, 0.091 mmol, 1.00 eq) was solubilized in anhydrous DMF (5.0 mL)
with the assistance of gentle heating, then the solution was allowed to cool to room temperature. To the
solution was added (4, Scheme 1) (50 mg, 0.095, 1.05 eq) and Hunig’s base (44 µL, 0.364 mmol, 4.0 eq)
and left stirring overnight protected from light by a layer of aluminium foil. The reaction mixture
was concentrated under high vacuum then purified using silica column chromatography using an
eluent of (DCM/MeOH/NH4OH) 6:3:1) to yield 13.6 mg (17%) of the titled compound as an orange
solid. 1H NMR (400 MHz, D2O): δ ppm 8.04 (2H, d, J = 8.5 Hz, Ar), 7.42 (1H), 7.2 (1H), 7.0 (2H), 6.84
(2H, d, J = 8.5 Hz, Ar), 6.74 (2H), 5.78 (2H), 5.39 (2H), 4.21 (2H), 4.06–3.15 (17H, m), 2.65 (3H), 2.44
(2H), 2.30–2.05 (6H, m), 1.86 (2H), 1.62–1.31 (4H, m), 1.17–0.87 (6H, m), 0.72–0.56 (3H, m). 19F NMR
(376 MHz): δ −146.2 (B-F2, q, J = 32.0Hz), (ES) m/s: C40H59BN7O12F2: Calculated [M+H]+ 878.4305,
actual [M+H]+ found 878.4283.

3.2.5. Visualization of the Extraction of the Fluorescent Tobramycin Derivative

Stock solutions of fluorescent tobramycin (1.5 mg/mL) in deionized water and AOT (7.1 mg/mL)
in DCM were prepared. The extraction of the fluorescent tobramycin derivative from the aqueous
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phase (2 mL) into the organic phase (2 mL) with/without AOT was assessed by mixing the phases
together at 600 rpm for 3 h after which the phases were separated by centrifugation at 4400 rpm
enabling visualization of the tobramycin in the aqueous or organic layer.

3.3. Calculating the Main Physical Descriptors of Tobramycin Derivatives and AOT Complexes Thereof

The physical descriptors (constitutional and electronic) of tobramycin and its AOT-complex were
calculated. The selected descriptors were the total polar surface area, number of hydrogen bond
donors, number of hydrogen bond acceptors, molecular globularity, molecular flexibility, LogP (O/W)
and the molecular weight. The descriptors were calculated using MOE version 2014.0901 (Chemical
Computing Group Inc., Montreal, Canada) after constructing the two investigated drugs utilising the
builder tool in the same software to generate the 3D structures of the investigated drugs from their
isomeric SMILES obtained from The PubChem Project® [48,49].

3.4. Analytical Methodology for the Detection of Tobramycin

Reagent A consisting of 80 mg of ortho-phthaldialdehyde in 1 mL of 95% ethanol and reagent B
containing 200 µL of boric acid (pH 9.7, 0.4 M), 400 µL β-mercaptoethanol and 200 µL of diethyl ether
were mixed. Serial dilutions of tobramycin were prepared in boric acid (pH 9.7, 0.4 M). One hundred
µL of each tobramycin standard was added to 100 µL of the reagent mixture. The plate was read by
fluorescence spectroscopy at λex 360 nm, λem 460 nm, respectively. The calibration curve is displayed
in Figure S15.

3.5. W/O/W and S/O/W Preparation of PLGA Nanoparticles Entrapping Tobramycin

Tobramycin loaded PLGA nanoparticles were prepared through two separate methodologies. For
the water in oil in water (W/O/W) methodology, a primary emulsion was formed by dissolving 3 mg of
tobramycin in 0.5 mL of water followed by emulsification by sonication at 40 watts in 2 mL of DCM
containing 50 mg of PLGA RG502H or PLGA RG503. The resulting W/O emulsion was added to 10 mL
of PVA (2.5% in PBS buffer, pH 7.4) followed by further sonication to form the final W/O/W emulsion.
For the solid in oil in water (S/O/W) methodology, 3 mg of tobramycin was dissolved in 100 µL of water
and added to 2 mL of acetone containing 50 mg of PLGA RG502H or 503. The resulting S/O phase
was added to 10 mL of PVA (2.5% in 25 mM PBS buffer) to form the final S/O/W formulation. Organic
solvent was removed under vacuum at room temperature. Both formulations were centrifuged at
20,000 g and washed in PBS three times by centrifugation resuspension cycles. Results are presented as
mean ± S.D, N = 3.

3.6. Extraction of Tobramycin into Organic Solvents by AOT

Stock solutions of tobramycin (1.5 mg/mL pH 4) and surfactant AOT (7.1 mg/mL) were prepared in
double distilled water and a range of organic solvents respectively. Two mL of tobramycin stock solution
was added to an equal volume of AOT stock solution in each of the organic solvents under study and
the two solutions were mixed at 600 rpm for 3 h. The phases were separated by centrifugation at
4400 rpm for 10 min and the aqueous phase was collected and monitored for the presence of tobramycin.
The fluorescence intensity of the aqueous phase was monitored at λex/λem 360/460 nm and compared to
a standard curve of tobramycin base including surfactant AOT at a concentration of 2 mg/mL. Results
are presented as mean ± S.D, N = 3.

To assess the effect of molar ratio of AOT to tobramycin on the extraction process, the molar ratio
of surfactant AOT to tobramycin was varied. A stock solution of tobramycin was prepared in double
distilled water (DDW) (1.5 mg/mL, pH 4) and 2 mL was added to a stock solution of AOT in DCM
at varying concentrations. The resultant suspension was stirred at 600 rpm for 3 h. The phases were
separated by centrifugation at 4400 rpm and the concentration of tobramycin in the aqueous phase
was determined as described previously. Results are presented as mean ± S.D, N = 3.
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To assess the effect of formulation pH on the extraction process stock, solutions of tobramycin
were prepared (1.5 mg/mL) and the pH was adjusted to 2, 4, 6, 8, 10 and 12. 2 mL of each stock
solution of tobramycin was then added to 2 mL of surfactant AOT (7.1 mg/mL) in DCM. The solutions
were mixed at 600 rpm for 3 h. The phases were separated by centrifugation at 4400 rpm and the
concentration of tobramycin in the aqueous phase was determined as described previously. Results
are presented as mean ± S.D, N = 3.

3.7. Preparation of PLGA Nanoparticles Loaded with Tobramycin-AOT Complexes

Equal volumes of tobramycin base (1.5 mg/mL in water adjusted to pH 4) and AOT (7.1 mg/mL in
dichloromethane) (1:5 molar ratio) were mixed by stirring for 3 h at 600 rpm at room temperature. After
incubation the aqueous and organic phases were separated by centrifugation for 5 min at 4400 rpm, and
the dichloromethane removed by evaporation yielding a very viscous oil. Three mg of the viscous oil
was dissolved in DCM (2 mL) with 10–50 mg of either PLGA RG502H or PLGA RG503. The DCM was
added to 10 mL of PVA (2.5% in PBS buffer pH 7.4) followed by sonication at 40 watts to form an O/W
emulsion. DCM was removed under vacuum at room temperature. Formulations were centrifuged
at 20,000 g and washed with PBS three times by centrifugation-resuspension cycles. The amount of
tobramycin entrapped in the nanoparticles was assessed by determination of the tobramycin content
in the supernatant collected after nanoparticle formulation.

3.8. Dynamic Light Scattering (DLS) and Zeta Potential Measurements

DLS and zeta potential measurements were performed using a Malvern zetasizer (Nano ZS;
Malvern instruments, Malvern, UK). Each sample was recorded in triplicate (10 runs each). The average
of three separate samples was determined and are presented as mean ± S.D, N = 3.

3.9. Release of Tobramycin from PLGA Nanoparticles Loaded with Tobramycin-AOT Complexes

Drug release was quantified by incubating the nanoparticles in dialysis membranes with a
10,000 Da MWCO at 37 ◦C under agitation. The release of the tobramycin was quantified by incubating
3 mg of nanoparticles in 1 mL of PBS in the donor compartment with 5 mL of PBS in the receiver
compartment. At each time point, the PBS solution was collected and replaced with fresh PBS
release medium. The concentration of tobramycin in the aqueous phase was determined as described
previously. Results are presented as mean ± S.D, N = 3.

3.10. Antimicrobial Activity against P. aeruginosa

Broth micro-dilution tests were performed according to NCCLS guidelines. Serial two-fold
dilutions of tobramycin (from a stock solution which had been sterile filtered through a 0.22 µm
filter) in 100 µL of Luria Bertani (LB) broth were performed on a 96-well plate in the range 0–25 µg
tobramycin/mL for the drug loaded nanoparticles, free tobramycin and the blank nanoparticles as
negative control. The actively growing cultures were diluted to an optical density reading of 0.3
(A550) to give a starting inoculum of 2 × 105 CFU/mL. One hundred µL of the starting inoculum
(2 × 105 CFU/mL) was added to each well of the plate and incubated aerobically at 37 ◦C for 24 h.
Following incubation, the cell viability was determined by reading the plate absorbance at 550 nm.
Results are presented as mean ± S.D, N = 3.

3.11. Statistical Analysis

Data was analysed with Graphpad Prism (San Diego, CA, USA). Experiments were performed in
triplicate and the mean value reported ± S.D.
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4. Conclusions

There is a market need for the development of drug delivery systems and sustained release of polar
antimicrobials capable of eradicating bacterial growth in patients with weak immune system [62–68].
Here we describe one method of loading high levels of antimicrobials in PLGA nanoparticles and
demonstrate their efficacy against P. aeruginosa in vitro, using transient drug-polymer interactions for
encapsulation and slow-release.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4983/10/

2/26/s1, Figure S1: 1H NMR of 4-(2-hydroxyethoxy)benzaldehyde (2). Figure S2: 13C NMR of
4-(2-hydroxyethoxy)benzaldehyde (2). Figure S3: 1H NMR of (3) (3, 5-dimethyl-1H-pyrrol-2-yl)-(tetramethyl-4,
4-difluoro-4-bora-3a, 4a-diaza-indacene) methyl] phenoxy] ethanol. Figure S4: 13C NMR
of (3) (3, 5-dimethyl-1H-pyrrol-2-yl)-(tetramethyl-4, 4-difluoro-4-bora-3a, 4a-diaza-indacene) methyl]
phenoxy] ethanol. Figure S5: 19F NMR of (3) (3, 5-dimethyl-1H-pyrrol-2-yl)-(tetramethyl-4,
4-difluoro-4-bora-3a, 4a-diaza-indacene) methyl] phenoxy] ethanol. Figure S6: 1H NMR of (4)
tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]phenoxy]ethyl (4-nitrophenyl) carbonate. Figure
S7: 13C NMR of (4) tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]phenoxy]ethyl (4-nitrophenyl)
carbonate. Figure S8: 19F NMR of (4) tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]phenoxy]ethyl
(4-nitrophenyl) carbonate. Figure S9: 19F NMR of (4) tetramethyl-4,4-difluoro-4-bora-3a,4a-diazaindacene)methyl]
phenoxy]ethyl (4-nitrophenyl) carbonate. Figure S10: 1H NMR of the fluorescent tobramycin derivative (B).
Figure S11: Mass spectrometry data for the fluorescent tobramycin derivative (B). Figure S12: Mass spectrometry
data for the fluorescent tobramycin derivative (B). Figure S13: Elemental composition report for the fluorescent
tobramycin derivative (B). Figure S14: Effect of the molar ratio of AOT:tobramycin on the extraction of tobramycin
into dichloromethane. Figure S15: Tobramycin calibration curve in the absence/presence of AOT.
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