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Abstract: Local structural equation models (LSEM) are structural equation models that study model
parameters as a function of a moderator. This article reviews and extends LSEM estimation methods
and discusses the implementation in the R package sirt. In previous studies, LSEM was fitted
as a sequence of models separately evaluated as each value of the moderator variables. In this
article, a joint estimation approach is proposed that is a simultaneous estimation method across
all moderator values and also allows some model parameters to be invariant with respect to the
moderator. Moreover, sufficient details on the main estimation functions in the R package sirt are
provided. The practical implementation of LSEM is demonstrated using illustrative datasets and
an empirical example. Moreover, two simulation studies investigate the statistical properties of
parameter estimation and significance testing in LSEM.

Keywords: local structural equation modeling; confirmatory factor analysis; differentiation; dediffer-
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1. Introduction

A structural equation model (SEM) is a statistical approach for analyzing multivariate
data (Bartholomew et al. 2011; Bollen 1989; Browne and Arminger 1995; Jöreskog et al.
2016; Shapiro 2012; Yuan and Bentler 2007). These models relate a multivariate vector
X = (X1, . . . , XI) of observed I variables (also referred to as items or indicators) to a vector
of latent variables (i.e., factors) η of a dimension smaller than I. SEMs constrain the mean
vector μ and the covariance matrix Σ of the random variable X as a function of an unknown
parameter vector θ. By doing so, the mean vector is constrained as μ(θ), and the covariance
matrix is constrained as Σ(θ).

Local structural equation models (LSEM) study SEMs as a function of a univariate
moderator variable Hildebrandt et al. (2009, 2016). The moderator variable is the age or
time variable in most applications. LSEM has been mentioned as a general tool for assessing
measurement invariance across age or other continuous indicators in social sciences (Dong
and Dumas 2020; Han et al. 2019; Leitgöb et al. 2023). Note that LSEM has also been
abbreviated as LOSEM Briley et al. (2015a, 2015b).

The LSEM method is particularly suited for studying differentiation or dedifferenti-
ation hypotheses (see Hildebrandt et al. 2009 or Molenaar et al. 2010b). Differentiation
hypotheses of intelligence and general scholastic abilities describe changes in the relation-
ship between different cognitive abilities (i.e., their structural organization) depending on
the level of general ability (ability differentiation), age (differentiation in children and ado-
lescents; dedifferentiation in older adults), and their interaction. Breit et al. (2022) presented
a systematic review of 33 reports with data from 51 studies with over 260,000 participants
that examined differentiation effects. The findings indicated practically significant ability
differentiation in children and adults, and significant age dedifferentiation in older adults,
with effect sizes that implicate a practical significance of the effects. However, Breit et al.
(2022) also showed that age differentiation in children and adolescents was not supported.
Instead, small but negligible effect sizes were found for age dedifferentiation in adolescents.
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The LSEM method has been extended to two moderator variables by Hartung et al.
(2018). Molenaar (2021) proposed a semiparametric moderated factor modeling approach
in which no assumption concerning the functional form between the moderator and the
model parameters are imposed. In contrast to the original definition of LSEM (Hildebrandt
et al. 2009), some model parameters are allowed to be invariant across the continuous
moderator variable.

LSEM is closely related to moderated nonlinear factor analysis (MNFA; Bauer 2017;
Curran et al. 2014; Molenaar and Dolan 2012). In MNFA, a functional form of SEM model
parameters as a function of a single moderator (or multiple moderators) is imposed. In
this sense, MNFA is often more confirmatory than LSEM. Nevertheless, differentiation
hypotheses were also investigated by means of MNFA (Molenaar et al. (2010a, 2010b,
2011, 2017)). A tutorial on how to apply MNFA using the R package OpenMx (Boker et al.
2011) was given by Kolbe et al. (2022). LSEM also bears a similarity to the approach of
individual parameter change (Oberski 2013; Arnold et al. (2020, 2021). Variation in SEM
model parameters can also be tested with score-based invariance tests (Huth et al. 2022;
Merkle and Zeileis 2013; Wang et al. 2014).

LSEM has been implemented in the R package sirt (Robitzsch 2023b) as a wrapper to
the popular SEM package lavaan (Rosseel 2012). Moreover, the R package umx (Bates et al.
2019) can also be utilized for LSEM estimation.

This article reviews and extends LSEM estimation methods and discusses the imple-
mentation in the R package sirt. In previous literature, LSEM was fitted as a sequence of
models that are separately evaluated as each value of the moderator variables. In this article,
a joint estimation approach is proposed that is a simultaneous estimation method across
all moderator values and also allows some model parameters to be invariant with respect
to the moderator. Sufficient detail on the core estimation functions in the sirt package is
provided. The article also evaluates two significance testing approaches to assess whether
the moderator values are related to a model parameter in two simulation studies. Finally,
an empirical example demonstrates the usefulness of the LSEM methodology.

The remainder of this article is structured as follows. Section 2 overviews the most
important LSEM applications in the literature. In Section 3, different LSEM estimation
and significance testing approaches are presented. Details about LSEM implementation
in the sirt package can be found in Section 4. Section 5 discusses R input code and R
output of an LSEM analysis involving illustrative datasets. Section 6 includes a simulation
study investigating parameter recovery in LSEM regarding bias and root mean square error.
Section 7 includes a simulation study that investigates different estimators of variability in
parameter curves and the statistical properties of significance tests of parameter variation.
In Section 8, an empirical example is presented that reanalyzes SON-R intelligence data for
children aged between 21/2 and 7 years. Finally, Section 9 closes with a discussion.

2. Review of LSEM Applications

We now review important LSEM applications to demonstrate that this method is
widely applied in substantive research. The original LSEM publication of Hildebrandt et al.
(2009) (“Complementary and competing factor analytic approaches for the investigation of
measurement invariance”) has been cited 93 times and 80 times, according to Google Scholar
and ResearchGate (accessed on 18 July 2023), respectively. The second methodological
LSEM publication by Hildebrandt et al. (2016) (“Exploring factor model parameters across
continuous variables with local structural equation models”) has been cited 111 times,
89 times, and 77 times, according to Google Scholar, ResearchGate, and Web of Science
(accessed on 18 July 2023), respectively. Hence, one could say that LSEM fills some niche in
the researcher’s methodological toolbox.

In the following, some LSEM applications are briefly described. The studies are loosely
organized according to the fields of application.

Olaru and Allemand (2022) examined differential and correlated change in personality
across the adult lifespan using LSEM. Brandt et al. (2022) applied LSEM to four waves
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of data obtained with the full NEO Personality Inventory collected over 11 years from
1667 adults in a US sample using age as a continuous moderator. Hartung et al. (2021)
investigated the age-moderated covariance structure of the satisfaction with life scale
(SWLS) and the domains of health satisfaction and financial satisfaction using LSEM. Olaru
et al. (2019) analyzed NEO personality indicators across ages between 16 and 66 years
by means of LSEM. They selected items for short scales that had the greatest extent of
measurement invariance across age. Seifert et al. (2022) studied whether the rank-order
stability of personality increases until midlife and declines later in old age and found that
this inverted U-shaped pattern was not consistently observed in two reanalyzes utilizing
LSEM. Loneliness across different age levels was investigated by LSEM in Entringer and
Gosling (2022) and Panayiotou et al. (2022). Van den Akker et al. (2021) applied LSEM for
students aged between 8 and 18 years to investigate whether levels of conscientiousness and
agreeableness decrease when levels of neuroticism increase, indicating a dip in personality
maturation. Gnambs (2013) applied LSEM in a multitrait multi-informant meta-analysis
for the big five factors.

Hartung et al. (2022) investigated the structure of the “dark personality factor” across
age and gender using LSEM. Krasko and Kaiser (2023) investigated measurement invari-
ance across age for the dark triad by means of LSEM.

Bratt et al. (2018) investigated levels of perceived age discrimination across early to
late adulthood by employing LSEM, using data from the European social survey (ESS)
collected in 29 countries. Dutton and Kirkegaard (2022) applied LSEM to investigate a
particular question about the association between religiousness and intelligence. Allemand
et al. (2022) used LSEM to investigate the effects of continuous age and COVID-19 virus
worry on mean levels and correlations between gratitude and remaining opportunities
and time. Allemand et al. (2021) examined age-related psychometrics and differences in
the measurement, mean-levels, variances, and correlations of gratitude and future time
perspective across adulthood using data in a representative Swiss sample for participants
aged between 19 and 98 years.

Schroeders et al. (2015) studied the differentiation fluid and crystallized intelligence
in German students of grades 5 to 12. Watrin et al. (2022) studied the age differentiation
hypothesis of declarative knowledge, as proposed in Cattell’s investment theory. Hülür
et al. (2011) studied with LSEM whether cognitive abilities become more differentiated with
increasing age during childhood for children from age 2.5 to 7. Hartung et al. (2020) tested
whether associations among executive functions strengthened from middle childhood to
adolescence using cross-sectional data from a sample of children aged between 7 and 15
years. Gnambs and Schroeders (2020) examined the effects of cognitive abilities on the
factor structure of the Rosenberg self-esteem scale across age by means of LSEM. Whitley
et al. (2016) explored cross-sectional associations of age with five cognitive tests (word
recall, verbal fluency, subtraction, number sequence, and numerical problem solving) in a
large representative sample aged between 16 and 100 living in the UK. Breit et al. (2020)
investigated ability differentiation, developmental differentiation, and their interaction
with LSEM in two studies. Breit et al. (2021) provided a review of the literature on ability
and developmental differentiation effects in children and youths. Breit et al. (2023) studied
ability differentiation, including creativity measures, through LSEM for German students
aged between 12 and 16 years.

Hildebrandt et al. (2010) employed LSEM to investigate structural invariance and
age-related performance differences in face cognition. Hildebrandt et al. (2013) studied the
specificity of face cognition compared with object cognition from individual differences
and aging perspective by determining the amount of overlap between these abilities at
the level of latent constructs across age. By utilizing LSEM, Liu et al. (2022) found that
individual differences in white matter microstructure of the face processing brain network
were more differentiated from global fibers with increasing ability.

LSEM was also applied in behavioral neurosciences Kaltwasser et al. (2017). Jokić-
Begić et al. (2019) used LSEM for assessing measurement invariance across age for cyper-
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chondria, a process of increased anxiety over one’s health as a result of excessive online
searching. Lodi-Smith et al. (2021) found that autism characteristics measured by the
autism-spectrum quotient scale were not strongly associated with age by utilizing LSEM.
Cox et al. (2016) used LSEM to quantify microstructural properties of the human brain’s
connections for understanding normal ageing and disease (see also Briley et al. (2015b)).
Researchers de Mooij et al. (2018) used LSEM to study differences within and between brain
and cognition across the adult life span. Zheng et al. (2019) investigated whether genetic
and environmental influences on achievement goal orientations shift were moderated with
age. Madole et al. (2019) applied LSEM in network analysis as a method for investigating
symptom-level associations that underlie comorbidity connecting diagnostic syndromes.

Olaru et al. (2019) utilized LSEM in combination with ant colony optimization (see
also Olaru and Jankowsky 2022) to resample and weight subjects to study differences in
the measurement model across age as a continuous moderator variable.

An overview of different modeling strategies of LSEM for longitudinal data is pre-
sented in Olaru et al. (2020). Wagner et al. (2019) investigated through LSEM whether
personality becomes more stable with age. They disentangled state and trait effects for the
big five across the life span by applying LSEM to trait-state-occasion models. Gana et al.
(2023) applied trait-state-occasion models in tandem with LSEM to investigate whether the
characteristics of the depression EURO-D scale were associated with age.

LSEM was also applied to moderator variables different from age. Klieme and Schmidt-
Borcherding (2023) employed LSEM to explore whether there is noninvariance for indicators
of research self-efficacy regarding different training levels of students operationalized as
the number of studied semesters. Weiss et al. (2020) investigated the threshold hypothesis
of creativity by handling intelligence as a continuous moderator in LSEM. Schroeders and
Jansen (2022) studied by means of LSEM whether the multidimensional structure of the
science self-concept is moderated by levels of the cognitive ability in science. Basarkod
et al. (2023) investigated whether reading self-concept dimensions vary across reading
achievement levels in the PISA study. Olaru et al. (2022) examined the effects of family
background on children’s receptive vocabulary using LSEM with latent growth curve
models. Bolsinova and Molenaar (2019) (see also Bolsinova and Molenaar 2018) used
LSEM for indicator-specific covariates and extended LSEM to the study of cognitive tests
involving reaction times.

3. Estimating and Testing Local Structural Equation Models

3.1. Single-Group Structural Equation Model

In SEM, a measurement model is imposed that relates the observed variables X to
latent variables η

X = ν + Λη+ ε . (1)

In addition, the covariance matrix of ε is denoted by V ; that is, Var(ε) = Ψ. Moreover,
η and ε are multivariate normally distributed random variables. In addition, η and ε
are assumed to be uncorrelated. In CFA, the multivariate normal (MVN) distribution is
represented as η ∼ MVN(α, Φ) and ε ∼ MVN(0, Ψ). As we are only concerned with the
covariance structure in SEM in this paper, we assume α = 0 and E(X) = ν. Then, the
covariance matrix of X in CFA can be computed as:

Var(X) = Σ(θ) = ΛΦΛ� + Ψ . (2)

The parameter vector θ contains parameters in Λ, Φ, and Ψ that are estimated. Typically,
the covariance matrix Σ is a constrained matrix determined by the specification (2).

In a general SEM, relationships among the latent variables η are modeled in path
models. A matrix B of regression coefficients is specified such that:

η = Bη+ ζ , (3)
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where η denotes an endogeneous and ζ an exogeneous multivariate normally distributed
latent variables. Note that (3) can be written as:

η = (I − B)−1ζ , (4)

where I denotes the identity matrix. In this case, the covariance matrix of X are represented
in SEM as:

Var(X) = Σ(θ) = Λ(I − B)−1Φ[(I − B)−1]�Λ� + Ψ . (5)

Some identification constraints must be imposed when estimating the covariance
structure of the SEM in (2) or (5) (Bollen 1989; Bollen and Davis 2009). The purpose of
identifying constraints primarily lies in a convenient interpretation of latent variables η
and is not primarily driven by improving the efficiency of estimating Σ.

When modeling multivariate normally distributed data without missing data, the
empirical covariance matrix S is a sufficient statistic for the unknown covariance matrix Σ.
Hence, S is also sufficient for the parameter vector θ of the SEM in (2) or (5).

3.2. Multiple-Group Structural Equation Model

We now describe the general estimation of a multiple-group SEM. There exist G known
groups g = 1, . . . , G. The allocation of a group to a subject is known in this case. Assume
that group g has Ng subjects and an empirical covariance matrix Sg. The population
covariance matrices are denoted by Σg (g = 1, . . . , G). The model-implied covariance
matrices are denoted by Σg(θ) (g = 1, . . . , G). The unknown parameter vector θ can have
common parameters across groups and parameters that are group-specific. For example, in
a CFA, equal factor loadings and item intercepts across groups are frequently imposed (i.e.,
measurement invariance holds; Meredith 1993; Putnick and Bornstein 2016) by assuming
the same loading matrix Λ across groups, while covariance matrices of latent variables or
the matrix B of regression coefficients are allowed to differ across groups.

Up to constants, the maximum likelihood (ML) fitting function of the unknown
parameter θ for the covariance structure in the multiple-group SEM is given by (see Bollen
1989 and Jöreskog et al. 2016):

F(θ; {Sg}g) =
G

∑
g=1

Ng

(
log|Σg(θ)|+ tr(SgΣg(θ)

−1)− log|Sg| − I
)

. (6)

Note that I refers to the number of observed variables; that is, the dimension of X. The
set {Sg}g denotes the set of G empirical covariance matrices that are sufficient statistics in
multiple-group SEM estimation. The parameter vector θ is estimated by minimizing F in
(6) and is denoted as the ML estimate. The estimated parameter is denoted by θ̂.

In practice, the model-implied covariance matrix can be misspecified (Boos and Ste-
fanski 2013; Gourieroux et al. 1984; Kolenikov 2011; White 1982), and θ is a pseudo-true
parameter defined as the minimizer of the fitting function F in (6). Importantly, θ does not
refer to a parameter of the data-generating model in this case. In contrast, it should be
interpreted as a summary of the data that are of central interest to the researcher.

The ML fitting function (6) can be considered a special case of discrepancy function. To
this end, we define a general discrepancy function D(S, Σ) between an empirical covariance
matrix S and a population covariance matrix Σ. The real-valued nonnegative function D
should only attain the value zero if S = Σ (i.e., for correctly specified models). For the ML
fitting function, the discrepancy function D is defined as:

D(S, Σ(θ)) = log|Σ(θ)|+ tr(SΣ(θ)−1)− log|S| − I . (7)
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Using definition (7), we can rewrite (6) as:

F(θ; {Sg}g) =
G

∑
g=1

NgD(Sg, Σg(θ)) , (8)

and θ̂ is the minimizer of F(θ; {Sg}g).
If an age moderator variable A is available, an SEM can, in principle, be estimated for

all subgroups of subjects for different values of the age variable. In practice, sample sizes
for concrete age values might be too small for separate estimation of the SEM. Moreover,
discretizing the values of a continuous moderator variable A into G distinct groups of
subjects might not be preferred due to loss of information (Hildebrandt et al. 2009). To
circumvent these issues, LSEM has been proposed. We discuss LSEM estimation methods
in the next subsections.

3.3. Local Weighting

Instead of grouping subjects that fall within a given range of the moderator, as in
multiple-group SEMs, observations are locally weighted around focal points (i.e., specific
values of the continuous moderator variable) in LSEM. In previous studies, SEMs are
sequentially estimated on the basis of weighted samples of observations at all focal points
(i.e., the pointwise LSEM estimation approach, see Section 3.5).

In LSEM, researchers are interested in investigating moderator-specific covariance
structures. That is, they aim to model conditional covariances:

Var(X|A = a) = Σ(a) (9)

As argued in the previous section, sample sizes might be too small for estimating Σ(a)
only for subjects with A = a. To this end, subjects with moderator values a sufficiently
close to a focal point at (i.e., a chosen value of the moderator variable A) should also enter
the estimation. For each focal point at and each subject n, weights wnt are computed that
reflect the distance of the moderator value (e.g., a value of age) of person n (i.e., an) and the
focal point at. If an = at, the weight should be one, and it should be zero for age values an
that strongly differ from at.

The computation of weights relies on a kernel function K that is chosen by the re-
searcher (Hildebrandt et al. (2009, 2016). The real-valued kernel function fulfills the
properties K(0) = 1, K(x) = K(−x) (i.e., it is a symmetry function), K(x) ≥ 0 for all x ∈ R,
and K is a decreasing function for x ≥ 0. The subject-specific weight wnt for subject n at a
focal point at with a pre-specified bandwidth bw is computed as:

wnt = K
(

an − at

bw

)
. (10)

By the definition of K, weights are bounded within the interval [0, 1].
Typical choices of the weight function in the literature of nonparametric regression

or density estimation are the Gaussian kernel, the Epanechnikov kernel, and the uniform
kernel function. The Gaussian kernel function is defined as:

K(x) = exp(−x2/2) . (11)

In density estimation involving the Gaussian kernel function, an optimal bandwidth
is given by bw = hN−1/5σA with h = 1.1, and σA is the standard deviation of the age
moderator variable (Silverman 1986). The parameter h is referred to as the bandwidth
factor in this article. The Epanechnikov kernel function is defined as:

K(x) =
{ 3

4 (1 − x2) for |x| ≤ 1
0 for |x| > 1

. (12)
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For age values an with |an − at| > bw, weights wnt are zero. Finally, the uniform kernel
function is defined as:

K(x) =
{

1 for |x| ≤ 1
0 for |x| > 1

. (13)

The uniform kernel can be used to define weights so that they reflect the discretization
of the continuous age variable A into G distinct groups. The estimated LSEM will provide
parameter results that are identical to the multiple-group SEM if the same identification
constraints are utilized.

3.4. Estimation of Conditional Means and Conditional Covariances

We now describe the estimation conditional covariances Σ(a). In a practical imple-
mentation of the LSEM, researchers define a discrete grid of moderator values a1, a2, . . . , aT
(i.e., the focal points) of the age variable A. In most applications, a grid of equidistant focal
points is chosen (Hildebrandt et al. 2016). However, the grid of focal points could also be
chosen in such a way that it mimics the empirical distribution of the moderator variable.
For example, researchers might use empirical percentiles of the moderator variable (e.g., a
grid of 10 focal points using the pth percentile for p = 5, 15, . . . , 95).

To estimate conditional covariances at a focal point at, we first compute the conditional
mean function E(X|A = a) for X = (X1, . . . , XI). For a variable Xi for i = 1, . . . , I, a local
quadratic regression model is specified to estimate the conditional mean at focal point at.
That is, one minimizes:

(γ̂it0, γ̂it1, γ̂it2) = arg min
(γit0,γit1,γit2)

{
N

∑
n=1

wnt

(
xin − γit0 − γit1(ant − at)− γit2(ant − at)

2
)2

}
(14)

The conditional mean estimate of μi(at) = E(Xi|A = at)is given by μ̂i(at) = γ̂it0. Note
that the minimization in (14) is a weighted least squares estimation problem for a linear
regression (i.e., it is linear in model parameters) and closed formulae are available for
estimating (γit0, γit1, γit2) (see Fox 2016).

We now describe the estimation of conditional covariances σij(at) = Cov(Xi, Xj|A =
at). First, residuals enit are computed using local quadratic regression parameters defined
in (14) as:

enit = xin − γ̂it0 − γ̂it1(ant − at)− γ̂it2(ant − at)
2 . (15)

The estimate of the conditional covariances σij(at) can be obtained by simple weighting or
a local regression model.

In the weighting approach, one estimates:

σ̂ij(at) = W−1
t

N

∑
n=1

wntenitenjt , (16)

where Wt = ∑N
n=1 wnt. This approach was advocated in Hildebrandt et al. (2009) and

Hildebrandt et al. (2016).
In recently proposed local regression modeling (see Olaru et al. 2020), one also specifies

a local quadratic regression estimation problem for the computation of the conditional
covariance:

(δ̂ijt0, δ̂ijt1, δ̂ijt2) = arg min
(δijt0,δijt1,δijt2)

{
N

∑
n=1

wnt

(
enitenjt − δijt0 − δijt1(ant − at)− δijt2(ant − at)

2
)2

}
. (17)

The estimate of the conditional covariance is given as σ̂ij(at) = δ̂ijt0.
Note that the estimation of the conditional mean function in (14) and the conditional

covariance function in (17) is essentially equivalent, except for the case that the former
uses the values xni as the dependent variable xni (i.e., indicator i), while the latter uses
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the product residual enitenjt of variables for indicators i and j for the computation of the
moderator-specific conditional covariance.

The steps can be repeated for all pairs of variables i and j (i, j = 1, . . . , I) and all focal
points at (t = 1, . . . , T). The resulting estimated conditional covariance matrices at focal
points at are denoted by Σ̂t (t = 1, . . . , T). The estimated covariance matrices Σ̂t are not
guaranteed to be positive definite. Therefore, the estimate might be slightly modified to
determine a close matrix to Σ̂t that fulfills the positive definiteness property (Bentler and
Yuan 2011).

LSEM estimation methods rely on the estimated conditional covariances. Three
different estimation approaches are described in Sections 3.5, 3.6 and 3.8.

3.5. Pointwise LSEM Estimation

Pointwise LSEM estimation relies on the idea that a separate SEM is fitted to each focal
point at. The resulting parameter estimates θ̂t are plotted or analyzed as a function of the
age variable A. More formally, based on the conditional covariance estimate Σ̂t, at each
focal point at, the following fitting function is minimized:

F(θt; Σ̂t) = D(
Σ̂t, Σt(θt)

)
, (18)

where θ̂t denotes the minimizer of F(θt; Σ̂t). Note that in (18), the distance between the
empirical conditional covariance Σ̂t and the model-implied conditional covariance Σt(θt)
at the focal point at is minimized. This approach was proposed by Hildebrandt et al.
(2009, 2016). The minimization in (18) is not restricted to ML estimation and can also
be applied to weighted least estimation in SEM (Browne 1974) or model-robust fitting
functions (Robitzsch 2023a).

Model fit statistics, such as RMSEA, SRMR, or TLI, are computed at each value of
the focal point. Note that pointwise LSEM estimation provides parameter curves across
different values of the moderator variable.

The pointwise LSEM estimation method allows the parameter vector θ(a) to vary
freely across a. However, this flexibility sometimes hinders interpretation. Moreover, some
researchers might prefer to impose invariance constraints for some of the model parameters
(Leitgöb et al. 2023). For this reason, a joint LSEM estimation approach is proposed that is
described in the next Section 3.6.

3.6. Joint LSEM Estimation with Invariance Constraints

While pointwise LSEM estimation tackles the estimation problem by successively and
separately estimating an SEM at each of the focal points, joint LSEM estimation defines a
single estimation function that involves conditional covariance matrices of all focal points.
By doing so, the parameter vector θ can contain parameters that are specific to each focal
point and parameters that do not vary for different values of age. The fitting function is
defined as:

F(θ; {Σ̂t}t) =
T

∑
t=1

WtD(Σ̂t, Σt(θ)) , (19)

where θ̂ is the minimizer of F(θ; {Σ̂t}t) and Wt = ∑N
n=1 wnt is the sum of weights specific

to each focal point at. Note that (19) looks like a fitting function in multiple-group SEM
estimation. However, subjects can enter multiple groups (i.e., focal points) because they
enter the estimated conditional covariances multiple times according to the weights wnt.
Hence, the fitting function F in (19) will not be an ML fitting function and falls in the
general class of M-estimation problems (Stefanski and Boos 2002).
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The parameter vector θ can be decomposed into components θ = (θ0, θ1, . . . , θT),
where θ0 contains parameters that are invariant across age, and θt for t ≥ 1 contain the
parameters that vary across age values. The fitting function in (19) can then be rewritten as:

F(θ0, θ1, . . . , θT ; {Σ̂t}t) =
T

∑
t=1

WtD(Σ̂t, Σt(θ0, θt)) . (20)

Note that the originally proposed pointwise estimation of the fitting function in (18)
is equivalent to joint LSEM estimation in (20) if there does not exist invariant model
parameters θ0.

In joint LSEM estimation, global model fit statistics are computed. These fit statistics
can be interpreted similarly as in multiple-group SEMs.

3.7. Estimation of DIF Effects

In joint LSEM estimation defined by the fitting function F in (20), some parameters
(i.e., the parameter vector θ0) have invariance constraints across the age moderator variable.
These invariance constraints ease interpretation and have the advantage of specifying
parsimonious SEMs. However, researchers might be interested in what would happen if
these invariance constraints were freed.

Violations of measurement invariance are referred to as differential item functioning
(DIF) in item response theory literature (Mellenbergh 1989; Holland and Wainer 1993;
Millsap 2011). Noninvariant parameters are referred to as DIF effects in this literature. We
also use this notation and now discuss the estimation of DIF effects. DIF effects emerge
if all estimated age-specific parameters θ̂t (t ≥ 1) are held fixed in (20), and the entries of
the parameter vector θ0 are allowed to vary across age. We denote the focal-point-specific
estimates of DIF effects by δt. To this end, invariant parameters θ0 are replaced with
δ1, . . . , δT , and the following fitting function F is minimized to obtain DIF effect estimates
δ̂t (t = 1, . . . , T):

F(δ1, . . . , δT , θ̂1, . . . , θ̂T ; {Σ̂t}t) =
T

∑
t=1

WtD(Σ̂t, Σt(δt, θ̂t)) . (21)

Note that there are no invariant model parameters in (21), and the DIF effects δt at the
focal point at could alternatively be obtained by pointwise minimization of:

F(δt, θ̂t; Σ̂t) = D(Σ̂t, Σt(δt, θ̂t)) . (22)

The estimated DIF effects can be plotted or analyzed as a function of the age moderator
to investigate whether the invariance constraints are substantially violated.

3.8. Joint LSEM Estimation with More General Parameter Constraints and Relation to Moderated
Nonlinear Factor Analysis

In this subsection, joint LSEM estimation is slightly generalized. The fitting function
is the same as in (20), but constrains across focal-point-specific parameters θt are allowed.
In particular, we discuss the implementation of linear, quadratic, and piecewise linear or
quadratic parameter constraints.

Assume a parameter curve θ(at) for a particular parameter. Furthermore, assume that
the focal points are equidistant; that is, at+1 − at = Δ are equal for t = 1, . . . , T − 1.

We first describe a linear parameter constraint. A linear function of a parameter θ
for age values a is given by f (a) = α0 + α1a. The first derivative of f is constant, and it
holds that f ′(at+1) = f ′(at) = α1. Hence, the equality in derivatives can be translated into
equalities in first-order differences in model parameters:

θ(at+2)− θ(at+1) = θ(at+1)− θ(at) . (23)
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These constraints can be added in multiple-group SEM in typical SEM software such as
lavaan (Rosseel 2012).

A quadratic function of a parameter is given by f (a) = α0 + α1a + α2a2. This function
has constant second-order derivatives; that is, f ′′(at+1) = f ′′(at) = 2α2. Hence, second-
order differences in parameter values are constant, which translates into:

θ(at+3)− 2θ(at+2) + θ(at+1) = θ(at+2)− 2θ(at+1) + θ(at) . (24)

Similarly, cubic parameter constrains can be implemented by recognizing that the
third-order differences in parameter values are constant. A slightly more tedious constraint
than (24) can be derived.

The linearity and quadratic constraints in (23) and (24) can also be applied if parameter
curves are broken into segments. Hence, piecewise linear or quadratic functions can be
applied.

Applying (piecewise) quadratic parameter functions in joint LSEM estimation can be
interpreted as a kind of smoothing procedure to stabilize parameter estimation. Further-
more, the raw data are smoothed when computing the estimated conditional covariance
matrices Σ̂t. Hence, researchers have two choices for how stabilizing parameter estimation
in LSEM.

Notably, parameter constraints in joint LSEM estimation are estimates of MNFA in a
particular case. If the age moderator values A has only values at the grid of equidistant
focal points a1, . . . , aT , then using the uniform kernel with bw = (a2 − a1)/2 is equivalent
to MNFA with appropriate parameter constraints. Such an approach is described in Tucker-
Drob (2009).

3.9. Parameter Curve Summaries and Significance Testing

Finally, we discuss the definition of summary statistics and the test of significant
parameter variation across age. Let θ(at) be a parameter curve of some model parameter
estimated at focal points at (t = 1, . . . , T). The parameter curve θ(a) can be summarized by
the mean and the standard deviation. Let f (at) be the discrete density of the age variable
A at focal point at and assume that ∑T

t=1 f (at) = 1. The (weighted) average value of the
parameter curve (i.e., the mean) is given as:

Mθ(a) =
T

∑
t=1

f (at)θ(at) . (25)

In practice, an estimate of (25) is obtained by

M̂θ(a) =
T

∑
t=1

f̂ (at)θ̂(at) . (26)

The standard deviation of a parameter curve quantifies the variability of a parameter
curve across age and is given by:

SDθ(a) =

√√√√ T

∑
t=1

f (at)
(

θ(at)− Mθ(a)

)2
. (27)

An estimate of the standard deviation defined in (27) is given by:

ŜDθ(a) =

√√√√ T

∑
t=1

f̂ (at)
(

θ̂(at)− M̂θ(a)

)2
. (28)

The sample estimate ŜDθ(a) is always positive in finite samples if no invariance constraints
are imposed. Hence, the naive standard deviation estimate in (28) will be positively biased.
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The bootstrap resampling procedure (Efron and Tibshirani 1994) can be used to reduce the
bias in an estimate of SDθ(a). For LSEM, nonparametric bootstrap is implemented, which
resamples subjects with replacement. The pointwise standard deviation of a parameter
value across bootstrap samples can be used as a standard error estimate. A bias-corrected
estimate of the standard deviation is obtained by:

ŜDθ(a),bc = sqrt+
(

ŜD
2
θ(a) −Bθ(a)

)
, (29)

where sqrt+(x) =
√

max(x, 0) and Bθ(a) is the finite-sample bias of ŜD
2
θ(a) that can be

determined by bootstrap resampling (Efron and Tibshirani 1994). A t-statistic for significant
variation in an estimated parameter curve can be computed as:

t = ŜDθ(a),bc/SE , (30)

where SE is the standard deviation of ŜDθ(a) values defined in (28) across different bootstrap
samples. Note that this test procedure relies on a normal distribution assumption for the
test statistic t, although it is probably an incorrect null distribution.

An alternative test for parameter variation is based on a Wald test. A covariance
matrix estimate V for the vector ξ = (θ(a1), . . . , θ(aT)) can be obtained from bootstrap.
It is assumed that ξ̂ is multivariate normally distributed. Let H be a (T − 1)× T matrix
that implements equality constraints across the values of the parameter curve. The null
hypothesis of no parameter variation is given by Hξ = 0. Consider the Wald test statistic:

χ2 = ξ̂�H�
(

H�V H
)−1

H ξ̂ (31)

This statistic is chi-square distributed with T − 1 degrees of freedom.
In previous work, a permutation test has been proposed for testing parameter variation

(Hartung et al. 2022; Hildebrandt et al. (2009, 2016)). A permutation test simultaneously
assesses the effects on all parameters. In contrast, the test based on the standard deviation
(30) and the Wald test (31) relies on a fitted model without modifying all other model
parameters. Hence, we tend to favor the latter statistics over the permutation test.

4. Implementation of Local Structural Equation Models in the Sirt Package

In this section, we discuss the implementation of LSEM in the R (R Core Team
2023) package sirt (Robitzsch 2023b). The CRAN version can be installed within R us-
ing utils::install.packages(’sirt’), while the most recent GitHub version can be in-
stalled employing devtools::install_github(’alexanderrobitzsch/sirt’). The four pri-
mary LSEM functions are sirt::lsem.estimate(), sirt::lsem.bootstrap(), sirt::lsem.test()
and sirt::lsem.permutationTest(), which will be discussed below. The new CRAN release
of sirt from August 2023 (sirt 3.13-228; https://cran.r-project.org/web/packages/sirt/
accessed on 11 August 2023) includes the functionality described in this article.

LSEM estimation in sirt provides a wrapper to the SEM package lavaan (Rosseel 2012).
The model specification follows the lavaan syntax, which eases the familiarity with R
code for LSEM estimation because lavaan seems to be the most popular open-source SEM
software.

In Listing 1, the main function sirt::lsem.estimate() is displayed. This function is
the main LSEM estimation function. We now discuss the most important arguments in
detail.
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Listing 1. LSEM function sirt::lsem.estimate().

1 s i r t : : lsem . es t imate ( data , moderator , moderator . grid , lavmodel , type="LSEM" , h = 1 . 1 , bw=NULL,
2 r e s i d u a l i z e =TRUE, f i t _measures=c ( " rmsea " , " c f i " , " t l i " , " g f i " , " srmr " ) ,
3 standardized=FALSE , standardized _ type=" std . a l l " , lavaan _ f c t ="sem" ,
4 s u f f i c i e n t _ s t a t i s t i c s =TRUE, pseudo_weights =0 , sampling_weights=NULL,
5 l o c _ l i n e a r _smooth=TRUE, e s t _ j o i n t =FALSE ,
6 par_ i n v a r i a n t =NULL, par_ l i n e a r =NULL, par_ quadrat ic=NULL,
7 p a r t a b l e _ j o i n t =NULL, pw_ l i n e a r =1 , pw_ quadrat ic =1 , pd=TRUE, e s t _DIF=FALSE ,
8 se=NULL, kernel=" gaussian " , eps=1E−8 , verbose=TRUE, . . . )

In data, a data frame must be provided by the user. The data frame should also include
the moderator variable, whose variable name must be specified in moderator. The set of
focal points can be defined as a vector moderator.grid. In lavmodel, lavaan syntax must be
provided for estimating the LSEM. The default of the argument type is “LSEM”; that is, an
LSEM is estimated. By choosing type=”MGM”, a multiple-group model with a discretized
moderator variable is estimated. The bandwidth in sirt::lsem.estimate() can be specified
by h or bw. The arguments are related through the formula:

bw = hN−1/5σ̂A , (32)

where σ̂A denotes the estimated standard deviation of the moderator variable A (i.e., the
argument moderator). The logical argument residualize indicates whether local regres-
sion smoothing of the mean structure should be applied before estimating conditional
covariances. The argument fit_measures defines fit statistics available in lavaan that should
be included in the LSEM output. The logical argument standardized defines whether
standardized parameters should appear in the LSEM output. The type of standardiza-
tion is specified in standardized_type whose conventions follow the lavaan package. In
lavaan_fct, the lavaan function is specified that is used for LSEM estimation. The default
lavaan_fct="sem" refers to lavaan::sem(). Other options are "cfa" (for lavaan::cfa()) and
"lavaan" (for lavaan::lavaan()). The logical argument sufficient_statistics indicates
whether sufficient statistics (i.e., conditional mean and conditional covariances) should
be used in estimation. Without missing data, ML can always rely on sufficient statistics.
However, in the presence of missing data, conditional covariance matrices are estimated
based on pairwise deletion. However, if full information maximum likelihood was utilized,
the mean structure cannot be properly residualized. Hence, researchers are advised either
to believe in missing data mechanisms close to missing completely at random that justify
the usage of pairwise deletion or to apply an appropriate multiple imputation procedure
prior to LSEM analysis if there are missing values in the dataset.

Users can also input a vector of sampling weights in sampling_weights. The logical
argument loc_linear_smooth defines whether local quadratic regression (see (17)) should be
applied in the estimation of conditional covariances. If the default loc_linear_smooth=TRUE
is changed into loc_linear_smooth=FALSE, the weighting formula (16) is utilized. The log-
ical argument est_joint indicates whether joint LSEM estimation (i.e., the default; see
Sections 3.6 or 3.8) or pairwise LSEM estimation (see Section 3.5) is applied. Invariant
model parameters can be specified in the vector argument par_invariant. If there are some
invariant parameters, joint LSEM estimation is automatically chosen (i.e., est_joint=TRUE).
Linear or quadratic parameter constraints on model parameters (see Section 3.8) can be
specified with par_linear and par_quadratic, respectively. The number of segments in
piecewise linear or piecewise quadratic parameter constrained estimation can be specified
with pw_linear or pw_quadratic. The default is that the constrains should be applied across
all moderator values (i.e., there is only one segment of a piecewise linear or quadratic func-
tion). The argument partable_joint allows the input of a lavaan parameter table in joint
estimation. This argument has the advantage that arbitrary parameter constraints can be
specified by the user (e.g., additional equality constraints in piecewise quadratic functions).
The logical argument pd indicates whether non-positive definite conditional covariance
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matrices should be smoothed to ensure positive definiteness. The logical argument est_DIF
defines whether DIF effects should be estimated (see Section 3.7). Note that DIF effects
can only be estimated if the LSEM model contains some invariant model parameters. The
argument kernel allows the choice of the kernel function. Possible options are “gaussian”,
“epanechnikov”, and “uniform”. Finally, the logical argument verbose indicates whether
some output should be displayed in the R console when estimating the LSEM model.

Listing 2 displays the LSEM bootstrapping function in the sirt package. An object
object must be provided that is the output of the sirt::lsem.estimate() function. The
number of bootstrap samples can be specified by the argument R. Bootstrap can also
be applied at the level of higher-order units. For example, school classes, schools, or
organizations can be bootstrapped instead of bootstrapping subjects. Such a kind of cluster
bootstrap is required if there is an additional dependency structure in the data. In this
case, users can define a vector of cluster units in cluster. The sirt::lsem.bootstrap() also
allows more general replication designs such as jackknife, balanced repeated replication, or
half sampling (Kolenikov 2010) by providing an N × R matrix of resampling weights in the
argument repl_design. In the case of more complex designs, a scale factor repl_factor must
be defined by the user for a correct standard error computation. In the case of jackknife,
it is 1 (or (R − 1)/R), while it is 1/R in the case of bootstrap resampling. The bootstrap
function sirt::lsem.bootstrap() is needed for computing the standard deviation statistic of
parameter curves and its statistical inference (see Section 3.9). The sirt::lsem.bootstrap()

function also allows an option for parallel computing. The number of employed cores can
be specified by the argument n.core. The default is the use of one core which means that
no parallel computing is applied in LSEM bootstrap estimation.

Listing 2. LSEM function sirt::lsem.bootstrap().

1 s i r t : : lsem . boots t rap ( o b j e c t , R=100 , verbose=TRUE, c l u s t e r =NULL,
2 r e p l _ design=NULL, r e p l _ f a c t o r =NULL, use_ s t a r t i n g _ values=TRUE,
3 n . core =1 , c l . type="PSOCK" )

Listing 3 displays the LSEM function sirt::lsem.test() that performs the Wald tests
for parameter variation (see Section 3.9). Instead of applying a test of the equality of a
parameter curve on T focal points a1, . . . , aT , the specification in models allows the test of
significant regression parameters for a particular function. For example, a specification
"FX=∼X1"=y∼m+I(mˆ2) tests whether the vector of the linear and the quadratic regression
coefficient of the factor loading FX=∼X1 differs from (0, 0). Note that sirt::lsem.test()

requires the output of sirt::lsem.estimate() in mod and the output of the application of
the bootstrap (or general resampling) of sirt::lsem.bootstrap() in bmod.

Listing 3. LSEM function sirt::lsem.test().

1 s i r t : : lsem . t e s t (mod, bmod, models=NULL )

Listing 4 displays the LSEM function sirt::lsem.permutationTest() that carries out
the permutation test for a statistical significance test for variation in parameter curves of
the LSEM model Hildebrandt et al. (2009, 2016). In the permutation test, the values of the
moderator variables are randomly resampled in the dataset to create a null distribution
of parameter curves under the assumption of no relation to the moderator. The number
of permutation samples can be specified in the argument B. As in sirt::lsem.bootstrap(),
parallel computing can be requested by the number of cores in the argument n.core.
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Listing 4. LSEM function sirt::lsem.permutationTest().

1 s i r t : : lsem . permutationTest ( lsem . o b j e c t , B=1000 , r e s i d u a l i z e =TRUE, verbose=TRUE,
2 n . core =1 , c l . type="PSOCK" )

5. Illustrative Datasets

In this section, we illustrate LSEM estimation with the R package sirt. Three simulated
datasets involving six variables X1, X2, X3, Y1, Y2, and Y3 are used for illustration. The
analysis model is a two-dimensional factor model with a simple loading structure, where
the first factor FX is measured by X1, X2, and X3, and the second factor FY is measured by Y1,
Y2, and Y3. The moderator variable age was assessed at 13 time points, referring to ages
6, 7, . . . , 18. An anonymous reviewer pointed out that using 13 time points would look like
longitudinal data. However, we only used the 13 time points for illustratory purposes. For
example, there could be 13 cross-sectional age groups that are assessed.

The population parameters of the factor model for each age a = 6, 7, . . . , 18 and
each of the three datasets DATA1 , DATA2 , and DATA3 can be found in the directory
“POPPARS” at https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793 (accessed
on 3 June 2023). From these population parameters, 10,000 subjects were simulated at
each of the 13 age points. The distribution at each age point exactly coincides with the
specified conditional mean vector and the conditional covariance matrix (see, e.g., the
lavaan::simulateData() function with the argument empirical=FALSE for a similar func-
tionality). Data were simulated from a multivariate normal distribution. This simulation
ensures that the population data involving 130,000 subjects (i.e., = 13 × 10, 000 subjects)
exactly follows the specified covariance structure. In DATA1 , all model parameters ex-
cept for residual variances were assumed noninvariant. In DATA2 , only the structural
parameters (i.e., factor correlation and factor variances) were noninvariant, while fac-
tor loadings and residual variances were assumed invariant. In DATA3 , all measure-
ment and structural model parameters were assumed invariant. The population datasets
and the data-generating model parameters can be found in the directory “POPDATA” at
https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793 (accessed on 3 June 2023).
The illustrative datasets used in this section were subsamples of 2000 subjects from datasets
DATA1 , DATA2 , and DATA3 . The main motivation for using a subsample of the data
is to show that LSEM produces some variability in model parameter estimates even if
the model parameter is invariant across the moderator values in the data-generating
model. The subsamples were created by random sampling without replacement from
the population datasets. These datasets can be found in the directory “ILLUSDATA” at
https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793 (accessed on 3 June 2023).

Listing 5 contains the specification of the LSEM model involving two factors FX and FY.
In lines 5–10 in Listing 5, the lavaan syntax for the factor model is specified in the string
lavmodel. Line 13 in Listing 5 defines the parameter names (i.e., the factor loadings of X2, X3,
Y2, and Y3) that are assumed invariant across the values of the moderator variable age. Line
16 in Listing 5 specifies the vector of focal points at which the LSEM model should be esti-
mated. Lines 19–21 in Listing 5 contain the R command for applying sirt::lsem.estimate().
Note that the invariant model parameters are provided with the argument par_invariant,
DIF effects were estimated due to est_DIF=TRUE, and the bandwidth factor h was chosen as
1.1. Joint LSEM estimation was applied because invariance constraints among parameters
were imposed. In line 25 in Listing 5, the random seed is fixed, which ensures that bootstrap
resampling will not change when applying code at a different time. Line 26 in Listing 5
specifies bootstrapping using sirt::lsem.bootstrap(). In total, R = 200 bootstrap samples
were utilized. Note that the specified factor model in Listing 5 is misspecified for the dataset
DATA1 , but correctly specified for the datasets DATA2 and DATA3 .
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Listing 5. Illustrative datasets: Specification of LSEM with invariant factor loadings in
sirt::lsem.estimate() and subsequent bootstrap in sirt::lsem.bootstrap().

1 l i b r a r y ( lavaan )
2 l i b r a r y ( s i r t )
3
4 # s p e c i f y model us ing l a v a a n syn ta x
5 lavmodel <− "
6 FX=~ 1 *X1+X2+X3
7 FY=~ 1 *Y1+Y2+Y3
8 FX ~~ FX
9 FY ~~ FY

10 FX ~~ FY"
11
12 #− d e f i n e i n v a r i a n t p a r a m e t e r s
13 par_ i n v a r i a n t <− c ( "FX=~X2 " , "FX=~X3 " , "FY=~Y2 " , "FY=~Y3 " )
14
15 #− d e f i n e g r i d o f m o d e r a t o r v a l u e s
16 moderator . grid <− seq ( 6 , 1 8 , 1 )
17
18 # e s t i m a t e LSEM model
19 mod <− s i r t : : lsem . es t imate ( dat , moderator=" age " , moderator . grid=moderator . grid ,
20 s u f f i c i e n t _ s t a t i s t i c s =TRUE, lavmodel=lavmodel , h = 1 . 1 ,
21 par_ i n v a r i a n t =par_ invar iant , s tandardized=TRUE, e s t _DIF=TRUE)
22 summary (mod) # p r i n t summary
23
24 # p e r f o r m b o o t s t r a p with R=200 b o o t s t r a p s a m p l e s
25 s e t . seed ( 7 8 9 )
26 rmod <− s i r t : : lsem . boots t rap (mod, R=200)
27 summary ( rmod )

A part of R output of the sirt::lsem.bootstrap() function can be found in Listing 5.
A slight misfit is detected in fit statistics RMSEA and SRMR. The CFI and TLI fit statistics
are not indicative of the incorrect invariance assumption of factor loadings.

Figure 1 displays parameter curves for the two factor variances (i.e., FX∼∼FX and
FY∼∼FY) and the factor correlation (i.e., std FX∼∼FY) for the illustrative dataset DATA1 .
From Listing 5, we see that the variance of FX had an average of 0.396 with significant
parameter variation (SDbc = 0.083, p < 0.001), and FY had an average of 0.473 with
significant parameter variation (SDbc = 0.111, p < 0.001). Moreover, the factor correlation
had an average of 0.584 and also showed a significant parameter variation (SDbc = 0.059,
p = 0.003).

Figure 2 displays parameter curves for the two factor variances and the factor cor-
relation for the illustrative dataset DATA3 , which had no simulated parameter variation
in these parameters. By comparing Figures 1 and 2, it is evident that there is negligible
parameter variation for the dataset DATA3 compared to the dataset DATA1 .

The parameter curves for DIF effects for factor loadings for datasets DATA1 and DATA2
are displayed in Figures 3 and 4, respectively. For DATA1 , factor loadings were simulated
as noninvariant, while they were assumed invariant across age for DATA2 . This fact is
visible when comparing Figures 3 and 4.

It can be seen from Listing 6 that DIF effects for factor loadings X1 (SDbc = 0.024,
p = 0.020), X3 (SDbc = 0.038, p = 0.002), Y1 (SDbc = 0.024, p = 0.022), and Y2 (SDbc = 0.030,
p = 0.001) had significant parameter variation for dataset DATA1 , while they were not
significant for loadings of X2 and Y3.
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Listing 6. Illustrative datasets: Part of the output of sirt::lsem.bootstrap() for the illustrative
dataset DATA1 .

1 Global Fit Statistics for Joint Estimation

2
3 stat value value_bc se

4 1 rmsea 0.017 -0.017 0.007

5 2 cfi 0.999 1.008 0.003

6 3 tli 0.998 1.011 0.004

7 4 gfi 0.988 0.996 0.003

8 5 srmr 0.028 0.016 0.003

9
10 Parameter Estimate Summary

11
12 par parindex M SD SD_bc SD_se SD_t SD_p MAD Min Max

13 1 FX=~X1 1 1.000 0.000 0.000 0.000 0.000 0.500 0.000 1.000 1.000

14 2 FX=~X2 2 1.099 0.000 0.000 0.000 0.000 0.500 0.000 1.099 1.099

15 3 FX=~X3 3 0.984 0.000 0.000 0.000 0.000 0.500 0.000 0.984 0.984

16 4 FY=~Y1 4 1.000 0.000 0.000 0.000 0.000 0.500 0.000 1.000 1.000

17 5 FY=~Y2 5 0.866 0.000 0.000 0.000 0.000 0.500 0.000 0.866 0.866

18 6 FY=~Y3 6 0.924 0.000 0.000 0.000 0.000 0.500 0.000 0.924 0.924

19 7 FX~~FX 7 0.396 0.086 0.083 0.011 7.635 0.000 0.064 0.148 0.478

20 8 FY~~FY 8 0.473 0.115 0.111 0.021 5.182 0.000 0.089 0.313 0.760

21 9 FX~~FY 9 0.258 0.077 0.073 0.011 6.538 0.000 0.059 0.083 0.400

22 [...]

23 32 std__FX~~FY 32 0.584 0.072 0.059 0.022 2.736 0.003 0.054 0.387 0.664

24 [...]

25 47 dif__FX=~X1 47 0.996 0.040 0.024 0.012 2.052 0.020 0.032 0.943 1.089

26 48 dif__FX=~X2 48 1.094 0.025 0.000 0.012 0.000 0.500 0.018 1.023 1.127

27 49 dif__FX=~X3 49 0.995 0.043 0.038 0.013 2.812 0.002 0.029 0.946 1.125

28 50 dif__FY=~Y1 50 1.011 0.038 0.024 0.012 2.013 0.022 0.031 0.947 1.076

29 51 dif__FY=~Y2 51 0.860 0.038 0.030 0.010 3.052 0.001 0.032 0.794 0.917

30 52 dif__FY=~Y3 52 0.925 0.024 0.000 0.011 0.000 0.500 0.021 0.882 0.970
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Figure 1. Illustrative datasets: Parameter curves for variances of the two factors (i.e., FX∼∼FX and
FX∼∼FX) and the correlation of the two factors (std FX∼∼FY) for the illustrative dataset DATA1 .
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Figure 2. Illustrative datasets: Parameter curves for variances of the two factors (i.e., FX∼∼FX and
FX∼∼FX) and the correlation of the two factors (std FX∼∼FY) for the illustrative dataset DATA3 .
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Figure 3. Illustrative datasets: Parameter curves for DIF effects of factor loadings for the illustrative
dataset DATA1 .



J. Intell. 2023, 11, 175 18 of 34

6 8 10 12 14 16 18

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FX=~X1

Age

Pa
ra
m
et
er

6 8 10 12 14 16 18
0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FX=~X2

Age

Pa
ra
m
et
er

6 8 10 12 14 16 18

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FX=~X3

Age

Pa
ra
m
et
er

6 8 10 12 14 16 18

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FY=~Y1

Age

Pa
ra
m
et
er

6 8 10 12 14 16 18

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FY=~Y2

Age

Pa
ra
m
et
er

6 8 10 12 14 16 18
0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

dif__FY=~Y3

Age

Pa
ra
m
et
er

Figure 4. Illustrative datasets: Parameter curves for DIF effects of factor loadings for the illustrative
dataset DATA2 .

Finally, part of the R output of sirt::lsem.bootstrap() for dataset DATA3 is displayed
in Listing 7. In accordance with the data-generating model, both factor variances, the factor
correlation, and the DIF effects for factor loadings did not show significant parameter
variation across age.

Listing 7. Illustrative datasets: Part of the output of sirt::lsem.bootstrap() for the illustrative
dataset DATA3 .

1 Parameter Estimate Summary

2
3 par parindex M SD SD_bc SD_se SD_t SD_p MAD Min Max

4 [...]

5 7 FX~~FX 7 0.402 0.023 0.000 0.011 0.000 0.500 0.018 0.368 0.454

6 8 FY~~FY 8 0.517 0.032 0.000 0.014 0.000 0.500 0.027 0.469 0.577

7 9 FX~~FY 9 0.282 0.021 0.000 0.009 0.000 0.500 0.017 0.253 0.329

8 [...]

9 32 std__FX~~FY 32 0.619 0.028 0.000 0.012 0.000 0.500 0.024 0.577 0.662

10 [...]

11 47 dif__FX=~X1 47 1.000 0.019 0.000 0.011 0.000 0.500 0.016 0.948 1.022

12 48 dif__FX=~X2 48 1.106 0.027 0.000 0.012 0.000 0.500 0.021 1.069 1.175

13 49 dif__FX=~X3 49 0.987 0.014 0.000 0.006 0.000 0.500 0.011 0.965 1.013

14 50 dif__FY=~Y1 50 1.001 0.019 0.000 0.009 0.000 0.500 0.015 0.967 1.037

15 51 dif__FY=~Y2 51 0.842 0.012 0.000 0.007 0.000 0.500 0.010 0.822 0.863

16 52 dif__FY=~Y3 52 0.862 0.034 0.014 0.012 1.161 0.123 0.030 0.805 0.914
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Note that a researcher will only have one dataset available for analysis. This section
shows that LSEM model parameter output and figures are able to distinguish between
situations of noninvariant and invariant model parameters. The standard deviation of a
model parameter quantifies the variability of a model parameter across the values of the
moderator.

For identification and interpretation reasons, it is useful to specify LSEM models
with (some) invariant factor loadings. DIF effects reported in the LSEM output provide a
post hoc assessment of the variability of parameter curves across the moderator values if
parameter invariance was specified in the LSEM.

6. Simulation Study 1: Bias and RMSE

6.1. Method

In Simulation Study 1, the bias and the root mean square error (RMSE) of LSEM
estimates of parameter curves were investigated. A one-factor model for three indicators,
X1, X2, and X3, with a latent factor variable FX was specified. The data-generating model
coincided with those from the illustrative datasets presented in Section 5. In contrast to
Section 5, we only used the first three observed variables and considered a one-factor
instead of a two-factor model in Simulation Study 1.

The population parameters can be found in the directory “POPPARS” at https://osf.
io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793 (accessed on 3 June 2023). In this
simulation, sample sizes N were chosen as 250, 500, 1000, 2000, and 4000. Instead of
simulating data, random samples without replacement of sample size N were drawn from
population datasets DATA1 (noninvariant factor loadings, noninvariant factor variances
and correlations), resulting in the data-generating model (DGM) DGM1, DATA2 (invariant
factor loadings, noninvariant factor variances and correlations) resulting in DGM2, and
DATA3 (invariant factor loadings, invariant factor variances and correlations), resulting in
DGM3. The population datasets that included 130,000 subjects each can be found in the
directory “POPDATA” at https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793
(accessed on 3 June 2023).

Joint LSEM estimation was carried out using invariant item loadings and bandwidth
factor h = 1.1, 2, and 3, where the bandwidth bw was defined as bw = hN−1/5σ̂A. The
Gaussian kernel function was used. We also compared the two choices of computing
conditional covariances with local smoothing (SM; see (17)) and the weighting approach (16)
(no smoothing; NSM). Moreover, we applied LSEM with a quadratic parameter constraint
(“quad”) using a bandwidth factor h = 1.1. A grid of 13 focal points was chosen as
6, 7, . . . , 18.

We investigated the accuracy of the estimated parameter curves of the variance of
the latent factor FX , the invariant factor loading of the indicator X2, and the DIF effect for
factor loading of X2. Parameter accuracy was assessed by summarizing bias and RMSE of
estimated parameter curves across the different age values. The bias of a parameter θ(at) at
a focal point at is given by:

Bias(θ̂(at)) =
1
R

R

∑
r=1

(
θ̂r(at)− θ(at)

)
, (33)

where θ̂r(at) is the parameter estimate of θ(at) in the rth replication. The weighted absolute
bias can then be defined as:

wBias(θ̂) =
T

∑
t=1

f (at)|Bias(θ̂(at))| , (34)
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where f (at) denotes the proportion of values of the moderator variable that equal at. The
weighted root mean square error (weighted RMSE) is defined as:

wRMSE(θ̂) =
T

∑
t=1

f (at)

√√√√ 1
R

R

∑
r=1

(
θ̂r(at)− θ(at)

)2
, (35)

which is a weighted point-wise RMSE summary statistic.
In total, 2500 replications (i.e., 2500 datasets were generated and analyzed in each

condition of the simulation) were conducted. We used the R (R Core Team 2023) software
for the entire analysis of the simulation and the sirt (Robitzsch 2023b) package for LSEM
estimation.

6.2. Results

In Table 1, weighted absolute bias and weighted RMSE for the factor variance, the
invariant factor loading of X2, and the DIF effect of factor loading of X2 are presented.

It turned out that all three model parameters resulted in unbiased estimation for
moderate or large sample sizes. For DGM1 or DGM2, the quadratic parameter constraint
introduced some misspecification, which led to slight biases. Moreover, using the local
quadratic smoothing approach SM for estimating conditional covariances instead of the
weighted approach NM (e.g., no smoothing) resulted in a small error bias. Finally, biases
increased with increasing the bandwidth factor h.

Notably, using local smoothing SM for conditional covariances added variability in
terms of RMSE compared to NM. Regarding RMSE, one could conclude that h = 2 seems
preferable to h = 1.1 or h = 3 (see also Hildebrandt et al. 2016).

Overall, the findings of Simulation Study 1 demonstrated that joint LSEM estimation
resulted in approximately unbiased parameter estimates. The decrease in RMSE values
for increasing sample sizes also indicated that parameter estimates are consistent. Notably,
the recommendation of using the bandwidth factor h = 2 in pointwise LSEM (Hildebrandt
et al. 2016) also transfers to the joint LSEM estimation method.

Table 1. Simulation Study 1: Weighted absolute bias and weighted root mean square error (RMSE)
for the parameter curve θ(a) for different model parameters as a function of sample size N and three
data-generating models DGM1, DGM2 and DGM3.

Weighted Absolute Bias Weighted RMSE

h = 1.1 h = 2 h = 3 h = 1.1 h = 2 h = 3

DGM N SM NSM SM NSM SM NSM Quad SM NSM SM NSM SM NSM Quad

Variance of latent factor F

1

250 0.022 0.022 0.021 0.028 0.025 0.039 0.023 0.088 0.083 0.078 0.076 0.077 0.079 0.076
500 0.013 0.014 0.015 0.022 0.020 0.033 0.016 0.064 0.061 0.057 0.056 0.056 0.060 0.054
1000 0.007 0.009 0.010 0.018 0.016 0.029 0.011 0.048 0.046 0.042 0.043 0.042 0.048 0.039
2000 0.006 0.008 0.008 0.015 0.013 0.025 0.010 0.035 0.034 0.031 0.033 0.032 0.038 0.029
4000 0.003 0.005 0.005 0.012 0.010 0.021 0.008 0.026 0.026 0.023 0.025 0.023 0.030 0.021

2

250 0.023 0.019 0.021 0.022 0.022 0.030 0.018 0.086 0.080 0.076 0.070 0.073 0.070 0.073
500 0.013 0.011 0.014 0.017 0.017 0.026 0.011 0.063 0.059 0.055 0.053 0.054 0.054 0.052
1000 0.008 0.008 0.010 0.015 0.014 0.023 0.008 0.046 0.044 0.040 0.040 0.040 0.042 0.038
2000 0.005 0.006 0.007 0.012 0.012 0.020 0.006 0.034 0.033 0.030 0.030 0.029 0.032 0.027
4000 0.003 0.004 0.005 0.009 0.009 0.017 0.005 0.025 0.025 0.022 0.023 0.022 0.026 0.020

3

250 0.018 0.017 0.012 0.010 0.009 0.007 0.017 0.087 0.080 0.076 0.067 0.071 0.061 0.073
500 0.010 0.009 0.006 0.005 0.004 0.004 0.009 0.063 0.059 0.055 0.049 0.051 0.044 0.052
1000 0.006 0.006 0.004 0.004 0.003 0.003 0.006 0.047 0.044 0.040 0.036 0.037 0.033 0.038
2000 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.034 0.032 0.029 0.026 0.026 0.023 0.026
4000 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.025 0.024 0.021 0.020 0.019 0.017 0.019
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Table 1. Cont.

Weighted Absolute Bias Weighted RMSE

h = 1.1 h = 2 h = 3 h = 1.1 h = 2 h = 3

DGM N SM NSM SM NSM SM NSM Quad SM NSM SM NSM SM NSM Quad

Invariant factor loading of X2

1

250 0.003 0.005 0.006 0.004 0.008 0.004 0.005 0.089 0.090 0.089 0.089 0.090 0.088 0.089
500 0.001 0.001 0.000 0.000 0.002 0.000 0.001 0.063 0.063 0.062 0.063 0.063 0.062 0.063
1000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.043 0.043 0.043 0.043 0.044 0.043 0.043
2000 0.001 0.002 0.000 0.002 0.002 0.001 0.001 0.031 0.031 0.030 0.031 0.031 0.031 0.031
4000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.022 0.022 0.022 0.022 0.022 0.022 0.022

2

250 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.091 0.091 0.091 0.090 0.091 0.090 0.091
500 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.062 0.062 0.062 0.062 0.062 0.061 0.062
1000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.045 0.045 0.045 0.045 0.045 0.045 0.045
2000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.031 0.031 0.031 0.031 0.031 0.031 0.031
4000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.022 0.022 0.022 0.022 0.022 0.022

3

250 0.003 0.003 0.002 0.003 0.002 0.003 0.003 0.090 0.090 0.090 0.090 0.090 0.090 0.090
500 0.003 0.003 0.003 0.003 0.003 0.002 0.003 0.064 0.064 0.063 0.064 0.064 0.064 0.064
1000 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.043 0.043 0.043 0.043 0.043 0.044 0.043
2000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.032 0.032 0.032 0.032 0.032 0.032
4000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.022 0.022 0.022 0.022 0.022 0.022

DIF for factor loading of X2

1

250 0.007 0.007 0.010 0.012 0.013 0.015 0.013 0.123 0.109 0.111 0.098 0.105 0.094 0.123
500 0.004 0.006 0.008 0.011 0.012 0.014 0.013 0.085 0.079 0.078 0.071 0.075 0.068 0.092
1000 0.003 0.004 0.006 0.009 0.010 0.013 0.012 0.061 0.057 0.055 0.051 0.053 0.049 0.069
2000 0.002 0.004 0.005 0.008 0.008 0.012 0.012 0.044 0.041 0.040 0.037 0.038 0.036 0.053
4000 0.002 0.003 0.004 0.007 0.007 0.010 0.012 0.032 0.031 0.029 0.027 0.028 0.027 0.041

2

250 0.005 0.005 0.005 0.004 0.004 0.004 0.009 0.121 0.110 0.109 0.098 0.105 0.094 0.122
500 0.002 0.002 0.002 0.002 0.002 0.002 0.008 0.083 0.077 0.075 0.069 0.072 0.065 0.089
1000 0.001 0.001 0.001 0.001 0.001 0.001 0.008 0.061 0.058 0.055 0.051 0.053 0.048 0.068
2000 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.043 0.041 0.039 0.036 0.037 0.034 0.051
4000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.032 0.030 0.028 0.026 0.027 0.025 0.039

3

250 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.118 0.109 0.106 0.098 0.102 0.094 0.120
500 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.083 0.079 0.076 0.071 0.073 0.067 0.090
1000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.059 0.056 0.053 0.050 0.050 0.047 0.066
2000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.044 0.042 0.039 0.037 0.037 0.035 0.051
4000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.031 0.030 0.028 0.026 0.026 0.025 0.038

7. Simulation Study 2: Estimation of Variability of Model Parameters and Statistical
Significance Tests

7.1. Method

In Simulation Study 2, the bias of standard deviation statistics for parameter variation
and the properties of significance tests for parameter variation are investigated. The same
three data-generating models DGM1, DGM2, and DGM3 as in Simulation Study 1 (see
Section 6.1) were utilized.

The chosen sample sizes in this simulation were N = 500, 1000, 2000, and 4000.
As in Simulation Study 1, samples of sample size N were drawn without replacement
from population datasets DATA1 , DATA2 , and DATA3 for DGM1, DGM2, and DGM3,
respectively. The population datasets that included 130,000 subjects can be found in the
directory “POPDATA” at https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793
(accessed on 3 June 2023).

As in Simulation Study 1, a one-factor model with indicators X1, X2, and X3 was
specified. Throughout all simulation conditions, a bandwidth factor of h = 2 was chosen.
The bias of the two standard deviation estimators ŜDθ(a) and ŜDθ(a),bc defined in (28) and
(29) was assessed. Significance testing for parameter variation was based on the standard
deviation (see (30)), which uses a normal distribution approximation and the Wald test
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(see (31)), which uses a chi-square distribution as a null distribution. Statistical significance
tests were performed with significance levels of 0.05 and 0.01. The bias of the standard
deviation variability statistics and significance tests of parameter variation was computed
for the variance of the latent factor, the three DIF effects of the factor loadings, and the three
residual variances.

In total, 2500 replications were conducted in all simulation conditions. The R software
(R Core Team 2023) was used for analyzing this simulation study, and the R package sirt
(Robitzsch 2023b) was employed for LSEM estimation and significance testing.

7.2. Results

In Table 2, the bias of raw and bias-corrected (“bc”) estimates of the standard deviation
variability measure SDθ(a) are presented. In DGM1, all parameters have nonvanishing
SDθ(a) values for the population dataset DATA1 . In this case, the raw SD estimate showed
some slight positive bias for sample sizes N = 500 and 1000. The bias-corrected estimates
were generally negatively biased, although the biases were not very large. In DGM2, only
the variance of the latent factor F had a true parameter variation larger than 0. In this
situation, raw estimates were approximately unbiased, while the bias-corrected estimates
were negatively biased. If there was no true parameter variation, such as for DIF effects or
residual variances in DGM2 or all parameters in DGM3, the bias-corrected estimates were
less biased than the raw standard deviation estimate.

Table 2. Simulation Study 2: Bias of raw and bias-corrected estimators of the standard deviation SDθ(a)
for the parameter curve θ(a) for different model parameters as a function of sample size N and three
data-generating models DGM1, DGM2 and DGM3.

DGM 1 DGM 2 DGM 3

SDθ(a) SDθ(a) SDθ(a)

N true raw bc true raw bc true raw bc

Variance of latent factor F
500 0.081 −0.002 −0.012 0.054 0.002 −0.013 0 0.035 0.013

1000 0.081 −0.003 −0.009 0.054 −0.001 −0.009 0 0.027 0.010
2000 0.081 −0.003 −0.006 0.054 −0.002 −0.006 0 0.020 0.007
4000 0.081 −0.003 −0.005 0.054 −0.002 −0.004 0 0.015 0.005

DIF for factor loading of X1
500 0.047 0.007 −0.021 0 0.041 0.013 0 0.039 0.013

1000 0.047 0.001 −0.017 0 0.031 0.010 0 0.029 0.010
2000 0.047 −0.002 −0.012 0 0.023 0.007 0 0.022 0.007
4000 0.047 −0.002 −0.008 0 0.017 0.005 0 0.017 0.005

DIF for factor loading of X2
500 0.021 0.021 −0.007 0 0.038 0.012 0 0.036 0.012

1000 0.021 0.013 −0.007 0 0.029 0.009 0 0.027 0.009
2000 0.021 0.006 −0.008 0 0.022 0.007 0 0.021 0.007
4000 0.021 0.003 −0.007 0 0.017 0.005 0 0.016 0.005

DIF for factor loading of X3
500 0.022 0.009 −0.008 0 0.022 0.006 0 0.021 0.006

1000 0.022 0.005 −0.006 0 0.017 0.005 0 0.016 0.005
2000 0.022 0.002 −0.004 0 0.013 0.004 0 0.012 0.004
4000 0.022 0.001 −0.002 0 0.009 0.003 0 0.009 0.003

Residual variance of X1
500 0.012 0.014 −0.001 0 0.024 0.009 0 0.024 0.009

1000 0.012 0.009 −0.003 0 0.018 0.006 0 0.018 0.006
2000 0.012 0.005 −0.003 0 0.014 0.005 0 0.014 0.005
4000 0.012 0.003 −0.003 0 0.011 0.003 0 0.011 0.003
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Table 2. Cont.

DGM 1 DGM 2 DGM 3

SDθ(a) SDθ(a) SDθ(a)

N true raw bc true raw bc true raw bc

Residual variance of X2
500 0.007 0.020 0.003 0 0.027 0.010 0 0.027 0.010

1000 0.007 0.014 0.001 0 0.021 0.007 0 0.020 0.007
2000 0.007 0.010 −0.001 0 0.016 0.005 0 0.016 0.005
4000 0.007 0.006 −0.002 0 0.012 0.004 0 0.012 0.004

Residual variance of X3
500 0.011 0.009 −0.002 0 0.018 0.007 0 0.018 0.007

1000 0.011 0.006 −0.002 0 0.014 0.005 0 0.014 0.005
2000 0.011 0.003 −0.003 0 0.010 0.003 0 0.011 0.004
4000 0.011 0.002 −0.002 0 0.008 0.002 0 0.008 0.003

true = true value of SDθ(a) in infinite sample size (i.e., at the population level); raw = raw estimate ŜDθ(a) of SDθ(a)

(see Equation (28)); bc = bias-corrected estimate ŜDθ(a),bc of SDθ(a) (see Equation (29)).

Overall, one could say that for smaller values of true variability, the positive bias in
the raw SD estimate was larger than the underestimation of the bias-corrected SD estimate.
An improved SD statistic might be obtained by computing some weighted average of the
raw and the bias-corrected estimate.

Table 3 presents type I error and power rates for the different LSEM model parameters.
Significance testing based on the SD statistics had inflated type I error rates. If the nominal
level was chosen as 1%, the empirical error rate was about 5%. Moreover, the Wald
statistic had type I error rates lower than the nominal level in many simulation conditions.
Nevertheless, significance testing based on the standard deviation has substantially more
statistical power. If a target nominal significance level for the SD test statistic were 5%, it is
advised to use a significance level of 0.01.

Table 3. Simulation Study 2: Type I and power rates for the significance test for variability in a
parameter curve θ(a) for the two test statistics based on SDθ(a) (SD) and the Wald test (WA) as a
function of sample size N and three data-generating models DGM1, DGM2 and DGM3.

DGM1 DGM2 DGM3

N SD5 WA5 SD1 WA1 SD5 WA5 SD1 WA1 SD5 WA5 SD1 WA1

Variance of latent factor F
500 92.4 46.9 79.8 29.6 66.0 17.8 44.2 8.6 16.3 1.6 4.9 0.5

1000 99.7 88.1 98.5 75.4 90.0 45.7 76.1 26.5 17.4 2.8 5.9 0.8
2000 100.0 99.8 100.0 99.1 99.1 83.0 97.0 65.8 17.7 3.6 5.8 0.9
4000 100.0 100.0 100.0 100.0 100.0 99.5 100.0 98.1 18.3 6.4 7.7 2.0

DIF for factor loading of X1
500 23.7 1.3 8.2 0.4 12.9 0.3 3.4 0.1 13.2 0.4 3.4 0.0

1000 46.1 6.0 22.8 1.2 14.8 0.8 5.2 0.2 14.7 0.5 5.1 0.1
2000 75.2 25.2 52.1 10.7 14.4 1.6 4.9 0.3 15.9 1.7 5.5 0.2
4000 96.2 70.6 89.6 48.7 17.5 4.0 6.1 1.1 17.9 4.1 7.1 1.1

DIF for factor loading of X2
500 12.3 0.4 3.3 0.1 12.4 0.3 3.5 0.0 12.3 0.3 3.3 0.0

1000 21.7 2.2 8.6 0.5 13.1 0.7 4.1 0.1 13.9 0.8 4.7 0.1
2000 31.2 5.3 14.9 1.5 16.7 1.8 5.8 0.4 16.3 1.4 5.3 0.4
4000 52.4 19.1 32.1 8.2 16.2 3.6 6.9 0.7 18.1 4.2 7.1 1.3
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Table 3. Cont.

DGM1 DGM2 DGM3

N SD5 WA5 SD1 WA1 SD5 WA5 SD1 WA1 SD5 WA5 SD1 WA1

DIF for factor loading of X3
500 18.4 0.4 5.4 0.1 7.5 0.2 1.6 0.0 8.3 0.1 1.8 0.0

1000 38.6 2.0 16.5 0.4 10.5 0.4 2.5 0.0 12.1 0.3 2.9 0.0
2000 66.1 13.7 42.5 4.6 14.2 0.8 4.6 0.0 13.8 1.0 4.6 0.2
4000 92.3 52.0 81.0 28.8 16.1 2.3 5.8 0.5 17.7 2.8 6.2 0.4

Residual variance of X1
500 20.7 2.3 7.5 0.9 18.2 2.2 6.8 0.5 16.6 2.0 6.2 0.7

1000 25.3 4.0 10.4 1.6 16.6 2.8 5.6 0.9 17.8 3.1 6.5 0.8
2000 34.7 8.4 17.4 2.6 18.3 4.4 6.4 1.2 18.0 4.3 7.1 1.0
4000 49.1 17.7 29.1 7.1 17.3 5.7 7.0 1.5 19.0 6.0 7.2 1.6

Residual variance of X2
500 16.9 1.9 5.9 0.4 17.7 1.9 6.4 0.4 17.1 1.8 6.3 0.6

1000 18.7 2.5 7.0 0.7 17.6 2.8 6.2 0.7 17.8 2.8 5.7 0.9
2000 22.1 4.8 8.4 1.3 18.5 4.4 7.1 1.3 16.7 3.6 5.9 1.0
4000 29.6 8.8 13.3 3.0 18.0 5.9 7.4 1.6 19.0 6.5 7.1 1.6

Residual variance of X3
500 25.4 2.9 11.2 0.8 16.7 1.4 5.6 0.5 17.7 2.0 6.1 0.5

1000 34.1 5.5 15.9 1.5 17.9 2.7 6.2 0.7 18.1 2.7 6.4 0.8
2000 47.3 12.0 26.6 4.8 17.2 3.3 6.4 0.8 18.3 4.0 6.7 1.1
4000 68.6 26.3 47.4 12.7 17.9 5.3 7.0 1.4 19.2 6.5 7.7 1.7

Note. SD5 = test statistic based on bias-corrected SDθ(a) estimate at 5% confidence level; WA5 = Wald test
statistic at 5% confidence level; SD1 = test statistic based on bias-corrected SDθ(a) estimate at 1% confidence level;

WA1 = Wald test statistic at 1% confidence level; Cells with yellow-gray colored background correspond to type
I error rates, while cells with white background color correspond to power rates.

8. Empirical Example: A Reanalysis of SON-R

8.1. Data

According to the age differentiation hypothesis, cognitive abilities become more
differentiated with increasing age during childhood. Hülür et al. (2011) used data from
the German standardization of the SON-R 21/2−7 intelligence test to examine age-related
differentiation of cognitive abilities from age 21/2 to age 7. The SON-R 21/2−7 intelligence
test is a nonverbal intelligence test for children and consists of six indicators (i.e., six
subtests). The SON-R 21/2−7 test contains two subscales measured by three indicators each.
The performance subscale (with factor Fp) contains indicators mosaics (p1), puzzles (p2),
and patterns (p3). The reasoning subscale (with factor Fr) contains the indicators categories
(r1), analogies (r2), and situations (r3).

Unfortunately, the SON-R dataset is not publicly available, and the authors of this
paper cannot publicly share the dataset on the internet. To replicate the LSEM analysis
of this example, we generated a synthetic dataset of the SON-R 21/2−7 data based on the
original dataset used in Hülür et al. (2011). The same sample size of N = 1027 children
was simulated. In the synthetic data generation, we relied on a recently proposed method
by Jiang et al. (2021) (see also Grund et al. 2022, Nowok et al. 2016 or Reiter 2023) that
combines the distinct approaches of simulating a dataset based on a known distribution
and the approach of adding to noise to original data to prevent data disclosure or person
identification. The noisy versions of the original dataset were simulated with a reliability
of 0.95 (Grund et al. 2022), and quadratic relations among variables were allowed. The data
synthesis model was separately carried out in 18 groups of children (i.e., in 9 age groups
for male and female children, respectively). The values of the age and gender variables
were held fixed in the analysis meaning that these demographic variables had the same
distribution in the synthetic data as in the original data. In total, 50.8% of the children in the
sample was male. The synthetic data and syntax for synthetic data generation can be found
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in the directory “SON-R” at https://osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793
(accessed on 3 June 2023).

The indicator variables were linearly transformed such that the mean equaled zero
and the standard deviation equaled one for children aged between 4.0 and 6.0 years. This
is an arbitrary choice and only affects the scaling of the variables. The assessment of model
parameter heterogeneity in the LSEM is independent of this choice. Alternatively, one
might also standardize the indicator variables for children in the total sample with ages
between 2.5 and 7.5 years.

A two-dimensional CFA model involving the performance and the reasoning factor
was specified in an LSEM analysis. The mean structure remained unmodeled because the
primary goal of this analysis was to investigate the age differentiation hypothesis. For
model identification, the factor loadings were assumed as invariant across age, and the
first loading of both scales (i.e., loadings of p1 and r1) were fixed at one. In accordance
with Hildebrandt et al. (2016) and the findings of Simulation Study 1, the bandwidth
factor of h = 2 was chosen, resulting in a bandwidth bw = 2N−1/5σ̂A, where σ̂A = 1.23 is
the estimated standard deviation of the age variable. Because the LSEM model involved
invariance constraints among parameters, a joint estimation approach was employed.
For statistical inference and the test of parameter variation, R = 200 bootstrap samples
were drawn. Replication syntax can also be found in the directory “SON-R” at https:
//osf.io/puaz9/?view_only=63ffb2fd30f5400e89c59d03366bf793 (accessed on 3 June 2023).

8.2. Results

Figure 5 displays the histogram of the age variable. The age of children ranged
between 2.44 and 7.72 years, with a mean of 4.89 and a standard deviation of 1.23. The
histogram indicated that the intended age range between 2.5 and 7 years of the SON-R
21/2−7 test was approximately uniformly distributed.
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Figure 5. SON-R example: Histogram for moderator age.

The estimated LSEM model had an acceptable model fit regarding typical model fit
effect sizes. The fit statistics without bias correction were RMSEA = 0.061, CFI = 0.952,
TLI = 0.960, GFI = 0.963, and SRMR = 0.055.

In Listing 8, parts of the LSEM output of lsem.bootstrap() are displayed. According
to the specified model, the parameter variation (i.e., SD and SD_bc) for factor loadings (i.e.,
Fp=∼p1, . . . , F3=∼r3) was zero because the parameters were assumed invariant across age.
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Listing 8. SON-R example: Part of the output of lsem.bootstrap() function.

1 Parameter Estimate Summary

2
3 par parindex M SD SD_bc SD_se SD_t SD_p MAD Min Max

4 1 Fp=~p1 1 1.000 0.000 0.000 0.000 0.000 0.500 0.000 1.000 1.000

5 2 Fp=~p2 2 0.854 0.000 0.000 0.000 0.000 0.500 0.000 0.854 0.854

6 3 Fp=~p3 3 0.803 0.000 0.000 0.000 0.000 0.500 0.000 0.803 0.803

7 4 Fr=~r1 4 1.000 0.000 0.000 0.000 0.000 0.500 0.000 1.000 1.000

8 5 Fr=~r2 5 1.041 0.000 0.000 0.000 0.000 0.500 0.000 1.041 1.041

9 6 Fr=~r3 6 1.160 0.000 0.000 0.000 0.000 0.500 0.000 1.160 1.160

10 7 Fp~~Fp 7 0.445 0.038 0.000 0.016 0.000 0.500 0.033 0.323 0.504

11 8 Fr~~Fr 8 0.232 0.019 0.000 0.013 0.000 0.500 0.017 0.181 0.260

12 9 Fp~~Fr 9 0.282 0.033 0.017 0.011 1.530 0.063 0.021 0.095 0.334

13 10 p1~~p1 10 0.347 0.082 0.076 0.020 3.777 0.000 0.057 0.032 0.532

14 11 p2~~p2 11 0.498 0.074 0.060 0.021 2.828 0.002 0.064 0.365 0.611

15 12 p3~~p3 12 0.411 0.046 0.030 0.015 2.057 0.020 0.031 0.122 0.573

16 13 r1~~r1 13 0.510 0.120 0.114 0.024 4.734 0.000 0.098 0.172 0.636

17 14 r2~~r2 14 0.510 0.110 0.103 0.024 4.206 0.000 0.096 0.333 0.675

18 15 r3~~r3 15 0.571 0.055 0.019 0.022 0.887 0.188 0.046 0.431 0.677

19 [...]

20 32 std__Fp~~Fr 32 0.878 0.071 0.019 0.041 0.480 0.316 0.041 0.395 0.949

21 [...]

22 47 dif__Fp=~p1 47 1.005 0.038 0.013 0.016 0.833 0.202 0.029 0.936 1.157

23 48 dif__Fp=~p2 48 0.868 0.089 0.077 0.029 2.662 0.004 0.077 0.400 0.985

24 49 dif__Fp=~p3 49 0.808 0.097 0.093 0.020 4.749 0.000 0.082 0.673 1.195

25 50 dif__Fr=~r1 50 0.994 0.068 0.000 0.043 0.000 0.500 0.054 0.770 1.233

26 51 dif__Fr=~r2 51 1.053 0.105 0.078 0.043 1.803 0.036 0.082 0.809 1.560

27 52 dif__Fr=~r3 52 1.159 0.126 0.092 0.045 2.056 0.020 0.107 0.567 1.338

The age differentiation hypothesis refers to the variances of the performance scale (i.e.,
Fp∼∼Fp), the variance of the reasoning scale (i.e., Fr∼∼Fr), and the correlation of both factors
(i.e., std Fp∼∼Fr). Figure 6 displays the parameter curves with confidence intervals for
the two variances and the correlation. From the R output presented in Listing 8, it can be
seen that the variances parameter curves did not show significant parameter variation, and
the bias-corrected standard deviation estimate SD_bc was 0.000. The correlation between
the performance and the reasoning scale was 0.878 on average, with a small bias-corrected
standard deviation estimate of 0.019 that turned out to be nonsignificant (p = 0.316). Hence,
there was no evidence for the age differentiation hypothesis in the SON-R dataset.

Figure 7 displays the parameter curves of the DIF effects of the factor loadings. The
corresponding parameters for DIF effects can be found in lines 47 to 52 in Listing 8 (i.e.,
parameters dif Fp=∼p1, . . . , dif Fr=∼r3). There was substantial parameter variation in
terms of the bias-corrected standard deviation SD_ bc for the loadings of p2 (SDbc = 0.077,
p = 0.004), p3 (SDbc = 0.077, p < 0.001), r2 (SDbc = 0.078, p = 0.036), and r3 (SDbc = 0.092,
p = 0.020).
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Figure 6. SON-R example: Parameter curves for variances of performance (Fp∼∼Fp) and reasoning
(Fr∼∼Fr) and the correlation of performance and reasoning (std Fp∼∼Fr).
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Figure 7. SON-R example: Parameter curves for DIF effects of factor loadings for performance (latent
variable Fp) and reasoning (latent variable Fr).

Finally, residual variances are displayed in Figure 8. From the results from Listing 8,
it is evident that residual variances of p1 (SDbc = 0.076, p < 0.001), p2 (SDbc = 0.060,
p = 0.002), r1 (SDbc = 0.114, p < 0.001), and r2 (SDbc = 0.103, p < 0.001) were statistically
significant at the 0.01 significance level.



J. Intell. 2023, 11, 175 28 of 34

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

p1~~p1

Age

Pa
ra
m
et
er

3 4 5 6 7
0.
0

0.
2

0.
4

0.
6

0.
8

p2~~p2

Age

Pa
ra
m
et
er

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

p3~~p3

Age

Pa
ra
m
et
er

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

r1~~r1

Age

Pa
ra
m
et
er

3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

r2~~r2

Age

Pa
ra
m
et
er

3 4 5 6 7
0.
0

0.
2

0.
4

0.
6

0.
8

r3~~r3

Age

Pa
ra
m
et
er

Figure 8. SON-R example: Parameter curves for residual variances.

Note that Hülür et al. (2011) used a pointwise LSEM approach instead a joint LSEM
estimation approach. The identification of parameters in the covariance structure of factors
was achieved in Hülür et al. (2011) by the constraint that the pointwise average of factor
loadings equaled 1. Due to the different estimation approaches, it is expected that there are
slight differences between our joint LSEM estimation approach and the original analysis in
Hülür et al. (2011). The parameter curve of the correlation between the performance and the
reasoning factors was similar in both analyses, with the exception that the factor correlation
for small age values was much lower in the joint estimation approach, as displayed in
Figure 6.

An anonymous reviewer wondered whether the factor correlation could be meaning-
fully interpreted if factor loadings did not show invariance across the moderator values.
We argued elsewhere that measurement invariance would be a helpful but not a necessary
condition for a meaningful interpretation of a factor correlation or a factor variance (see
Robitzsch and Lüdtke 2023). In fact, a violation of measurement invariance only implies
that results would change if a subset of indicators was used in the factor model. Because the
SON-R instrument is held fixed in test administration and statistical analysis, this property
of item selection invariance is not required. Of course, any identification constraint on
factor loadings must be imposed to identify a factor correlation. The choice of identification
constraint is somehow arbitrary. It could be invariance of all factor loadings, invariance of
loadings of a subset of indicators, or a pointwise constraint of the average loadings (i.e., the
average loading should be 1 for all indicators of a factor).
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9. Discussion

In this article, we discussed the implementation of LSEM in the R package sirt. Joint
LSEM estimation and two different significance tests for a test of parameter variation were
introduced and evaluated through two simulation studies.

Simulation Study 1 demonstrated that the joint LSEM estimation method can be
successfully applied to structural equation models whose parameters vary across different
values of the moderator variable. It turned out that the bandwidth factor h = 2 can
generally be recommended as a default choice. Notably, LSEM model parameters can be
quite variable for small (N = 250) or moderate sample sizes (N = 500). In Simulation Study
2, two significance testing approaches for constant parameter curves were investigated: a
test statistic based on the standard deviation of a parameter curve and a Wald-type test
statistic. Both testing approaches rely on bootstrap samples for statistical inference. The
standard-deviation-based test statistics had a higher power than the Wald test-type test
statistic, but also came with an inflated type-I error rate. It is recommended to use the
significance test based on the standard deviation with a significance level of 1% if a nominal
significance level of 5% is required.

The application of LSEM in applied research can be regarded more as an exploratory
than a confirmatory statistical method (Jacobucci 2022). Functional forms of parameter
curves obtained with LSEM can be validated in other samples or future studies with
more confirmatory approaches, such as moderated nonlinear factor analysis. We would
like to emphasize that sufficiently large sample sizes are required in LSEM in order to
allow a reliable interpretation of the obtained nonlinear parameter curves. Moreover, the
true variability in parameter curves must be sufficiently large to have enough power to
statistically detect the significant parameter variability. A statistical significance test on
parameter curve regression coefficients in a moderated nonlinear factor analysis might have
more power than a test based on the nonparametric LSEM method. Finally, moderated
nonlinear factor analysis, if estimated by maximum likelihood, allows likelihood ratio tests
for testing among nested models or using information criteria for model comparisons.

In this article, the moderator variable was exclusively age and a bounded variable.
There might be applications in which the moderator differs from age, such as unbounded
self-concept factor variables or ability values obtained from item response models (Basarkod
et al. 2023). Because the metric of such variables is often arbitrary, it is advised to trans-
form such moderators into a bounded metric. For example, the percentage ranks of an
unbounded moderator variable could be utilized to obtain a bounded moderator variable.

If the moderator variable is an error-prone variable such as a factor variable or a scale
score, an expected a posteriori (EAP) factor score estimate can be used as a moderator to
obtain unbiased estimates of LSEM model parameters (Bartholomew et al. 2011).

As explained in Section 4, datasets with missing values should either be handled
with pairwise deletion methods for computing sufficient statistics (i.e., the conditional
covariance matrices) in LSEM or should be multiply imputed. The imputation model
should be flexibly specified to represent the complex associations modeled with LSEM. For
example, the moderator variable could be discretized into 5 or 10 distinct groups, and the
resulting datasets should be separately imputed in the separate subdatasets. Statistical
inference should be carried out that involves the multiply imputed datasets (Little and
Rubin 2002).

Finally, we only discussed LSEM in the case of one moderator variable. With more
than one moderator variable (Hartung et al. 2018), moderated nonlinear factor analysis
might be easier to estimate because multivariate kernel functions for LSEM are difficult to
estimate with sparse data.
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