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Abstract: The present study conducted a randomized control trial to assess the efficacy of two spatial
intervention programs aimed to improve Grade 4 (N = 287) students’ spatial visualization skills and
math performance. The first treatment (N = 98) focused on isolated spatial training that included
40 min of digital spatial training across fourteen weeks. The second treatment (N = 92) embedded
spatial visualization skill development into math lessons, along with the digital spatial training that
provided practice of the newly acquired skills. A business-as-usual group acted as a control (N = 97).
Engagement with the embedded intervention program (i.e., both lessons and digital training) showed
large additive effects, highlighting the role of spatial reasoning tools to support the transfer of spatial
reasoning to math. The isolated intervention program with the digital spatial training had a transfer
effect on math, compared to a business-as-usual control, while spatial reasoning improvements for
this group were mixed. The spatial skills targeted in the digital training had a mediation effect
on math performance, despite not increasing in the pre–post-test design. The effects of the digital
training cohort were moderated by initial spatial skill, with students with lower spatial reasoning
making the least gains in math.

Keywords: spatial reasoning; math; spatial digital training; spatial visualization

1. Introduction

Spatial skills have broad implications for mathematics understanding, achievement,
and pursuit of STEM careers (Hegarty and Kozhevnikov 1999; Sorby et al. 2013; Wai et al.
2009). In their meta-analysis, Xie et al. (2020) demonstrated strong associations between
spatial reasoning and mathematics and that these positive associations are not moderated
by any one type of spatial reasoning or age. These findings highlight that improvement in
spatial reasoning will have positive outcomes for mathematics understanding.

Recently, training studies have focused on leveraging the development of spatial skills
for mathematics outcomes. However, despite positive trends, many questions remain about
the conditions most conducive to successful transfer between spatial training and mathe-
matics achievement (Hawes et al. 2022; Lowrie et al. 2020). In this study, we addressed the
critical question of the role of spatial curriculum versus skills training in this relationship by
implementing spatial visualization training either in the form of digital games or a learning
program combined with digital games. Furthermore, to account for teacher knowledge
and confidence in spatial reasoning (Atit and Rocha 2020), all educators, including control
group educators, were offered professional learning on the importance of spatial reasoning.
This paper reports on the outcomes of this novel intervention design and the implications
for incorporating spatial skills development into real-world classroom learning.

1.1. Intervention Studies

Across much of the literature, intervention studies fall into two main categories, as
defined by Hawes et al. (2023), isolated and embedded approaches. Isolated approaches
refer to repeated practice of a defined skill, such as spatial scaling, whilst embedded
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approaches consider spatial skills and related mathematics content simultaneously. Within
the isolated approach, initial studies of spatial intervention effects on mathematics have
been mixed (Cheng and Mix 2014; Hawes et al. 2015). The first published experimental
study of spatial training with a transfer to mathematics was by Cheng and Mix (2014). In
this study, they trained mental rotation for 40 min and found improvements in 6–8-year-
old children’s ability to complete missing term problems (e.g., 4 + __ = 7). They posited
possible reasons for this transfer, such as an improved ability to rotate equations into more
conventional formats or an increase in visuospatial working memory capacity. Hawes
et al. (2015) attempted a replication and extension of this study with digital mental rotation
training occurring three times a week (15–20 min per session) over six weeks. They found
improvements in 2D mental rotation, but they did not find transfer to other spatial or
mathematics tasks.

Within the embedded approaches, longer-term instruction-based interventions subse-
quently produced a broader range of impacts on spatial and mathematics skills (Hawes et al.
2017; Lowrie et al. 2017; Mulligan et al. 2020). Hawes et al. (2017) reported on a 32-week in-
tervention with a spatialized geometry program implemented by teachers, which included
professional development on the teaching and learning of spatial reasoning. The program
included spatialized geometry content (including concepts of symmetry, rotations, area
measurement, and proportional reasoning) and quick challenge spatial activities designed
to develop spatial visualization skills. In this study, they reported improvements in spatial
language, visual-spatial geometry (e.g., paper folding and 2D shapes), symbolic compari-
son (i.e., numbers) as well as 2D mental rotation. Meanwhile, Lowrie et al. (2017) replaced
standard geometry instruction with a 10-week spatial program developed in collaboration
with teachers. The program focused on mental rotation, spatial visualization, and spatial
orientation and resulted in overall improvements in mathematics, particularly geometry
and measurement, relative to business-as-usual controls. In this study, the impact on num-
ber problems was negligible; however, the participants had similar gains in their number
knowledge compared to the control group. Similarly, Mulligan et al. (2020) embedded
spatial transformation and structuring skills into a longitudinal mathematics program with
students across Grades 3 and 4. This study reported improvement for the intervention
students across patterns and structures and general spatial reasoning skills, with students
demonstrating advanced spatial thinking but did not find transfer to general mathematics.

Many studies have since reported different methods of spatial training with the goal
of improving mathematics with varying degrees of success and transfer (e.g., Gilligan et al.
2019; Lowrie et al. 2019, 2021; Mix et al. 2021). These studies recently culminated in a
meta-analysis that reported the global benefit of spatial training on mathematics, with a
Hedges’s g of .279 (Hawes et al. 2022). However, the authors of the meta-analysis were
still unclear about the nature of transfer, that is, under which conditions transfer was most
likely to occur. They reported two moderator effects, age and the use of physical resources,
meaning that transfer effects were greater for older children and for interventions that
included physical resources (regardless of whether the training involved worksheets or
digital training).

Hawes et al. (2022) did not explore the use of pedagogy in their analysis. Based on
the studies included in the meta-analysis and the existing literature, the use of spatial
pedagogy seems rare, with a general focus on training of spatial skills (e.g., mental rotation
or spatial visualization; Gilligan et al. 2019; Mix et al. 2021) or spatial tools (e.g., gesture
and language; Bower et al. 2020; Bower and Liben 2021). Successful intervention studies
by Lowrie et al. (2018a, 2018b, 2019, 2021) and Mulligan et al. (2020) have attempted
to overcome this limitation by including spatial pedagogy combined with professional
learning (PL) around the benefits of spatial reasoning. However, it is possible that the
PL delivered to the intervention program teachers played a role in their findings. Other
studies have overcome this by delivering parallel PL to the control groups without the
same intervention benefits (Hawes et al. 2017).
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1.2. The Nature of Transfer

Many theoretical accounts have been compiled to explore the nature of transfer be-
tween spatial skills development and mathematics (Resnick et al. 2020; Sinclair and Bruce
2015; Mix and Battista 2018). Yet, the exact circumstances that facilitate the transfer are still
unknown; Gagnier and Fisher (2020) refer to this as the “black box of translation” (p. 1).
The problem is not just about the mechanism that allows the transfer to take place but how
to make the skills training, currently conducted in controlled environments, accessible for
teachers and beneficial for students (Green and Newcombe 2020).

Transfer in the context of spatial training and mathematics has been classified in
degrees. Gilligan et al. (2019) reported near transfer for both mental rotation and spatial
scaling training, that is, improvements in test performance on the skills trained in the
intervention. However, the nature of intermediate and far transfer differed according
to the training condition. For mental rotation training, improvements were found in
spatial scaling (intermediate transfer) and missing term and geometry-shape problems (far
transfer). For the spatial scaling group, there were no intermediate transfer effects, but
there were improvements in number line estimation and geometry shape (far transfer). It is
interesting to note that neither group showed improvements in symmetry problems relative
to the control group. One conclusion to be reached from this is that the mechanism of
transfer is impacted by the content of the training materials. Gilligan et al. (2019) delivered
their intervention in the same way for both training conditions, but the outcomes varied.

Stieff and Uttal (2015) were cautiously optimistic about the nature of transfer from
spatial training to STEM outcomes. They argued that although the outlook is promising,
more work is needed to understand the effectiveness of spatial training with realistic
outcomes from students. Resnick and Stieff (forthcoming) hypothesized that inconsistencies
in transfer to date might be due to the stringent and narrow conditions of training studies.
They proposed that a more practical and sustainable solution might be to develop skills
across a variety of settings and tasks, thereby providing more opportunities to incorporate
learning across contexts. This model may hold some clues as to why the embedded
interventions (e.g., Hawes et al. 2017; Lowrie et al. 2017, 2019, 2021) demonstrate broader
transfer. When spatial skills training is embedded in real-world, contextually rich activities,
the results may be more meaningful in terms of student learning and thus more impactful
and transferable (Resnick and Stieff, forthcoming).

1.3. Spatial Visualization

In their meta-analysis, Hawes et al. (2022) reported that a large proportion of training
studies focused on spatial visualization training. Spatial visualization is often dubbed a
“catch-all” phrase for complex spatial tasks that do not fit naturally within a clear category
(Battista et al. 2018; Linn and Petersen 1985; Patahuddin et al. 2018). However, unlike
other spatial skills that may act as a precursor to higher-level mathematical content (e.g.,
mental rotation; Battista et al. 2018, or mental transformation; Gunderson et al. 2012),
many tasks that comprise spatial visualization sit squarely within mathematics curricula in
elementary grades (e.g., symmetry, 2D to 3D transformations; Hawes et al. 2017; Ramful
et al. 2017). The fact that this level of mathematics draws explicitly on spatial visualization
skills provides an opportunity to value-add to existing curricula by drawing on knowledge
from cognitive and learning sciences (Stieff and Uttal 2015) in mathematics instruction.

1.3.1. Reflection and Symmetry

There is a pervasive notion that symmetry is about folding (Leikin et al. 2000; Ng
and Sinclair 2015; Ramful et al. 2015); in fact, that is how it is measured in psychology
(Ekstrom et al. 1976). However, more broadly, it involves reflections and relations to the
line of symmetry itself and between components; for example, the slope of the incline
line of symmetry changes the orientation of the objects being reflected (Ramful et al.
2015). Reflection and symmetry are inextricably linked and are critical for higher-level
mathematics (Clements and Battista 1992; Leikin et al. 2000; Ng and Sinclair 2015).
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Symmetry is not just a mathematical construct but intrinsic to mathematics (Sinclair
2004). Consider the balance between the sides of an equal sign; symmetry offers a unique
perspective to consider equivalence, not just as a step in an operation (Patahuddin et al.
2018). The function of the equal sign when solving equations is a concept difficult for many
school students to grasp when they remain focused on operations (Kieran 1981). Cheng
and Mix (2014) even went so far as to offer spatial training as a potential reason for the
improvement in missing term problems due to this effect.

In a study of pre-service educators teaching eighth-grade students about the concept
of symmetry, many pre-service educators reported initial apprehension and reluctance
around the topic of symmetry (Leikin et al. 2000). However, the series of lessons in the
study focused on different applications of symmetry, incorporated physical representations
(in terms of folding and drawing), and linked concepts to real-world examples. At the
completion of the study, the authors reported positive responses from the pre-service
educators, with many expressing their new view of symmetry as something embedded in
nature and the world around them, as well as mathematics, and that symmetry can be used
to help solve many mathematics problems.

1.3.2. 2D to 3D Transformations

Spatial visualization includes the process of mentally moving internal parts of spatial
configurations, often in complex, multi-step manipulations (Ramful et al. 2017). One
example of this is the transformation of two-dimensional (2D) shape representations into
three-dimensional (3D) object representations, commonly referred to in the literature as
mental folding or 3D mental folding (Chen and Yang 2023; Harris et al. 2013). Within the
literature, measures of this type of spatial skill include the Differential Aptitude Test (DAT),
Space Relations Subset (Bennett et al. 1947) and the Surface Development Test (Ekstrom
et al. 1976), where test takers are asked to visualize a 2D shape of a plain sheet that, by
proper folding, could be converted into the shape of the 3D solid figure. Often, decisions
about the relations between the corners and edges of the folded object are required. The 3D
version of mental folding has received much less attention compared to its 2D form (Harris
et al. 2013), where many studies utilize the 2D form of the paper folding test (Ekstrom et al.
1976) or a version of this, such as the Children’s Mental Folding Task (Harris et al. 2013).
However, the 3D form aligns directly with mathematics geometry curricula as students
are often asked to connect 3D objects with their 2D nets (Wright and Smith 2017). Within
mathematics, nets are defined as “Plane figures that can be folded to form a polyhedron.
More specifically, two-dimensional representations comprising joined shapes (the faces)
that can be folded (along edges) to form the object” (Australian Curriculum, Assessment,
and Reporting Authority (ACARA) 2022).

This definition suggests that students are being asked to complete very similar mental
folding actions as those required in the 3D mental folding task within their mathematics
learning. Research with elementary-aged children on 3D mental folding tasks found they
were able to identify some standard nets of cubes that had three or four squares in a row
(Wright and Smith 2017), recognize corresponding edges on cubes (Ramful et al. 2017), and
select opposite faces of a cube (Burte et al. 2019). However, research on the training of this
type of mental folding is limited.

1.4. The Present Study

In the research to date, most isolated spatial training interventions have been ad-
ministered by a member of the research team, with the training presented either with
individuals or small groups outside of classroom contexts. Embedded spatial training
interventions have traditionally been conducted within whole-class contexts or situated
within the participants’ standard classroom practices, usually by a member of the research
team. Although more recent studies have included the classroom teacher in the delivery
(e.g., Hawes et al. 2017; Lowrie et al. 2018b), few studies, if any, have compared isolated
and embedded training under typical classroom conditions.
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To this point, the present study examined the efficacy of both isolated and embedded
training approaches in the research design. The isolated intervention was undertaken with
digital spatial training made available to the classroom teachers through a bespoke digital
platform. The embedded intervention was designed within a pedagogical framework that
ensured participants’ classroom teachers could administer the program. The Experience-
Language-Pictorial-Symbolic-Application (ELPSA) learning framework (Lowrie et al. 2018a)
draws on well-known sociological and psychological understandings of learning and was
used as the basis for the program design (see Lowrie et al. 2018b for further explanation
of the framework and Appendix A for an overview of the embedded spatial training
intervention). The framework promoted learning as an active process in which individuals
develop understanding through discrete, scaffolded activities using hands-on materials
and social interactions. The sequence provided a logical structure to scaffold, reinforce
and apply knowledge and concepts (Lowrie et al. 2018a). The embedded intervention also
included the use of digital spatial training.

Given that both isolated and embedded approaches were used in this study, the
following research questions were considered:

• To what extent do the spatial training interventions (i.e., the isolated and embedded
training programs) facilitate near transfer (to spatial skills) and far transfer (mathemat-
ics understandings)?

• If transfer occurs, can any transfer mechanisms be determined from the different
training approaches?

2. Methods
2.1. Participants

Participants (N = 287) were drawn from 15 Grade 4 elementary school classrooms
from a school jurisdiction in metropolitan Sydney. As part of the study design, the students
(mean age = 9 years, 8 months) remained in their usual class throughout the intervention.
Information and consent forms were sent to all families of children attending a participating
school. Only students with full parental consent to have test-score results utilized are
reported in this manuscript.

All schools in the study were drawn from average sociodemographic areas. In
Australia, the socioeconomic advantage of a school is measured by the Index of Com-
munity Socio-Educational Advantage (ICSEA) scale. A score (Mean = 1000, S.D = 100)
is produced for each school, based on Australian Bureau of Statistics (ABS) data, school
location, and the proportion of Indigenous students enrolled in the school as well as data
on parents’ self-reported income, qualifications, and occupation. Thus, a value on the
index corresponds to the average level of educational advantage of the school’s student
population relative to those of other schools. The ICSEA scores for all schools in the study
ranged from 1039 to 1103, and there were no statistically significant differences between
the schools in the three groups, t(8) = .016, p = .98.

2.2. Study Design

An expression of interest was sent to schools from the educational jurisdiction to recruit
the teachers. The teachers from the participating schools undertook a six-hour professional
learning session with the authors that was aimed at (i) highlighting the importance of
spatial visualization in the curriculum, (ii) identifying assessment tasks that require spatial
visualization skills, and (iii) supporting teachers’ spatial skill development. After the
completion of the professional learning day, teachers were then randomly assigned to one
of three groups, namely: (a) business-as-usual control, (b) isolated digital spatial training,
and (c) embedded spatial training program.

The study ran across the final two terms of the school year (approximately 17 weeks,
including professional learning and testing). Table 1 outlines the design of the study. The
intent of the design was for the two intervention groups to replace small elements of
their regular curriculum with either isolated spatial training (Group B) or the embedded
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spatial program (Group C) to determine the extent to which the intervention approach
facilitated transfer to mathematics. Consequently, the overall time spent on mathematics
in a week was equivalent to approximately four hours a week. Groups A and B both
continued with their regular mathematics programs, with Group B being asked to replace
approximately 40 min of Geometry and Measurement learning with the isolated digital
training. Group C was asked to replace their Geometry and Measurement content with the
embedded spatial program, which aligned with the curriculum outcomes. We acknowledge
that the isolated training that occurred in Group B might have promoted deeper Geometry
and Measurement learning across the intervention. To this point, these teachers might
have changed their pedagogical approaches in ways that additionally supported learning.
Similarly, the BAU Group A could be considered an active control given that the classroom
teachers undertook professional learning that exposed them to learning activities that were
spatial in nature.

Table 1. Intervention design of the study.

Group Group Title Intervention N

A Business-as-usual Control: Followed the curriculum of the state. Completed
approximately 4 h of mathematics per week for 14 weeks. 97

B Isolated Intervention
Digital Spatial Skills: Followed the curriculum of the state.

Completed approximately 3.5 h of mathematics and 40 min
(+/−10 min) of digital spatial skills per week for 14 weeks.

98

C Embedded Intervention

Spatial Visualization Program and Digital Spatial Skills: Followed
the curriculum of the state. Completed approximately 3 h of

mathematics and 60 min (+/−10 min) of spatial visualization and
digital spatial skills per week for 14 weeks.

92

2.2.1. The Business-as-Usual Group (Group A)

The business-as-usual (BAU) groups’ learning activities were drawn from the Australian
Curriculum guidelines (Australian Curriculum, Assessment, and Reporting Authority
(ACARA) 2022). This group completed regular mathematics classes for approximately 4 h
a week. The content covered by the control group teachers included concepts associated
with numbers and algebra, geometry and measurement, and statistics and probability. For
students in Grade 4, any opportunity for the development of students’ spatial reasoning
skills would be covered in the geometry strand of the mathematics curriculum, particularly
content associated with ‘shape’ and ‘location and transformation’. For example, students
compose and decompose 2D shapes, create and interpret maps, use the direction to interpret
maps and create symmetrical patterns.

2.2.2. The Isolated Intervention Group (Group B)

The Group B cohort engaged with the bespoke digital spatial training for approx-
imately 40 min per week over the course of the 14 weeks. The isolated training group
continued with their regular mathematics instruction along with the digital spatial training.
These digital training activities were implemented by classroom teachers at a time of their
choosing across the week. The digital training encouraged participants to practise spatial
skills aligned with reflections and 3D mental folding in a digital environment. Participants
engaged in seven weeks of reflections and seven weeks of 3D mental folding. As identified
in the literature section, the focus on reflections considered the spatial movements of re-
flections in relation to the line of symmetry itself and between components, as opposed
to the general mental act of folding. Few intervention studies have examined training 3D
mental folding skills, and given its explicit role in mathematics curricula, it was important
to understand how this type of spatial thinking relates to mathematics. Examples of the
digital training activities are provided in Figure 1, and the progression of the digital spatial
training is provided in Table 2.
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Table 2. Digital spatial training progression for reflection and 3D mental folding skills.

Reflections 3D Mental Folding

Week 1. Students choose the image which has been reflected
over horizontal and vertical lines. The images are colour; the

line is displayed. There are 3 answer options.

Week 8. Students choose the configuration of shapes that will
fold to make a net. Three options are provided. There are

11 questions for the 11 nets.

Week 2. Students choose the image which has been reflected
over a horizontal and vertical line. The images are colour; the

line is not displayed. There are 4 answer options.

Week 9. As above, but four options are provided, and nets are
presented in random orientation.

Week 3. Students choose the image which has been reflected
over an inclined line. The images are colour; the line is

displayed. There are 3 answer options.

Week 10. Students choose the opposite face to the star on the
given net. These nets are all 1:4:1 nets.
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Table 2. Cont.

Reflections 3D Mental Folding

Week 4. Students choose the image which has been reflected
over a horizontal, vertical, and inclined line. The images are

colour; the line is displayed. There are 4 answer options.

Week 11. As above, but these nets are combinations of 1:3:2,
2:3:1, 2:2:2, and 3:3 nets.

Week 5. Students choose the image which has been reflected
over a horizontal, vertical, and inclined line. The images are
colour; the line is not displayed. There are 4 answer options.

Week 12. As above, but these are combinations of all net
configurations.

Week 6. Students choose the image which has been reflected
over a horizontal, vertical, and inclined line. The images are

black and white; the line is displayed. There are
3 answer options.

Week 13. Students are shown a net configuration with a symbol
on one of its faces. They must rotate a given 3D cube to see it
has two symbols on it. One of the symbols corresponds to the

symbol on the net. They must position the other symbol on the
correct face of the net. These are all 1:4:1 nets. It begins with

opposite faces and then moves to adjacent faces.

Week 7. Students choose the image which has been reflected
over a horizontal, vertical, and inclined line. The images are

black and white; the line is not displayed. There are
4 answer options.

Week 14. As above, but these are a combination of 1:3:2, 2:3:1,
and 2:2:2 nets. The last two questions have no fixed symbol on

the net, so the students must position both symbols to
correspond with the cube.

2.2.3. The Embedded Intervention Group (Group C)

The Group C cohort participated in the embedded spatial visualization program. They
engaged in the program for approximately 60 min per week for 14 weeks. The intervention
replaced the measurement and geometry units that would usually be taught from the
Australian Curriculum. The content of the program was delivered by the respective
classroom teachers after undertaking professional learning.

During the intervention program, the participants were exposed to learning activities
that encouraged spatial visualization, including open-ended tasks that could be solved
with multiple solutions. Embedded intervention participants were introduced to learning
experiences that evoked spatial reasoning through inquiry-based engagement—through
both individual and cooperative-based experiences situated within the ELPSA pedagogical
framework (see Appendix A for an example lesson within the ELPSA framework). Spatial
visualization activities encouraged students to identify horizontal, vertical and incline
reflections, determine the number of blocks within 3D objects and identify cross-sections of
3D objects. Additionally, students used mental folding to imagine how 2D nets could be
folded and unfolded from 3D objects. Figure 2 presents an overview of the lesson content
and structure for the embedded intervention.

Across all lessons, students were encouraged to use visualization strategies to make
predictions as part of their learning process rather than relying solely on concrete materials.
The lesson included the use of the digital training platform that encouraged participants to
practice mental manipulations of reflections and 3D mental folding. Digital spatial activities
complemented the hands-on approaches, with the advantage of allowing participants to
progress through activities at their own pace.
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2.3. Data Gathering Instruments and Procedures
2.3.1. Spatial Reasoning

Items from the spatial visualization section of the 45-item Spatial Reasoning Instrument
(SRI) were used to measure students’ spatial visualization (Ramful et al. 2017). The fifteen
spatial visualization items were divided into two tests in order to measure spatial skills
associated with the digital spatial training (8 items) and spatial skills not associated with the
digital spatial training (7 items). The skills aligned to the digital spatial training component
of the isolated intervention included reflection tasks that required students to reflect 2D
shapes horizontally, vertically or on an incline (see Figure 3a). The second set of measures
required students to construct 3D objects from 2D nets (3D mental folding) (see Figure 3b).
The non-trained measure included items that required students to visualize the folding
and unfolding of pieces of paper (2D mental folding) (see Figure 3c) and tessellation tasks
that required students to determine how separate pieces can be put together to make a
certain figure (see Figure 3d). The internal reliability produced a Cronbach alpha level of
.65, which is deemed to be acceptable (Cronbach 1951).
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spatial maneuver.

2.3.2. Mathematics

A mathematics assessment was used to identify students’ mathematics performance
before and after the intervention. It is a test developed from items released by Australia’s
National Assessment Program (NAPLAN) Numeracy test with items drawn from released
Year 3 and Year 5 NAPLAN tests across the years 2012–2016; consequently, the items were
age appropriate. All of the items selected are analyzed by the Australian Curriculum, As-
sessment, and Reporting Authority (ACARA) for item reliability and content identification.

The test contained 16 multiple-choice items associated with geometry and measure-
ment (8 items), and number and algebra, statistics, and probability (8 items). Items require
the application of mathematics knowledge instead of drill-and-practice procedures. Ques-
tions were given a score of 1 for correct or 0 for incorrect, with the highest potential score
being 16. The internal reliability for this test had an alpha level of .70.
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2.3.3. Test Administration

The spatial visualization and mathematics measures were delivered digitally to whole,
intact classes by the classroom teacher via the digital platform developed for the study.
The tests were untimed, but each one was completed by all students within 40 min. After
a brief introduction, each child worked on the test individually. Testing was completed
within the two weeks prior to the commencement of the intervention (pre-test) and within
two weeks of its completion (post-test).

2.3.4. Data Analysis

Data were analyzed using SPSS 29 (IBM Corp. 2022). Descriptive statistics, correlations,
and ANCOVAs were conducted to answer the first research question. Post hoc analysis
was conducted with moderation analysis and mediation analysis using Model 4.2 of Hayes’
PROCESS SPSS macro (Model 4; Hayes 2015) to answer the second research question.

3. Results

Descriptive statistics for performance at pre- and post-test are shown in Table 3
(means and standard deviations) and Table 4 (Pearson Correlations). Following Cohen’s
(1988) conventions, students’ math understanding was moderately correlated with both
Reflection/3D Folding and 2D Folding/Tessellation spatial visualization measures at both
pre-test and post-test. There was a strong correlation between the pre-test and post-test
math measures (r = .700, p < .001). Despite the randomization of the sample, there were
significant differences between the pre-test scores of the three groups for Reflection/3D
Folding F(2,280) = 7.41, p < .001, η2 = 0.05; 2D Folding/Tessellation F(2,282) = 3.41. p = .03,
η2 = 0.02; and math F(2,284) = 4.94. p = .008, η2 = 0.03. In each comparison, the isolated
spatial intervention cohort had higher mean scores than the other two cohorts. Conse-
quently, we used pre-test scores as a covariate in the following design to account for cohort
variability and bias (Field 2009).

Table 3. Mean (standard deviation) of student performance on outcome measures.

Outcome Variable

Pre-Test Post-Test

Business-as-Usual
(BAU) Control

Isolated
Spatial

Intervention

Embedded
Spatial

Intervention

Business-as-Usual
(BAU) Control

Isolated
Spatial

Intervention

Embedded
Spatial

Intervention

97 98 92 97 98 92

Spatial Visualization:

Reflection/3D Folding 3.24 (1.59) 4.04 (1.79) 3.23 (1.66) 3.96 (1.87) 4.48 (1.97) 4.53 (1.92)
2D Folding/Tessellation 2.43 (1.22) 2.88 (1.33) 2.45 (1.51) 2.58 (1.44) 3.23 (1.53) 2.95 (1.45)

Transfer skill:
Math 9.81 (2.55) 10.11 (2.65) 8.94 (2.71) 10.19 (2.49) 11.07 (2.83) 10.25 (2.70)

Table 4. Correlations for the spatial visualization and math measures by test.

Outcome Measure 1 2 3 4 5

Pre-test
1. Reflection/3D Folding --

2. 2D Folding/Tessellation .338 ** --
3. Math .428 ** .461 ** --

Post-test
4. Reflection/3D Folding .563 ** .334 ** .490 ** --

5. 2D Folding/Tessellation .406 ** .438 ** .513 ** .452 ** --
6. Math .430 ** .422 ** .700 ** .579 ** .514 **

** p < .01.

Separate ANCOVAs were conducted to examine the effects of the intervention con-
ditions on spatial visualization skills and (transfer to) math skills. With respect to the
trained spatial skills (Reflection/3D Folding), there was a statistically significant difference
in the mean scores of the three groups, F(2,276) = 10.05, p = .018, = η2 = 029. Post hoc
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analysis revealed that the differences were in favor of the embedded intervention (Group C)
compared to BAU (Group A) and isolated intervention (Group B) (C > A; C > B; see Table 3).
There was also a statistically significant difference in the mean scores of the three groups for
the untrained spatial skills (2D Folding/Tessellation), F(2,278) = 3.38, p < 05, η2 = .023. In
this analysis, there were differences in favor of both the embedded intervention (Group C)
and the isolated intervention (Group B) compared to the BAU (Group A) (C > A; B > A,
see Table 5). A third ANCOVA was conducted to determine if there were differences in
the mean scores of the cohorts across the math measure F(2,283) = 3.90, p < .02, η2 = .027).
Both the embedded and isolated intervention groups were statistically different to the BAU
cohort (C > A; B > A, see Table 5), indicating math transfer for both the embedded and
isolated training cohorts.

Table 5. Post hoc analysis for ANCOVAs by intervention cohort.

(I) Group (J) Group Mean Difference (I-J) Std. Error p Value

Trained spatial skills
Group A BAU Group B Isolated .005 .233 .984

Group C Embedded −.574 * .233 .014
Group B Isolated Group C Embedded −.578 * .234 .014

Non-trained spatial skills
Group A BAU Group B Isolated −.449 * .196 .023

Group C Embedded −.391 * .197 .048
Group B Isolated Group C Embedded .058 .198 .769

Math transfer

Group A BAU Group B Isolated −.664 * .274 .016
Group C Embedded −.672 * .281 .017

Group B Isolated Group C Embedded −.008 .282 .976

* p < .05

Despite explicit training on the Reflection/3D Folding visualization skills, the isolated
intervention did not improve compared to the BAU cohort on this measure, yet they
improved on the non-trained spatial skills of 2D Folding/Tessellation and on transfer to
math. To understand this finding further, we considered the role of trained and non-trained
spatial skills as mediators and the initial level of trained spatial skill as a moderator in the
results of the isolated intervention (Group B).

3.1. Trained Spatial Skills as a Mediator

Given the unexpected performance improvements of the isolated cohort, further analy-
sis was undertaken to determine if there were any underlying mechanisms or processes that
would help determine the transfer effects. To this point, it was worthwhile to understand
whether the trained or untrained skills mediated mathematics performance. We anticipated
that the trained skills would mediate performance in mathematics despite the students not
making significant gains on these skills as a result of the intervention.

The exploratory mediation analysis was undertaken using Model 4.2 of Hayes’ PRO-
CESS macro (Model 4; Hayes 2015) for the isolated intervention (Group B) to determine
whether the trained and untrained skills mediated mathematics performance. Significance
was tested using a bootstrapping method with 5000 iterations. Indirect effects were cal-
culated for each of the 5000 bootstrapped iterations, and the 95% confidence interval was
determined by computing the indirect effect at the 2.5th and the 97.5th percentile. The
first mediation analysis examined the relationship between non-trained spatial skills and
math performance with trained spatial skills as the mediator variable. The total indirect
effect was significant as the 95% confidence interval did not include zero (effect = .425,
95% CI [.225, .684]), suggesting that, taken together, the spatial training mediated the
relation between non-trained spatial skills and math performance. Additionally, the Sobel
mediation test was undertaken to confirm the indirect effect between non-training spatial
skills and math performance via trained spatial skills. The test was statistically significant
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[Sobel test = 3.795, p < .001]. Figure 4 presents the regression Beta scores and Standard
Errors for each association.

J. Intell. 2023, 11, x FOR PEER REVIEW 13 of 21 
 

 

determined by computing the indirect effect at the 2.5th and the 97.5th percentile. The first 

mediation analysis examined the relationship between non-trained spatial skills and math 

performance with trained spatial skills as the mediator variable. The total indirect effect 

was significant as the 95% confidence interval did not include zero (effect = .425, 95% CI 

[.225, .684]), suggesting that, taken together, the spatial training mediated the relation be-

tween non-trained spatial skills and math performance. Additionally, the Sobel mediation 

test was undertaken to confirm the indirect effect between non-training spatial skills and 

math performance via trained spatial skills. The test was statistically significant [Sobel test 

= 3.795, p < .001]. Figure 4 presents the regression Beta scores and Standard Errors for each 

association.  

 

Figure 4. Spatial Training as a Mediator of Math Performance. ** p < .01. 

The second mediation analysis examined the relationship between trained spatial 

skills and math performance with non-trained spatial skills as the mediator variable (see 

Figure 5). The non-trained skills did not mediate performance in the math test [Sobel test 

= −0.921, p = .356]. 

 

Figure 5. Non−Trained Spatial Skills as a Mediator of Math Performance. ** p < .01 

3.2. Spatial Skill Level as a Moderator 

Given that this cohort was exposed to specific spatial skills on a digital device, it was 

also beneficial to understand whether these transfer experiences were due to the student’s 

initial spatial thinking level. Elsewhere, for example, digital training was most effective 

for students with low spatial skills (Resnick & Lowrie, in press). Consequently, to better 

understand the impact of the isolated intervention on math performance, a moderation 

analysis was conducted to determine the extent to which initial Reflection/3D Folding spa-

tial skills (IV) and post-test math score (DV) were related. In line with Resnick and Lowrie 

(forthcoming), student performance at pre-test for the Reflection/3D Folding measure was 

separated into three spatial skill levels—low, mid, and high (see Table 6) for the moderator 

variable. These levels categorized students on their ability to successfully complete the 

mental spatial maneuvers required in the pre-test, with students scoring less than two 

correct, demonstrating a low ability to reflect images and fold 2D shapes into 3D objects. 

  

Figure 4. Spatial Training as a Mediator of Math Performance. ** p < .01.

The second mediation analysis examined the relationship between trained spatial
skills and math performance with non-trained spatial skills as the mediator variable (see
Figure 5). The non-trained skills did not mediate performance in the math test [Sobel
test = −0.921, p = .356].
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3.2. Spatial Skill Level as a Moderator

Given that this cohort was exposed to specific spatial skills on a digital device, it was
also beneficial to understand whether these transfer experiences were due to the student’s
initial spatial thinking level. Elsewhere, for example, digital training was most effective for
students with low spatial skills (Resnick and Lowrie, forthcoming). Consequently, to better
understand the impact of the isolated intervention on math performance, a moderation
analysis was conducted to determine the extent to which initial Reflection/3D Folding
spatial skills (IV) and post-test math score (DV) were related. In line with Resnick and
Lowrie (forthcoming), student performance at pre-test for the Reflection/3D Folding
measure was separated into three spatial skill levels—low, mid, and high (see Table 6) for
the moderator variable. These levels categorized students on their ability to successfully
complete the mental spatial maneuvers required in the pre-test, with students scoring less
than two correct, demonstrating a low ability to reflect images and fold 2D shapes into
3D objects.

Table 6. Reflection/3D Folding skill levels at pre-test.

Level of Spatial Skill N % Score Range/8

Low 23 23.5 <2
Mid 36 36.7 2–4
High 39 39.8 >4
Total 98 100.0

For the isolated intervention (Group B), the overall model was statistically significant,
R = .651, F(3,94) = 23.16, p < .001. The interaction effect between the independent variable
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(pre-test performance on Reflection/3D Folding spatial skill) and the moderator variable
(skill level at pre-test) was statistically significant (β = .407, t(1,94) = 2.55, p = .012). The
moderation on the dependent variable (post-test math performance) was statistically sig-
nificant for students with mid- and high-level Reflection/3D Folding spatial skills. There
was no moderation effect for students with low Reflection/3D Folding spatial skills (see
Table 7).

Table 7. Moderation analysis: Trained spatial skill level moderates the effects of the isolated interven-
tion transfer to math.

Spatial Level Effect SE t p LLCI ULCI

Low .402 .222 1.81 .071 −.038 .843
Medium .809 .137 5.89 .001 .536 1.08

High 1.21 .198 6.13 .001 .823 1.61

4. Discussion

The current study is the first classroom-based, randomized-control trial to utilize both
isolated spatial visualization skill training and embedded spatial visualization training
in order to better understand the mechanisms that lead to math transfer. Recall that the
isolated intervention trained students in skills that were needed to solve reflection and
3D mental folding tasks, while the embedded intervention developed other spatial skills
in addition to those accessed through the digital training. Our central finding was that
the two types of spatial training led to significant improvements in math outcomes when
compared to the business-as-usual control. This finding is important because it indicates
that both (i) laboratory-like (isolated) spatial training and (ii) embedded spatial training
can be effective for transfer to math under typical whole-of-class conditions, an outcome
not previously established (Hawes et al. 2022; Mix et al. 2021). Elsewhere, transfer for
students of this age was more likely to occur when the intervention was established within
a learning program, as opposed to a series of training tasks (Lowrie et al. 2018b).

The design of the study allowed us to isolate specific spatial skills to better understand
the mechanisms that lead to transfer. Such work is happening elsewhere (see Gilligan-
Lee et al. 2020; Mix et al. 2021), but not under typical classroom conditions with the
intervention administered by the classroom teacher. The students who were exposed to
the complete embedded intervention had larger overall math effects for math transfer, in
addition to improvements across both trained and non-trained spatial dimensions. The
math transfer included both geometry and number-concept word-problems tasks. The
pedagogical framework used in the integrated intervention (i.e., the ELPSA framework)
presented learning experiences through a scaffolded assembly of learning activities to
introduce and develop specific spatial visualization skills and practise these skills through
digital training. The technological affordances also provided the students with immediate
feedback loops, which Mix et al. (2021) noted was an important enhancement of their
program success. The ELPSA framework embedded spatial visualization activities into the
daily practices of teachers rather than relying only on the explicit teaching of spatial skills.
Elsewhere, it has been argued that the transfer effects of classroom-based interventions
need to be evaluated with respect to changes in teachers’ pedagogical practices as part
of the program intervention (Lowrie et al. 2019). To this challenge, we can speculate that
teachers can manage interventions that require the implementation of both digital training
and concrete materials.

In comparing the embedded intervention condition with the isolated intervention
condition, we observed that the students in the isolated intervention cohort did not have
statistically significant growth in the spatial skills trained in the digital platform when com-
pared with the BAU cohort. Rather, improvements were observed in the visualization skills
not explicitly trained. This finding suggests the isolated intervention had no close—yet
some mid-transfer of spatial visualization skills—in addition to the far math transfer. It may
be the case that the digital training equipped these students with better spatial working
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memory and/or improved general reasoning skills rather than the intended (specific) spa-
tial skills scaffolded by digital engagement. These Reflection/3D Folding spatial skills did,
however, have a significant indirect and mediated effect on the cohort’s math performance.
By contrast, the non-trained spatial skills (2D Folding/Tessellation) in which this cohort did
improve did not mediate beyond the effects of the skills presented in the digital training.
Such findings support the tentative claim that the digital training supported math devel-
opment through general reasoning development. This general reasoning development
was likely effective when students formed and held mental representations (in the mind’s
eye) for a longer duration, thus supporting the spatial visualization required to solve the
non-trained items. Further, it may be the case that this more effective mental manipulation
of images allowed students to cognitively access the more complex math tasks in ways that
supported a more effective representation of the problem context. To this point, exposure
to the digital experience could have made strategy use more purposeful for the relatively
novel tasks (both the non-trained and math tasks). This contrasts with priming, where the
unconscious activation of cognitive processing takes place because of an intervention and
not as a result of conceptual change (Hawes et al. 2022). We propose that the relatively
long-term duration of the study, and the fact that the post-test was conducted up to a
week after the completion of the intervention, reduced the likelihood of a priming effect
(see Hawes et al. 2022). We do note, however, that further research on the mechanisms
for strategy transfer to mathematics needs to be undertaken in a more targeted form (as
proposed by Cheng and Mix 2014) to better understand the impact of intentional strategy
use and other unconscious processing of information.

The current study also found that the level of initial spatial skill moderated the effect
of the intervention for students in the isolated intervention cohort. Students with low,
mid, and high initial spatial skills all improved in math; however, the digital training
had the strongest effects on students with higher levels of initial spatial skills. Those
students with low spatial skills likely found the games difficult to engage with and thus
unsatisfying from a motivational perspective. Recall that this intervention cohort did not
have a learning program to accommodate the digital training—relying on the feedback
from the digital platform rather than a teacher to build and support the skill development.
In other randomized classroom-based studies, the effects of the intervention tend to be
moderated by spatial reasoning, with children with lower spatial reasoning making the
most gains in numeracy (e.g., Resnick and Lowrie, forthcoming). This finding from the
present study supports the claim that an integrated approach, which embeds spatial
materials and digital tools within everyday learning, can support mathematics learning for
students with varying levels of spatial skill development.

5. Implications and Directions for Future Research

It is challenging to substantiate the levels of fidelity and teacher agency in large
classroom-based investigations. The situation and daily practices of the classroom, and
classroom instruction, limit the controls that can be placed on a research design. Never-
theless, most of our intervention studies are based in intact classrooms with the programs
administered by the student’s own classroom teacher—given it is the best way to know
if the intervention works. For the current study, our design approach provided the op-
portunity to determine whether an integrated intervention would be more effective than
an intervention which relied on a scaffolded training program of specific spatial skills.
Although the integrated intervention provided strong gains in students’ spatial reasoning
and transfer to math, these gains were not substantially different to an intervention that
provided the training support only (especially for far math transfer). In part, this may be
because the classroom teachers’ usual pedagogical practices and mathematics instruction
complemented the game training; after all, the game training intervention was posited
within each teacher’s daily practice.
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Future research might examine the relative contributions of different aspects of the
spatial learning programs used in the current study to develop more targeted and effi-
cient programs. For example, such designs might consider a third intervention, which
involves the administration of the learning program only. Given the fact that the current
intervention bundled several spatial visualization skills, it is beyond the scope of the study
to characterize specific causal mechanisms. Nevertheless, we speculate about our key
outcome measures. The spatial skills required to develop students’ understanding of sym-
metry (i.e., vertical, horizontal and incline symmetry of 2D shapes) and net construction
(i.e., interpreting 2D shapes and 3D objects) seem to support far transfer to mathematics.
In an integrated program, this transfer occurs via substantial improvement in these and
other spatial visualization skills, namely, skills involving paper folding and tessellating 2D
shapes. For the game training cohort, the symmetry and net construction skills mediated
improvements in students’ math performance. Consequently, this study goes some way to
helping the field understand the spatial mechanisms that support transfer to math.
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Appendix A

Table A1. Spatial Visualization lesson structured under the ELPSA Framework—Lines of symmetry lesson (Lowrie et al. 2018b).

ELPSA Framework Student Work Samples Student Voice

Experience: What is symmetry?
Students begin with more familiar reflections of letters

and symbols along the y and x axes. They are then asked
to consider reflections of similar letters and symbols

along the diagonal axis.
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Table A1. Cont.

ELPSA Framework Student Work Samples Student Voice

Pictorial: Students represented their ideas about lines of
symmetry in a drawing. They are required to draw a

square with letters in the bottom left corner and a vertical
(y axis) line of symmetry. Teacher example below. Move

onto horizontal (x axis) line of symmetry and then
diagonal line of symmetry.
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Table A1. Cont.

ELPSA Framework Student Work Samples Student Voice

Symbolic: Symbolic stage requires analytic thinking.
Here, students need to recognize conventions associated

with lines of reflection on vertical, horizontal, and
diagonal axes. Students begin to reason that for
reflections on the x and y axes, horizontal stays

horizontal and vertical stays vertical. However, with
diagonal reflections, horizontal moves to vertical and
vertical moves to horizontal. See images below for the

concept of perpendicularity.
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