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Abstract: Math learning programs were expected to revolutionize students’ learning, but their effects
so far have mostly been disappointing. Following the debate about why to continue research on
math learning programs, we aimed to reformulate this question into how to continue this research.
Investigations to date have neither considered a sufficiently wide set of outcome variables nor
differentiated between performance measures (e.g., measuring addition and subtraction performance
separately) and affective-motivational variables. Moreover, as students can only benefit from a
program if they use it, researchers need to take practice behavior into account. Thus, we investigated
whether the adaptive arithmetic learning program Math Garden fostered students’ addition and
subtraction performance, their math self-concept, and a reduction of their math anxiety. We also
investigated how practice behavior (practiced tasks/weeks) affected these outcomes. We used a
randomized pretest-posttest control group design with 376 fifth-grade students in Germany. Students
in the experimental condition practiced with Math Garden for 20.7 weeks and had an increase in
math self-concept. The more subtraction tasks the students practiced, the more they improved their
subtraction performance. We found no effects on math anxiety. The results are discussed in terms of
providing a starting point for new directions in future research.

Keywords: digital game-based learning; math learning program; intervention study; practice behavior;
math performance

1. Introduction

It has always been a challenge for math teachers to provide instruction that meets the
needs of all of their students, as students substantially differ in their prior math knowledge
(Reinhold et al. 2019). This applies particularly to the transition from elementary school to
secondary school (i.e., Grade 5 in most parts of Germany) when students from different
elementary schools are regrouped into new secondary school classes. As the performance
pressure in secondary schools increases, math teachers often do not have the time to address
prior deficits and unlock students’ full potential regarding basic arithmetic operations.
Hence, especially students who have problems understanding basic arithmetic operations
are at risk of falling behind because basic arithmetic skills form the basis of understanding
more complex mathematics (Andersson 2010; Bailey et al. 2014; Hansen et al. 2017; Jordan
et al. 2013) and are a strong predictor of later achievement (Bailey et al. 2012; Barbieri et al.
2021; Duncan et al. 2007; Siegler et al. 2012).

Math learning programs may help to meet this challenge due to their beneficial fea-
tures, such as adaptivity and corrective feedback. They have, therefore, moved into the
focus of research in recent decades (Higgins et al. 2019; Hillmayr et al. 2020; Pellegrini et al.
2021; Sailer and Homner 2020). Unfortunately, the results obtained up until now regarding
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achievement outcomes are disappointing. In their meta-analysis examining the overall
effect size of digital game-based learning, Byun and Joung (2018) found a statistically
significant but only small effect size (d = 0.37). Hence, they concluded that there may be
other ways for students to learn math more effectively (Byun and Joung 2018). Similarly, in
their meta-analysis, Tokac et al. (2019) found only a small, marginally significant overall
effect (d = 0.13) for game-based interventions in math compared to traditional nonvideo
game-based classroom instruction, and the authors also pointed out the high heterogeneity
regarding the effectiveness of such game-based interventions. Pellegrini et al. (2021), who
also found only a very small nonsignificant effect size (d = 0.05) concerning the implemen-
tation of digital technology in math instruction, sharpened the topic by pointing out that
the use of technology in education has been expected to have revolutionary impacts on
learning outcomes but that, no matter how beneficial and promising program mechanisms
sound, they have not yet improved students’ performance substantially. But what is the
educational implication of these disappointing results? Should learning programs no
longer be recommended for use in the classroom because research is not able to show that
their implementation is effective? Rather than assuming that math learning programs are
ineffective and potentially rejecting their use, one could take a step back and ask whether
the methodological approaches of previous studies were fully capable of detecting poten-
tial effects. Thus, regarding the question of why to continue research on math learning
programs, we suggest this question is reformulated into how to continue research on math
learning programs. Posing this question is highly relevant because prematurely rejecting
the use of math learning programs might lead to these interventions being abandoned,
even though they are easily applicable and cost-effective and can thus reach large numbers
of students.

Thus, the present study identified current desiderata in research on math learning pro-
grams, addressed them conceptually, and then analyzed the effects of an adaptive computer-
based arithmetic learning program with a randomized pretest-posttest control group design
in a sample of fifth-grade students in Germany (N = 376). The approaches postulated in this
study might be a starting point for future research on math learning programs.

1.1. Promising Mechanisms of Math Learning Programs

The central promising characteristics of math learning programs are their adaptivity
and corrective feedback (Hillmayr et al. 2020). Adaptivity in this context means that the task
difficulty adapts to the individual ability level of each learner (Hillmayr et al. 2020), while
corrective feedback highlights correct solutions and corrects incorrect solutions (Shute
2008). There is a wide variety of interactive math learning programs that include these
desirable mechanisms and that have also already been used for scientific purposes, for
example, Bettermarks from Germany, Mindsteps from Switzerland, or Carnegie Learning
from the U.S., but they all differ in their conceptual functioning (Hillmayr et al. 2020).

In this study, we used the adaptively working arithmetic learning program Math
Garden (Klinkenberg et al. 2011; Straatemeier 2014). Following the characterization by
Nattland and Kerres (2009), Math Garden can be classified as a drill-and-practice program.
Drill-and-practice programs serve to strengthen previously acquired content knowledge by
allowing the learner to practice at their own pace and to repeat specific types of exercises
as often as necessary (Nattland and Kerres 2009). In line with this definition, Math Garden
allows students to strengthen basic arithmetic operations that are central to elementary
school curricula on individual performance levels because an algorithm regulates the
assignment of the tasks so that students have an average percentage of correct tasks of 75%
(Klinkenberg et al. 2011). Moreover, after each task, direct corrective feedback is given. The
interplay of these promising mechanisms might affect not only students’ performance but
also their affective-motivational outcomes, such as math self-concept and math anxiety, as
further elaborated below.
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1.1.1. Effect Mechanisms of Math Learning Programs on Math Performance

The cognitive theory of multimedia learning (Mayer 2014) describes why using digi-
tal learning programs such as Math Garden can be beneficial for students’ performance:
Students need to actively engage with the learning content in order to understand new in-
formation (Mayer 2014). Hence, interactive digital learning programs help them to directly
influence their own learning processes, as the defining feature of interactivity is responsive-
ness to the learner’s actions during learning (Moreno and Mayer 2007). Thus, programs
such as Math Garden respond to students’ ability level by providing appropriate tasks, and
immediate program feedback helps students to instantly reflect on their performance and,
if necessary, to rethink inefficient calculation strategies (Shute 2008). Besides performance,
similar effect mechanisms might also affect math self-concept.

1.1.2. Effect Mechanisms of Math Learning Programs on Math Self-Concept

Math self-concept refers to the self-evaluation of one’s ability in math and is considered
to be an important factor concerning performance and achievement-related choices (Eccles
and Wigfield 2020). According to the reciprocal effects model (Marsh 1990; Marsh and
Martin 2011), performance and math self-concept enhance each other. This has been
confirmed by several studies (Arens et al. 2022; Jiang et al. 2020). As Math Garden offers
high success rates independent of students’ actual skill level because problems are adapted
to the individual skill level during practice (Klinkenberg et al. 2011), all students can be
expected to experience positive feedback and rewards, which then should imply good
performance. Thus, they might perceive their own abilities as being high, generalize this
positive feedback to an entire subject area (e.g., math), and internalize it into a positive self-
concept for that subject area (Craven et al. 1991). Hence, receiving feedback that they have
solved math tasks successfully should lead to an increase in students’ math self-concept. In
addition to math self-concept, math anxiety is another prominent affective-motivational
construct that has been shown to have a direct relation to students’ performance (Ashcraft
and Kirk 2001; Caviola et al. 2022; Devine et al. 2018; Ma 1999; Pekrun 2006).

1.1.3. Effect Mechanisms of Math Learning Programs on Math Anxiety

Richardson and Suinn (1972) defined math anxiety as a “feeling of tension and appre-
hension that interferes with the manipulation of numbers and the solving of math problems
in a wide variety of ordinary life and academic situations” (p. 551). The control-value theory
(Pekrun 2006) postulates that (math) anxiety occurs when the value of an achievement-
related task is perceived as high but solving the task is considered to be uncontrollable
due to missing resources, such as a lack of knowledge and skills. However, as adaptive
programs such as Math Garden adjust the task difficulty to the learner’s skill level, students
with math anxiety should perceive the tasks as being (more) controllable in terms of solving
the tasks correctly, which should reduce their anxiety. Positive program feedback should
help students to recognize the controllability of tasks even further. Moreover, programs
such as Math Garden offer students the chance to make mistakes in private. As negative
experiences with math in public appear to contribute to math anxiety (Bekdemir 2010),
students should feel safer making mistakes during practice with a math learning program
than during oral practice sessions with the whole class. Hence, if the number of public,
potentially negative, or embarrassing math-related experiences is reduced, students might
experience even further control.

Nonetheless, even though the use of arithmetic learning programs like Math Garden
in school as an additional instructional feature to strengthen arithmetic skills and to foster
affective-motivational outcomes is promising in theory, researchers often detected no effects
or only small effects on math performance (Bai et al. 2012; Byun and Joung 2018; Hung et al.
2014; Jansen et al. 2013; Pareto et al. 2012; Pellegrini et al. 2021; Tokac et al. 2019). In contrast
to performance effects, affective-motivational effects have not been investigated much so
far. Hence, we considered whether a change in research on math learning programs might
be necessary to improve the quality of studies in this field. First studies have already started
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to investigate math learning programs in a more differentiated way. For instance, Hassler
Hallstedt et al. (2018) investigated addition and subtraction performance separately, Jansen
et al. (2013) considered not only performance as an outcome but also affective-motivational
variables to examine the effectiveness of math learning programs while also taking practice
behavior into account, and Vanbecelaere et al. (2022) also asked for a systematic and more
standardized assessment framework of digital games for learning. Our aim was to build
upon these studies and combine their methodologies in one approach.

1.2. New Approaches to Investigating the Effectiveness of Math Learning Programs

When considering how future studies on math learning programs can be improved,
and after reviewing the literature on math learning program evaluations, in our view,
three different approaches can be taken to investigate the effectiveness of math learning
programs in new ways.

1.2.1. Measuring Distinct Subdomain Performance

As a key learning outcome, researchers mostly aim to measure students’ math per-
formance improvement after implementing a math learning program. To do so, they
usually assess performance with a broad status diagnostic score including domains such
as measurement, geometry, or arithmetic (Bai et al. 2012; Beserra et al. 2014; Ke 2008;
Shin et al. 2012). However, such an overall performance score may not be able to reveal
improvements in more specific math subdomains, such as different arithmetic operations
(e.g., addition or subtraction). Hence, Ran et al. (2021) called for more specific outcomes
when investigating math learning programs, arguing that an overall score might lead to
flawed conclusions about the effectiveness of the intervention. For instance, a significant
performance improvement as shown in an overall arithmetic score does not necessarily
imply an equally large performance improvement in addition and subtraction, whereas, in
turn, no performance in an overall arithmetic score does not necessarily mean that there is
no improvement in addition and subtraction. To the best of our knowledge, so far, only
Hassler Hallstedt et al. (2018) differentiated between single performance measures for
addition and subtraction skills in their analyses. They were able to show that a math tablet
intervention had effects on low-achieving second graders. They found a performance
increase in both addition and subtraction (Hassler Hallstedt et al. 2018). This underlines
the importance of using distinct performance measures, as the study clearly showed that
the intervention was effective for both addition and subtraction. Hence, more research that
differentiates between performance measures is needed to gain a more detailed insight
into which exact math abilities are fostered with the learning program being implemented.
Such research would probably reveal hidden effects.

1.2.2. Affective-Motivational Outcomes

In addition to the differentiated effects on performance that have not been sufficiently
researched thus far, the effects on affective-motivational outcomes have also been mostly
neglected. Given that math self-concept and math anxiety are essentially related to students’
math performance and their engagement in math (Ashcraft and Krause 2007; Chinn 2009;
Guay et al. 2003; Marsh and Martin 2011), a learning program, even if it does not increase
performance in the first step, can be effective in the long term by improving math self-
concept or reducing math anxiety. Indeed, the results of a meta-analysis by Fadda et al.
(2022), which is, to the best of our knowledge, the only existing meta-analysis regarding
the motivational effects of math learning programs, showed that providing math learning
programs can foster students’ motivation. The authors pointed out that the highest effects
were found in studies that operationalized motivation as expectancy of success and related
beliefs about competence (i.e., self-concept) in contrast to value components (Fadda et al.
2022). However, as only three studies were of high methodological quality and met the
criteria to be included in the meta-analysis regarding the effects of math self-concept,
more research is needed here. Further, only very few studies so far have focused on the
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effects of math learning programs on the reduction of math anxiety. In their intervention
study, Huang et al. (2014) showed a decrease in math anxiety from pretest to posttest,
whereas Hung et al. (2014) did not find any effects of their intervention on math anxiety.
However, both studies only had a small experimental sample, with 25 students each per
condition. Moreover, the studies differed substantially in their number of treatments during
the intervention: Huang et al. (2014) had 40-min sessions twice a week over six weeks,
therefore, this was a more distributed intervention, whereas, in contrast, Hung et al. (2014)
only had one 240-min session. Hence, this was a more massed intervention. These results
might indicate that a more distributed intervention over a longer period of time is needed
to reduce math anxiety, as students probably need some time to perceive tasks as being
controllable. However, the authors only supervised the practice sessions and did not
control for the number of tasks that were actually practiced during their intervention. This
lack of data brings us to the last desideratum.

1.2.3. Considering Practice Behavior

Many studies only provided students with a learning program and then evaluated
whether such an intervention made a difference in the performance of this group compared
to a wait-list control group (Bai et al. 2012; Chang et al. 2015; Huang et al. 2014; Hung et al.
2014; Shin et al. 2012). This approach neglects the actual practice behavior of the students.
However, as researchers have already shown in meta-analyses that short-term math learn-
ing program interventions lead to higher effectiveness, due to higher student engagement
at the beginning of the intervention (novelty effect) than long-term interventions (Hillmayr
et al. 2020; Sung et al. 2017), practice behavior needs to be considered.

The body of literature on practice behavior shows that students need to practice
regularly over a longer period of time to achieve the best performance outcomes (Barzagar
Nazari and Ebersbach 2019; Carpenter et al. 2012; Vlach and Sandhofer 2012). Thus, it
is reasonable to assume that a math learning program may fail to have effects because
students simply practiced too little with the program. This assumption cannot be tested
simply by investigating the effects of the provision of a learning program. Indeed, some
experimental studies supervised students’ practice sessions with a math learning program
in classrooms to ensure that they practiced a given number of tasks (Huang et al. 2014;
Rodrigo 2011; Shin et al. 2012; van den Heuvel-Panhuizen et al. 2013), and all were able
to show student performance gains. However, this approach can only provide limited
information about how students interact with the program when they are not supervised,
not only in school but, for instance, also at home. With regard to increasing digitalization
and the possibility of using log and trace data, researchers should take advantage of this
potential to uncover hidden behavioral patterns in a more naturalistic setting (Baker and
Inventado 2014; Haleva et al. 2021). Unfortunately, the number of studies that took log
and trace data into account is still rather modest. The few studies referring to such data
mostly considered the time spent practicing with math learning programs (Haleva et al.
2021; Hassler Hallstedt et al. 2018; Louw et al. 2008; Spitzer 2022), and they all were able to
show that time spent practicing improved student performance. Another approach that
can be employed to take practice behavior into account is to consider the number of tasks
practiced by the students in the program. This is more of an in-depth approach in contrast
to the time spent practicing as, for example, students can solve 10 tasks in 10 min if they
concentrate but can solve only two tasks in the same 10 min if they are distracted. Jansen
et al. (2013) showed that performance improvement in the program Math Garden was
mediated by the number of tasks attempted. The authors also considered practice behavior
in terms of practiced tasks when investigating effects on motivation-related variables (i.e.,
perceived math competence) and math anxiety, but they did not find any effects (Jansen
et al. 2013). This might be due to practiced tasks not being the optimal indicator to show the
effects of practice behavior on affective-motivational variables. Another alternative, which
has not yet been considered in research, would be to include the number of weeks over
which students practiced with the program as practice behavior (referred to from here on
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as “practiced weeks”). As the practiced tasks are more a measure of quantity, the practiced
weeks better reflect how regularly students practiced with a program (i.e., distributed
practice behavior). As previous studies have already shown that students benefit most
from math learning opportunities if their practice behavior is distributed (Barzagar Nazari
and Ebersbach 2019; Schutte et al. 2015), including the number of practiced weeks could
represent a new and valuable facet of practice behavior.

1.3. The Present Study

This study addresses three research desiderata on math learning programs and pro-
vides empirical data that can be used for future investigations. First, we used distinct
arithmetic performance measures (i.e., addition and subtraction) to investigate potential
performance increases on a detailed level. Second, we considered affective-motivational
outcomes (i.e., math self-concept and math anxiety) to investigate in which different ways
students may benefit from the implementation of Math Garden. Third, we took practice
behavior in terms of practiced tasks and practiced weeks in Math Garden for all outcomes
into account (i.e., performance and affective-motivational variables), as missing effects
might occur because students practiced too little. This resulted in three research questions
regarding the provision of Math Garden and students’ actual practice behavior in terms of
practiced tasks and practiced weeks:

How does the provision of Math Garden affect students’ addition and subtraction
performance, their math self-concept, and their math anxiety? On the basis of the theoreti-
cally assumed promising program features, we expected that the provision of Math Garden
would improve (H1.1) students’ addition and (H1.2) subtraction performance. We assumed
that the program would additionally (H1.3) increase students’ math self-concept and (H1.4)
decrease students’ math anxiety.

How does the number of addition and subtraction tasks practiced affect students’ addi-
tion and subtraction performance, respectively? How does the number of all math-related
tasks (including addition, subtraction, and other types of math tasks, see Section 2.3.4)
practiced in Math Garden affect students’ math self-concept and their math anxiety? We
expected that (H2.1) the more students practiced addition tasks during the intervention, the
higher their addition performance after the intervention would be. We expected that (H2.2)
the more students practiced subtraction tasks, the higher their subtraction performance
would be. Moreover, we expected that students who practiced more math-related tasks over-
all would have (H2.3) a higher math self-concept and (H2.4) lower math anxiety after the
intervention because they received more positive feedback due to the adaptive algorithm.

How does the number of practiced weeks spent on addition and subtraction tasks
(referred to from here on as “practiced weeks of addition or of subtraction”) affect stu-
dents’ addition and subtraction performance, respectively? How does the total number of
practiced weeks (including weeks spent practicing addition, subtraction, and other types
of math tasks, see Section 2.3.4) in Math Garden affect students’ math self-concept and
their math anxiety? We expected that (H3.1) students who spent more weeks practicing
addition would have higher addition performance. We expected that (H3.2) students
who spent more weeks practicing subtraction would have higher subtraction performance.
Moreover, we expected that students who spent more weeks practicing with Math Garden
overall would have (H3.3) a higher math self-concept and (H3.4) lower math anxiety after
the intervention.

We addressed our research questions and hypotheses with a pretest-posttest control
group design with a random assignment of students on the class level, assessing the
suggested student outcomes with objective measures outside of Math Garden, which is
a major strength of this study. The time period spent practicing with the program in
our study was substantial (M = 20.7 weeks), and we had a large sample (N = 376) with
similar numbers of students in both groups. We chose to use Math Garden because it is
a low-cost program that was designed to be easily implemented in schools and to track
students’ practice behavior. To ensure the robustness of our findings, we considered several
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important control variables in our analyses. We controlled for students’ pretest scores
to account for differences in their baseline levels. Moreover, we controlled for students’
gender and a possible migration background because previous studies showed that these
variables had effects on our outcome variables (Liu and Wilson 2009; Marsh and Yeung
1998; van Mier et al. 2018). As addition and subtraction performance was measured on
tablets in a speed test, we also checked for typing speed (Hassler Hallstedt et al. 2018).

2. Materials and Methods
2.1. Design and Procedure

Student data were collected in schools from October 2019 (T1) to March 2020 (T2)
in compliance with data protection requirements, and the study was approved by the
institutional ethics committee. Participation in the study was voluntary and parental
permission was obtained before students participated in the study.

The participating classes completed math performance tests and answered question-
naires assessing the relevant variables of interest for our study. A testing session lasted
approximately 1.5 h and was done with tablets. All students were tested within a three-
week period. At the end of the initial testing session, the classes were randomly assigned
either to an experimental group or to a wait-list control group. Hence, variance differences
between schools were controlled for. The students in the experimental group received
a 10-min introduction to Math Garden and accessed the program on tablets using per-
sonalized login data provided by their teachers. While practicing, they got a brief oral
introduction to the main program principles. At the end of the introductory practice session,
students were told that they were allowed to, and should, practice with the program at
home and in class on available digital devices (e.g., desktop computer, tablet, or smart-
phone). Their teacher also received a short written introduction to Math Garden and was
asked to integrate the program into regular math lessons, to assign it for homework, or
to use it during supervision classes, which provided him or her with many opportunities
to individually adapt the use of Math Garden to meet all students’ needs. Students could
access the program for, on average, 20.7 weeks. Their weekly practice behavior was tracked.
Three classes did not have personal login data during the initial testing session due to
technical problems. These students were introduced to the program in a 5-min presentation.
The teachers were asked to introduce the students to the program in more detail later.
In March 2020, after 22 weeks, the classes were tested again, and the students answered
questionnaires. After this testing session, the wait-list control group received access to
Math Garden.

2.2. Sample

The data for this study were obtained from a sample of 376 fifth graders from 21 classes
at seven urban comprehensive (non-academic-track) schools in northern Germany. While
academic-track schools in Germany prepare students primarily for higher education, non-
academic-track schools offer different levels of school degrees (Maaz et al. 2008).

We excluded one student due to an implausibly high level of practice (more than
2000 tasks within one week), which might have been caused by siblings also practicing
with the program, and we excluded another five students because they had missing data
on all relevant variables, such as questionnaire data and practice data. The final sample
then consisted of 200 students in the experimental condition (50.0% male, 53.4% with a
migration background) and 170 students in the wait-list control condition (52.7% male,
43.2% with a migration background). The two conditions did not differ significantly in
their pretest mean values (see Table 1). A priori power analyses (Faul et al. 2007, 2009)
showed that for between-group analyses (Research Question 1), setting the estimated effect
size d to 0.30 and assuming a power of at least .80 with an α-level of .05, a sample size of
176 students per group would be needed. Further, for within-group analyses (Research
Questions 2 and 3), setting the estimated effect of R2 to .08, assuming a power of at least .80
with an α-level of .05, a sample size of 154 students would be needed. Unfortunately, the
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posttest coincided with the COVID-19 lockdown in March 2020 in eight classes, which led
to missing data on all posttest scores for 66 (33%) students in the experimental condition
and for 50 (29%) students in the wait-list control condition. We did not exclude these
students from our analytic sample (see Section 2.4 for missing data handling).

Table 1. Descriptives of self-report and performance measures.

All Students
N = 370

Condition

Wait-List Control
n = 170

Experimental
n = 200

M SD M SD M SD

Math addition performance T1 5.61 3.12 5.74 3.23 5.49 3.05
Math addition performance T2 7.90 2.77 7.83 2.91 7.97 2.66
Math subtraction performance T1 5.20 3.63 5.41 3.58 5.01 3.67
Math subtraction performance T2 6.62 3.69 6.71 3.53 6.56 3.85
Math self-concept T1 2.70 .82 2.67 .84 2.72 .81
Math self-concept T2 2.73 .83 2.59 .86 2.85 .78
Math anxiety T1 3.36 1.21 3.28 1.22 3.44 1.21
Math anxiety T2 3.20 1.26 3.17 1.22 3.23 1.30
Gender a .49 .50 .47 .50 .50 .50
Migration background T1

b .49 .50 .43 .50 .53 .50
Tablet typing speed T1 7.88 2.36 8.12 2.27 7.66 2.43

Note. Reference categories: a male. b no other languages spoken at home besides German.

2.3. Measures
2.3.1. Addition and Subtraction Performance

We used the addition and subtraction scales of the Heidelberg calculation test by
Haffner et al. (2005) to measure math performance. Each scale consists of 40 items that
become increasingly difficult. Students are instructed to solve as many items as possible
in 120 s. Thus, this test also assesses quick mental arithmetic, which is exactly what
students were asked to practice in Math Garden. As our goal was to measure changes in
student performance, we expected most performance improvement to occur on items with
high item-scale correlations. However, due to the conceptual design of the Heidelberg
calculation test, including all items might systematically underestimate the predictive
power of the change diagnostics because the first items may cause ceiling effects, and a
speed component may affect the last items, which could result in these items then having
low item-scale correlations. Therefore, we decided to make an item selection, and we only
considered items that had an item-scale correlation higher than .50 (Item 14 to 24 for the
addition scale and Item 15 to 25 for the subtraction scale) for performance scores. We found
good retest reliability values for the addition (rtt = .52) and subtraction scales (rtt = .62). To
ensure transparency, we additionally ran our analyses with items that had an item-scale
correlation higher than .30 and with all items that the students completed.

2.3.2. Math Self-Concept

Math self-concept was measured with a scale adapted by Köller et al. (2000). The scale
consists of five items (e.g., “I would prefer to do math if the subject was not that difficult.”),
which have to be answered using a four-point Likert scale (1 = does not apply at all to
4 = fully applies). All items were reverse coded so that high scores represent a high math
self-concept. Cronbach’s alpha was .83 in the pretest and .84 in the posttest. Further, the
pre- and posttest scores correlated significantly (rtt = .64).

2.3.3. Math Anxiety

Math anxiety was measured with a subscale from the Math Anxiety Rating Scale for
Fourth to Sixth Grades by Roick et al. (2013). The scale consists of five items (e.g., “How
nervous do you feel when a math test is written?”), which have to be answered using
a five-point Likert scale (1 = not nervous at all to 5 = very nervous). Cronbach’s alpha
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was .90 in the pretest and .92 in the posttest. The pre- and posttest scores here were also
significantly correlated (rtt = .37).

2.3.4. Practice Behavior with Math Garden

Math Garden is an adaptively working web-based learning program. The adaptive
algorithm is based on the Elo (1978) rating system, which allows for on-the-fly estimation of
item difficulty and person ability parameters (for further information, see Klinkenberg et al.
2011). After solving a task correctly, students receive positive feedback and are presented
with a new task with a similar or slightly higher difficulty level. After solving a task
incorrectly, students receive corrective feedback and are presented with a new task with a
similar or slightly lower difficulty level. Students cannot repeat previous tasks.

Math Garden automatically tracks the number of tasks completed per domain per
week (log files). Thus, for each student, we estimated six practice frequency scores: We
calculated the number of tasks completed in the domains of addition and subtraction,
respectively. We calculated the number of weeks for which students practiced addition
tasks and subtraction tasks, respectively. We calculated an overall practice frequency score
by calculating the total number of math-related tasks completed in Math Garden, which
included tasks on addition, subtraction, multiplication, division, mix (mixture of basic
arithmetic operations), counting (of objects), series (logical completion of a given number
series), numerals (tasks in which numbers must be combined to obtain a desired target
number), and tables (multiplication tables tasks from 1 to 10), and we calculated the total
number of practiced weeks for all math-related tasks for each student. The descriptives for
these six different scores are reported in Table 2.

Table 2. Descriptives of practice behavior in Math Garden for the experimental condition.

M SD Range

Addition tasks practiced 177.81 268.08 0–2412
Subtraction tasks practiced 54.63 120.78 0–1369
Overall tasks practiced 1090.91 1366.94 11–8406
Practiced weeks of addition 2.74 2.12 0–10
Practiced weeks of subtraction 1.72 1.67 0–12
Overall weeks practiced 4.62 2.96 1–13

Note. Experimental condition only. n = 200.

We had a maximum observation period of 22 calendar weeks (Calendar Week 43 in
2019 to Calendar Week 12 in 2020). The observation period varied for two reasons: First,
single classes were tested (i.e., pretest and questionnaire) over a period of three weeks
at the beginning of the study (for logistical reasons), and second, three teachers did not
provide the login data to their classes at the start of our study. On average, the program
was available to the students for 20.7 weeks (SD = 1.61, min = 17, max = 22).

2.3.5. Covariates

Students’ gender was coded as 0 = male and 1 = female. A migration background was
assessed with the following item: “Are other languages spoken at home besides German?”
with 0 = no and 1 = yes as the answer options (Happ et al. 2021). The speed scale of the
Heidelberg calculation test (Haffner et al. 2005) was used to control for how fast students
were at tapping on tablets.

2.4. Data Analysis

To answer our research questions, we ran a total of 12 multiple regression analyses in
Mplus (Version 8.5; Muthén and Muthén 2008–2020). Addressing the question of how the
provision of Math Garden affects addition and subtraction performance, math self-concept,
and math anxiety, the predictor was the group assignment (0 = wait-list control group,
1 = experimental group, four multiple regression models). This dummy-coded variable
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makes it possible to statistically test mean differences between the different groups (Cohen
et al. 2003). The dependent variables were the posttest scores when controlling for pretest
scores and the other covariates. We additionally calculated effect sizes (Cohen’s dz) to
estimate the size of the mean differences.

To investigate the degree to which practice behavior with Math Garden affected
our outcomes, we only analyzed the experimental group, as the wait-list control group
did not generate any practice data in Math Garden. The dependent variables were the
posttest scores when controlling for pretest scores and other covariates, but the predictors
were either the number of practiced tasks (Research Question 2, four multiple regression
models) or the number of practiced weeks (Research Question 3, four multiple regression
models). However, due to our two distinct subdomain performance measures (i.e., addition
and subtraction), we made further differentiations: We used the number of addition
tasks practiced/practiced weeks of addition to predict addition performance and the
number of subtraction tasks practiced/practiced weeks of subtraction to predict subtraction
performance. As we assumed that the effects on math self-concept and math anxiety would
be less related to the practicing of specific tasks (e.g., addition or subtraction) and more
related to feedback mechanisms such as the adaptive algorithm, we used the number of all
tasks practiced/all weeks practiced in Math Garden to predict math self-concept and math
anxiety, respectively.

As we made an item selection (item-scale correlation > .50) for the performance
measures, we additionally ran robustness analyses for all of the models that included
performance measures. For this, we calculated the effects on performance again with items
that had item-scale correlations higher than .30 (Item 9 to 28 for the addition scale and
Item 11 to 30 for the subtraction scale) and with all items answered by the students. These
results are provided in the online material (see Tables S1–S4).

Because students were nested within classes, we took the two-level nature of the
data into account by using the TYPE = COMPLEX command. The COMPLEX command
adjusts standard errors for nonindependence within classes. Therefore, nonindependence
within classes was accounted for but not explicitly modeled. Further, we used the robust
maximum likelihood estimator to obtain standard errors that were robust to nonnormality
(e.g., Bandalos 2014; Maydeu-Olivares 2017). To ease the interpretation, all continuous
independent variables were z-standardized (M = 0, SD = 1).

In many empirical studies, missing data are a potential methodological problem. We
found missing data on all variables. Regarding the self-reported and test measures, this
was because some students in our final analytic sample were absent during at least one of
both testing sessions (N = 156), for different reasons. On the one hand, dropouts resulted in
the following missing data pattern: Four students participated in neither the pretest nor the
posttest, but they provided Math Garden data, 10 students did not participate in the pretest
but did participate in the posttest, and 26 students participated in the pretest but did not
participate in the posttest. On the other hand, the posttest coincided with the COVID-19
lockdown in March 2020 in eight classes, which led to further missing data on all posttest
scores for 66 (33%) students in the experimental condition and for 50 (29%) students in the
wait-list control condition, although we tried to collect information on the self-reported
measures with an additional online survey. Statistical comparisons between the group of
students with missing data and the group of students without missing data are provided
in the online material (see Table S5). The results show that the two groups did not differ
regarding their self-reported measures and performance test, but the group of students
with missing data had lower practice behavior scores, except for the addition domain.
Moreover, three students participated in at least one testing session and received login data,
but it was not possible to match their responses from the testing session to their practice
data, which then resulted in missing practice data. Overall, the percentage of missing data
varied from 0% on group assignment to 41.6% on math self-concept (T2), with an average
missing rate of 11.6%. To handle the missing data, we used the full information maximum
likelihood approach, which means that missing values were not imputed or filled in, but
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model parameters and standard errors were directly estimated using all available raw data
while no data points were excluded (Enders 2001, 2022). Thus, we avoided listwise deletion
of students with missing data on single measurement occasions.

3. Results
3.1. Descriptives and Preliminary Analyses

The means and standard deviations for the self-report and performance measures are
reported in Table 1. t-tests revealed that pretest scores and the measured covariates did
not significantly differ between the two conditions, which suggests that the randomization
on the class level worked well. Regarding our relevant study variables, we noticed that,
on average, math self-concept scores descriptively dropped from pre- to posttest in the
wait-list control condition, but we found an increase in the experimental condition. The
mean values for the performance measures descriptively increased in both conditions, and
anxiety scores slightly decreased on average in both conditions from pre- to posttest.

Table 2 displays the descriptives of practice behavior in Math Garden. The high vari-
ance of practiced tasks over the 22-week period is noticeable. Overall, students practiced,
on average, for 4.62 weeks (SD = 2.96) with Math Garden, with a minimum of one week
and a maximum of 13 weeks.

Tables 3 and 4 show the correlations between the independent variables and the
dependent variables for all students and for the experimental group only. Regarding the
possible effects of Math Garden on our outcome variables, we found significant correlations
for group assignment with math self-concept at T2 (r = .12, p = .031; see Table 3).

Table 3. Correlation matrix of the study variables.

1 2 3 4 5 6 7 8 9 10 11

1. Math Learning Program a

2. Math addition performance T1 −.05
3. Math subtraction performance T1 −.07 .69
4. Math self-concept T1 .03 .20 .32
5. Math anxiety T1 .07 −.18 −.26 −.45
6. Gender b .03 −.00 −.08 −.27 .22
7. Migration background T1

c .10 −.04 −.04 −.04 .01 .06
8. Tablet typing speed −.10 .51 .36 .21 −.06 .02 −.05
9. Math addition performance T2 −.03 .52 .57 .29 −.27 −.07 −.01 .31
10. Math subtraction performance T2 −.05 .46 .62 .25 −.23 −.14 −.01 .21 .67
11. Math self-concept T2 .12 .22 .34 .64 −.36 −.25 −.01 .14 .36 .35
12. Math anxiety T2 .05 −.11 −.21 −.32 .37 .27 .16 .03 −.19 −.19 −.45

Note. Correlations refer to all students, N = 370. Significant correlations are printed in bold (p ≤ .05). Reference
categories: a wait-list control condition. b male. c no other languages spoken at home besides German.

Table 4. Correlation matrix for practice behavior and outcomes.

1 2 3 4 5 6 7 8 9

1. Addition tasks practiced
2. Subtraction tasks practiced .36
3. Overall tasks practiced .69 .40
4. Practiced weeks of addition .71 .49 .63
5. Practiced weeks of subtraction .52 .77 .52 .77
6. Overall weeks practiced .48 .46 .72 .76 .65
7. Math addition performance T2 −.12 −.00 −.01 .01 −.06 .09
8. Math subtraction performance T2 −.07 .02 −.03 .03 −.00 .07 .71
9. Math self-concept T2 .02 .05 −.01 −.05 −.01 −.02 .20 .29
10. Math anxiety T2 −.07 −.07 −.01 −.01 .03 .04 −.08 −.14 −.52

Note. Correlations refer to the experimental condition only, n = 200. Significant correlations are printed in bold
(p ≤ .05).

3.2. Effects of Providing Math Garden

Our first research question concerned differences between pre- and posttest scores
concerning addition and subtraction performance, math self-concept, and math anxiety
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between the wait-list control group and the experimental group. After controlling for
gender, a possible migration background, and tablet typing speed, we found a statistically
significant effect of providing Math Garden on students’ math self-concept (see Table 5). As
expected (H1.3), providing students with Math Garden fostered their math self-concept in
contrast to the wait-list control condition (β = .12, p = .002; dz = 0.26). According to Cohen
(1988), this effect size can be described as small. Concerning our Hypotheses H1.1, H1.2,
and H1.4, we did not find any significant effects.

Table 5. Results on effects of providing Math Garden.

Addition
Performance

Subtraction
Performance

Math
Self-Concept

Math
Anxiety

β SE p β SE p β SE p β SE p

Predictors
Outcome at T1 .49 .10 .000 .61 .06 .000 .61 .05 .000 .35 .05 .000
Math Learning Program a −.00 .07 .960 −.02 .07 .727 .12 .04 .002 .01 .07 .883
Covariates
Gender b −.07 .05 .255 −.09 .07 .184 −.08 .07 .212 .18 .08 .031
Migration background T1

c −.01 .06 .907 .02 .06 .744 −.00 .05 .957 .16 .07 .034
Tablet typing speed T1 .08 .15 .469 −.02 .07 .813 .04 .08 .633 .05 .05 .256

R2 .29 .38 .43 .21

Note. Significant coefficients are printed in bold (p ≤ .05). Continuous predictors were standardized (M = 0;
SD = 1). n = 370. Reference categories: a wait-list control condition. b male. c no other languages spoken at home
besides German.

3.3. Effects of Practiced Tasks

To answer our second research question, we examined how the number of tasks
practiced in Math Garden affected addition and subtraction performance, math self-concept,
and math anxiety in the experimental group (see Table 6). After controlling for gender, a
possible migration background, and tablet typing speed, we found a statistically significant
effect of the number of subtraction tasks practiced on students’ subtraction performance. As
expected (H2.2), the more subtraction tasks students practiced, the higher their subtraction
performance was (β = .10, p = .008). Regarding Hypotheses H2.1, H2.3, and H2.4, we did
not find any statistically significant effects.

Table 6. Results on effects of practice behavior.

Addition
Performance

Subtraction
Performance

Math
Self-Concept

Math
Anxiety

β SE p β SE p β SE p β SE p

PRACTICED TASKS
Predictors
Outcome at T1 .42 .13 .001 .65 .07 .000 .54 .07 .000 .37 .08 .000
Practiced tasks .03 .09 .767 .10 .04 .008 -.01 .10 .931 .08 .11 .455
Covariates
Gender a −.10 .08 .205 −.14 .10 .152 −.20 .11 .070 .21 .13 .114
Migration background T1

b −.03 .06 .593 .08 .07 .278 −.09 .08 .242 .25 .11 .027
Tablet typing speed T1 .23 .15 .128 .03 .09 .746 .00 .12 .990 .01 .07 .865

R2 .31 .48 .41 .25

PRACTICED WEEKS
Predictors
Outcome at T1 .42 .12 .001 .63 .08 .000 .54 .07 .000 .37 .07 .000
Practiced weeks .11 .06 .081 .05 .05 .363 −.01 .06 .815 .11 .07 .113
Covariates
Gender a −.11 .07 .123 −.15 .09 .107 −.20 .11 .068 .21 .13 .105
Migration background T1

b −.03 .06 .589 −.08 .08 .316 −.09 .08 .282 .25 .12 .038
Tablet typing speed T1 .24 .16 .118 .04 .09 .635 .00 .13 .988 .01 .07 .935

R2 .33 .47 .41 .26

Note. Significant coefficients are printed in bold (p ≤ .05). Continuous predictors were standardized (M = 0;
SD = 1). n = 200. Reference categories: a male. b no other languages spoken at home besides German.
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3.4. Effects of Practiced Weeks

Addressing our third research question, we examined how the number of practiced
weeks in Math Garden predicted addition and subtraction performance, math self-concept,
and math anxiety in the experimental group (see Table 6). We did not find any statistically
significant effects regarding our hypotheses (H3.1–H3.4) in the original analyses. However,
in further analyses (the results of which are provided in the online material, see Table S4),
we found—as expected—that the more weeks students spent practicing addition in Math
Garden, the higher their addition performance in the posttest was (β = .13, p = .015). In these
analyses, math addition performance was measured with items that only had item-scale
correlations higher than .30. In the original analysis, this effect was marginally significant.
We discuss the implications of this result in the following section.

4. Discussion

By addressing new approaches that can be taken to continue investigating math
learning programs, the aim of this study was to explore the effects of the arithmetic learning
program Math Garden on distinct subdomain performance measures and on affective-
motivational outcomes (i.e., math self-concept and math anxiety), while also taking practice
behavior in Math Garden into account. The results supported only some of our hypotheses.
We were able to show that providing Math Garden fostered students’ math self-concept, in
contrast to a wait-list control condition, and we also showed that the more subtraction tasks
students practiced in Math Garden, the higher their subtraction performance in the posttest
was. While the items selected for analysis did not show an effect of practiced weeks of
addition on students’ addition performance in the posttest, an extension to include items
with item-scale correlations higher than .30 indicated that the number of practiced weeks
of addition was related to students’ addition performance. Our other hypotheses were
not confirmed.

4.1. Effects of Math Garden on Math Performance

We did not find any effects of the mere provision of Math Garden on addition or
subtraction performance. Given the ongoing debate about the effectiveness of math learning
programs (Byun and Joung 2018; Pellegrini et al. 2021), this lack of performance effects is not
entirely unexpected and again highlights the problem of heterogeneous research findings
in this area (Tokac et al. 2019). However, by only investigating the effects of providing the
program, many studies are limited at this point, and one can only speculate about why
missing effects occur. One possible explanation for the missing results might be that Math
Garden does not help students improve their addition and subtraction skills. However, as
we would expect Math Garden to have only small effects on students’ learning because the
program does not intend to teach students new content but rather to repeat what has already
been learned, these expected small effects might be especially difficult to reveal if students
have not practiced much with the program. Thus, an alternative possible explanation
would be that students did not practice enough with the program to benefit from it, but to
make any further suggestions about this, practice behavior needs to be taken into account.
In our study, we considered two different types of practice behavior, namely, the number of
practiced tasks and the number of practiced weeks. Whereas, for this study, the number
of practiced tasks was primarily a measure of quantity, the number of practiced weeks
might better reflect the quality of the practice, that is, how regularly students practiced
with the program. We found an expected effect of the number of subtraction tasks practiced
on subtraction performance, but we did not find an effect of practicing addition tasks on
addition performance. In terms of the number of practiced weeks, we found an inverse
pattern, that is, we did not find an effect of the number of practiced weeks of subtraction
on subtraction performance, but we found an expected positive effect of the number of
practiced weeks of addition on addition performance. However, this second effect only
occurred when performance was measured with items that had item-scale correlations
higher than .30. In contrast, the main analysis was conducted with items that had item-scale
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correlations higher than .50. Thus, this result needs to be interpreted with caution and
can only be generalized to a very limited extent. The effects of subtraction tasks practiced
on subtraction performance seem to be more robust because we found this effect in all of
our analyses.

In general, according to our G*Power analyses (Faul et al. 2007, 2009), the missing
effects of practice behavior might be explained by the reduction of sample size due to
the COVID-19 school closures and, thus, a loss of power. Hence, for future research,
we recommend that this study is replicated in a bigger sample. Further, inactivity and
dropout rates are serious issues when investigating the effects of learning programs, and
they might explain missing effects as well (Bacca-Acosta and Avila-Garzon 2021; Spitzer
and Musslick 2021). Students might have shown high engagement with Math Garden
right after receiving it, which, in turn, might have resulted in short-term performance
increases, but they might then have become inactive in the long-term so that effects were
no longer detectable, especially at the end of a longer intervention such as ours. Thus,
on the one hand, we would like to emphasize the importance of investigating how to
put students in a mindset where they continuously and systematically engage with such
learning programs (Spitzer and Musslick 2021). On the other hand, future studies could
assess performance not just once in a posttest but could instead measure it in small steps,
that is, several times within the intervention period, in order to get more insight into what
really happens during the use of such a learning program. Still, the finding that practice
behavior had no effects on addition performance but it did on subtraction performance
might also be due to subtraction being more difficult than addition (Anderson et al. 2022;
Kamii et al. 2001). Possibly, this is why practicing with Math Garden was particularly
helpful for the subtraction domain. However, surprisingly, we found an effect only for
the number of subtraction tasks practiced and not for the number of practiced weeks of
subtraction. Given the assumptions about distributed learning behavior, which means
that practice is most effective when practice sessions are spaced out over time with breaks
in between rather than when tasks are repeated in immediate succession (i.e., massed
practicing; Carpenter et al. 2012; Gerbier and Toppino 2015; Toppino and Gerbier 2014), it
is reasonable to assume that the practiced weeks are a relevant indicator. Missing effects
might be because most students practiced only for a small number of weeks and, thus,
only little—and probably not meaningful—variance was created within the variables for
the practiced weeks. Therefore, future research might systematically vary the practiced
weeks, for instance, by reminding a subpopulation of students every day to practice for five
minutes. Further, future research might combine the practiced weeks with the practiced
tasks measure because, with the current approach, for instance, a student who practiced
100 tasks in four weeks has the same score as a student who practiced 10 tasks in four
weeks. Thus, in terms of challenging the hypotheses on massed and distributed practice
behavior, future studies might investigate a moderation between the practiced weeks and
the practiced tasks. As showing such an interaction effect would require even higher
statistical power (e.g., through a sufficiently large sample size; Aiken and West 1991),
we concentrated on considering the practiced tasks and practiced weeks separately as
direct effects. Additionally, our results indicate that both measures were highly correlated.
Hence, suppressor effects might become a problem for future studies investigating such an
approach. Thus, we recommend ensuring not only that there are students who practice
few tasks in few weeks and many tasks in many weeks but also that there are students
who practice few tasks in many weeks and many tasks in few weeks. Still, as no previous
study ever took the measure of practiced weeks into account, our approach provides initial,
valuable information on how to employ a new practice behavior measure regarding math
learning programs.

4.2. Effects of Math Garden on Math Self-Concept

Our results suggest that, as expected, providing students with Math Garden fostered
their math self-concept in contrast to a wait-list control condition. Considering the fact
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that math self-concept is one of the most important predictors of later performance (Eccles
and Wigfield 2020; Guay et al. 2003; Marsh and Martin 2011), this is a very promising
result. Interestingly, the provision of Math Garden in our study seemed to have a buffering
effect. While we descriptively observed that math self-concept in the wait-list control
condition declined over the intervention period, which is in line with previous research
that suggested an overall decrease in self-concept over a school year (Eshel and Klein 1981;
de Fraine et al. 2007), the provision of Math Garden appeared to counteract this decline
and also led to a significant increase in math self-concept. Thus, students seemed to benefit
from Math Garden regarding their math self-concept, which is why we can recommend
implementing the program in classrooms. Further, this result is also in line with earlier
research: In a Dutch sample, Jansen et al. (2013) showed a small but positive effect of
providing Math Garden on perceived math competence, which is a construct that is closely
related to math self-concept (Lee 2009). However, they only had an intervention duration
of 11.1 weeks on average, and their effect can thus be assumed to be modest because of the
short intervention period (Jansen et al. 2013). By replicating this result in a German sample
with an intervention duration almost twice as long, our finding supports its robustness.
Further, keeping in mind that the students in our sample all came from non-academic-track
schools, it is reasonable to assume that they were mostly lower achievers. Although research
results have already shown that math learning program interventions can be especially
effective for low-achieving students regarding performance (Hassler Hallstedt et al. 2018;
Ran et al. 2021), effects on affective-motivational outcomes have not yet been considered.
However, as low-achieving students, in particular, might have unfavorable motivational
prerequisites after continuous experiences of failure, future research should also focus on
investigating such effects in this subpopulation. The results of our study might be the first
indication that such interventions have the potential to foster low-achieving students’ math
self-concept, which is promising and thus needs further investigation.

Contrary to our expectations, we did not find an effect of practice behavior on math
self-concept. This result is in line with research by Jansen et al. (2013), who were not able
to show any effects on the construct of perceived math competence, which is related to
math self-concept when considering the practiced tasks in Math Garden. Given the positive
effects of providing Math Garden on students’ math self-concept, one might conclude
that the amount of feedback students receive when practicing with the program does not
influence the extent to which the program fosters their math self-concept. An explanation
for this missing effect of practice behavior might be found in the study results of Bernacki
et al. (2015), who investigated the effect of feedback on the motivational construct of
self-efficacy. They showed that feedback on the correctness of tasks affected self-efficacy,
especially at the beginning of the training session. However, over time, the previous self-
efficacy became more and more predictive of further self-efficacy, while the number of
correct answers, and thus positive feedback, became less important. The authors postulated
that positive feedback has a positive effect, especially at the start of a learning activity, but
that self-efficacy then stabilizes (Bernacki et al. 2015). This might be the same with math
self-concept. To test such an assumption for practice behavior with Math Garden, future
research that assesses math self-concept multiple times during the intervention period
is needed.

4.3. Effects of Math Garden on Math Anxiety

We did not find any effects of providing Math Garden or of practice behavior with
Math Garden on math anxiety. These missing findings are in line with research from Jansen
et al. (2013), who were also not able to show any effects on math anxiety. Regarding these
missing effects, research by Hilz et al. (2023) showed that math-anxious students generally
practice less with math learning programs. Thus, math-anxious students might not have
benefited from the adaptive algorithm as they practiced too little to notice that the program
adjusted tasks to their ability level. In turn, they might not have perceived tasks in Math
Garden to be controllable, which is why math anxiety did not decrease. Furthermore, many
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authors have pointed out that math anxiety is a phenomenon that begins at a young age and
is, therefore, deeply rooted in students (Ashcraft and Krause 2007; Bekdemir 2010; Ramirez
et al. 2013). Therefore, although students’ experiences with Math Garden in the present
investigation might have been positive due to the adaptive algorithm and, therefore, a
sufficient amount of positive feedback might have been received, these experiences may not
outweigh negative math experiences in the past (Jansen et al. 2013). Additionally, our math
anxiety items mainly focused on math test anxiety, which is only one dimension of math
anxiety. Research has already shown that math anxiety has other facets and components,
such as an affective and a cognitive component (Wigfield and Meece 1988), or a trait and a
state component (Orbach et al. 2019). Again, to get a more detailed view of the underlying
effects of math learning programs, future investigations might include these different
components in their investigations. Future research might also experimentally investigate
in more detail whether the manipulation of specific program elements has the potential to
reduce math anxiety. For example, the developers of Math Garden recently implemented
the option of hiding coins when students solve the tasks. Normally, while a specific task is
being presented, coins spilling out under the task symbolize the remaining time to give an
answer. The more quickly students give the correct answer, the more remaining coins they
receive as a reward. However, these coins might put pressure on math-anxious students
in particular because working memory capacities might be even more reduced (Ashcraft
and Kirk 2001; Hunt and Sandhu 2017). Hence, turning off this visibly expiring time might
have a positive effect on students’ math anxiety.

4.4. Limitations

Even though our study provides new insights into how math learning programs like
Math Garden potentially affect students’ performance, their math self-concept, and their
math anxiety, our analyses have limitations that need to be considered when interpreting
the results. As already mentioned, the posttest sample size was reduced due to school
closures because of the COVID-19 lockdown. Even though this sample dropout appeared
to be unsystematic, as we did not suggest testing dates to schools with any specific strategy,
and the two subsamples did not differ in their pretest scores, the consequence was a loss of
power according to our G*Power analyses (Faul et al. 2007, 2009). Hence, for replicating
the robustness of our desirable finding on math self-concept, we recommend replicating
our findings in a larger sample.

Due to the fact that most high-achieving students in Germany attend academic-track
schools, our sample, which only included non-academic-track schools, consisted of, on
average, lower-achieving students. Therefore, the results cannot be generalized to all types
of German schools. In turn, as we also did not explicitly consider low achievement, our
results can also not be fully generalized to all low-achieving students.

Further, we did not collect information about the environment (i.e., at home or in
school) in which students practiced with Math Garden. We assume that using Math
Garden voluntarily at home might be more effective regarding performance than using
Math Garden during math lessons at school because using Math Garden outside of school
means extra learning time. For instance, Bakker et al. (2015) showed that their math
learning program intervention was most effective when students practiced at home after
being introduced to the program at school. Future research might investigate whether
students benefit more from extra practice time at home in contrast to practice time during
math lessons.

Moreover, school, teacher, and parental characteristics might have affected our out-
come variables. For instance, schools vary in their digital infrastructure and, thus, in
the availability of digital devices (Eickelmann et al. 2019; Stanat et al. 2022). Because we
randomized students on the class level, the variance between schools should have been
controlled for. However, because of the design of our study, we were only able to control for
variance differences between classes. Hence, we were unable to consider teacher variables
at Level 2 to investigate variance between classes. However, as teachers vary in their
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competencies and attitudes towards the use of digital media in the classroom (Eickelmann
et al. 2019), it is reasonable to assume that such characteristics might have affected our
outcomes as well. Further, it would be interesting to know the extent to which teachers
used Math Garden during their math instruction. Moreover, we were also not able to
take parental characteristics into account. The results of previous research on the quality
dimensions of parental homework involvement have already shown that, for instance, high
parental control inhibits students’ academic functioning and achievement (Guill et al. 2020;
Moroni et al. 2015). Further, we did not know what type of digital devices students used to
practice with Math Garden at home. As research on the motives for using digital devices
has already shown that, for instance, smartphones are often used for entertainment-related
and social-interactive purposes, whereas desktop computers offer better possibilities for
information and learning-orientated use (Napoli and Obar 2014), we assume that students
might be more distracted when using Math Garden on smartphones instead of on desktop
computers. This might have affected their performance. Future research might take such
variables into account.

Finally, this study had two design limitations. First, we only investigated the effects
of Math Garden compared to a “business as usual” group (i.e., students receiving regular
math instruction) that did not receive any support in the form of additional learning
opportunities. Thus, the effects of Math Garden can only be interpreted compared to the
effects of not having any additional learning opportunities. Thus, the current study rather
provides evidence for the effects of Math Garden than for the effectiveness of Math Garden.
For the latter, a comparison with another support strategy or other additional learning
opportunities with the same invested learning time would be helpful to examine if Math
Garden is more effective in supporting learners than other support strategies. Second,
randomization took place on the class level rather than on the individual level. This is
standard practice when implementing a treatment in educational research to ensure the
acceptance and usefulness of the study (Plewis and Hurry 1998), but it should, nonetheless,
be kept in mind when interpreting the results.

4.5. Practical Implications

Although only some of our theoretical assumptions were confirmed, this study has
implications for practitioners who plan to implement a math learning program in the
classroom. The distinct performance measure approach could help teachers to decide
which program to use in the classroom or educational administrations to decide which
specific programs to recommend for classroom use because this approach can clarify which
program is effective in fostering a particular math ability (Ran et al. 2021). Thus, with
the results of our study, we can recommend that teachers use Math Garden as it might
foster their students’ subtraction skills more than if no additional learning opportunities
are provided. Further investigations might also test how Math Garden affects students’
multiplication and division skills. However, our study also showed that simply providing
the program did not affect students’ performance. Thus, teachers need to actively encourage
their students to practice with Math Garden in order for them to benefit regarding their
performance. This seems to apply in particular to math-anxious students (Hilz et al. 2023).
For instance, teachers might use Math Garden at the end of every math lesson to get their
students used to practicing, or they might use it in supervision classes or assign practice
as homework. Such strategies should be followed, especially after a vacation period, as
students tend to stop practicing during vacations (Hilz et al. 2023; Hofman et al. 2018).
Moreover, as Math Garden has the potential to foster students’ math self-concept, the use
of Math Garden in the classroom might motivate students to further deal with math and
math-related topics, which, in turn, might have long-term effects on future performance
(Eccles and Wigfield 2020; Guay et al. 2003; Marsh and Martin 2011).
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5. Conclusions

Even though research on math learning programs has taken off in recent years (Higgins
et al. 2019; Hillmayr et al. 2020; Pellegrini et al. 2021; Sailer and Homner 2020), the results
of their effectiveness are heterogeneous, and the programs seem to largely fail to meet the
expectation that they can fundamentally revolutionize the school system (Pellegrini et al.
2021). However, instead of concluding that they are ineffective and potentially rejecting
their use, this study offers new ways in which future research might address math learning
program evaluations and thus adds a new perspective to the current state of research
in this field. Our results suggest that the learning program Math Garden might foster
students’ subtraction skills more than when an additional learning program is not used, but
only when practice behavior is considered. Further, we were able to show that providing
Math Garden fosters students’ math self-concept. For future investigations, we would
like to encourage researchers to evaluate (math) learning programs on a more detailed
level to uncover potentially hidden effects. Thus, we recommend that researchers take the
following points into account:

• Focus on measuring distinct subdomains of performance: This can help practitioners,
in particular, to make decisions about the target group for whom the program might
be most beneficial.

• Take affective-motivational variables into account: Even if a program has no effect
on performance shortly after the intervention, performance might increase in the
long term if affective-motivational variables, which are predictors of performance,
are affected by the intervention. Again, it is also important to investigate single
dimensions of these variables in more detail, for instance, to differentiate between the
cognitive and the affective component of math anxiety.

• Consider practice behavior with log and trace data: This can provide a deeper in-
sight into the optimal amount of practice with (math) learning programs and which
types of students’ behavior might benefit the most from the implementation (e.g.,
distributed practicing).
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