
Citation: Caro, Manuel F., Michael T.

Cox, and Raúl E. Toscano-Miranda.

2022. A Validated Ontology for

Metareasoning in Intelligent Systems.

Journal of Intelligence 10: 113.

https://doi.org/10.3390/

jintelligence10040113

Received: 5 May 2022

Accepted: 18 October 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Intelligence
Journal of

Article

A Validated Ontology for Metareasoning in Intelligent Systems
Manuel F. Caro 1,*, Michael T. Cox 2 and Raúl E. Toscano-Miranda 1

1 Education, Technology & Language (EduTLan Research Group), Department of Educational Informatics,
University of Córdoba, Carrera 6 No. 77-305, Montería 230002, Córdoba, Colombia

2 Education, Department of Computer Science & Engineering, College of Engineering and Computer Science,
Wright State University, Dayton, OH 45324, USA

* Correspondence: manuelcaro@correo.unicordoba.edu.co

Abstract: Metareasoning suffers from the heterogeneity problem, in which different researchers
build diverse metareasoning models for intelligent systems with comparable functionality but dif-
fering contexts, ambiguous terminology, and occasionally contradicting features and descriptions.
This article presents an ontology-driven knowledge representation for metareasoning in intelligent
systems. The proposed ontology, called IM-Onto, provides a visual means of sharing a common
understanding of the structure and relationships between terms and concepts. A rigorous research
method was followed to ensure that the two main requirements of the ontology (integrity based on
relevant knowledge and acceptance by researchers and practitioners) were met. The high accuracy
rate indicates that most of the knowledge elements in the ontology are useful information for the
integration of multiple types of metareasoning problems in intelligent systems.

Keywords: metareasoning ontology; intelligent systems; metareasoning problem; ontology valida-
tion; heterogeneity problem

1. Introduction

Metareasoning refers to the processes that monitor the progress of our reasoning and
problem-solving activities and regulate the time and effort devoted to them (Ackerman and
Thompson 2017; Horvitz 1987; Russell and Wefald 1991). Metareasoning is often defined
as reasoning about reasoning (e.g., Hayes-Roth et al. 1983; Kuokka 1991), which implies
intelligent decisions about how to think (Griffiths et al. 2019). In research on artificial intelli-
gence, metareasoning plays a central role in the definition and design of rational agents that
can operate on performance-limited hardware and interact with their environment in real
time (Conitzer and Sandholm 2003; Dannenhauer et al. 2014; Svegliato and Zilberstein 2018).
In the cognitive systems research community, metareasoning (or computational metacog-
nition) is key to modeling high-level decision making, self-explanation and introspection
(Cox 2011; Dannenhauer et al. 2018). Metareasoning also enables intelligent agents to op-
timize their own decision-making process to produce effective action in a timely manner
(Svegliato et al. 2021).

However, metareasoning suffers from the heterogeneity problem, where differing
metareasoning models with similar functionalities are being developed for intelligent
agents in heterogeneous environments by different researchers. These models have con-
flicting features, descriptions, qualities, algorithms, and non-standard conventions because
they come from different areas of knowledge, such as cognitive science (Ackerman and
Thompson 2017), psychology (Dunlosky and Bjork 2008), education (Caro et al. 2014), com-
puter science (Borghetti and Gini 2008), engineering (Caleiro et al. 2005), and AI (Conitzer
and Sandholm 2003; Cox and Raja 2011; Svegliato and Zilberstein 2018). Due to these types
of heterogeneities and the increasing application domains (e.g., online planning, anytime
algorithms, brittleness problem of AI systems, introspective systems and long-duration
missions), the research community now needs a common understanding of the terms and

J. Intell. 2022, 10, 113. https://doi.org/10.3390/jintelligence10040113 https://www.mdpi.com/journal/jintelligence

https://doi.org/10.3390/jintelligence10040113
https://doi.org/10.3390/jintelligence10040113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jintelligence
https://www.mdpi.com
https://orcid.org/0000-0002-4900-0226
https://orcid.org/0000-0003-0260-9234
https://doi.org/10.3390/jintelligence10040113
https://www.mdpi.com/journal/jintelligence
https://www.mdpi.com/article/10.3390/jintelligence10040113?type=check_update&version=1

J. Intell. 2022, 10, 113 2 of 29

concepts related to metareasoning in intelligent systems. In this sense, there is a requirement
to create a standard or global ontology that provides a common knowledge representation
of the metareasoning domains.

Therefore, the main objective of this paper is to present an ontology that allows speci-
fying a common language and a conceptualization of metareasoning in the domain of AI,
which can be used to represent different metareasoning problems in intelligent systems. An
ontology is defined as a formal specification of a shared conceptualization (Gruber 1995).
Furthermore, ontologies allow the reuse of domain knowledge, thus making domain as-
sumptions explicit and helping us to clarify any ambiguities (Horridge et al. 2019; Noy and
McGuinness 2001).

Several studies have constructed ontologies for describing various aspects of metarea-
soning. Unfortunately, no comprehensive set of standardized features exists for describing
the metareasoning domain. Therefore, each study has developed partial ontologies to
address specific problems such as failures in AI systems (Schmill et al. 2007), the metacog-
nitive cycle (Schmill et al. 2011) and meta-level control (Madera-Doval 2019). A general
ontology for broadly describing the metareasoning domain and detailed ontologies for
each metareasoning problem is still missing in the literature.

The main contributions of this work are:

• The Integrated Metareasoning Ontology, an ontology for the representation of different
metareasoning problems in intelligent systems. We describe a framework for the use
of the formally defined semantics of the classes, the individuals, and the properties of
the ontology to construct the knowledge representation structure necessary to monitor
and control the reasoning processes in intelligent agents. The proposed ontology also
reuses existing ontologies that are used for partial modelling of some aspects of the
metareasoning domain.

The remaining sections of the paper are as follows. Section 2 sketches the research
methodology used in our work, and Section 3 details the development and validation of
the ontology using this approach. It also describes a case study that applies the ontology to
the problem of allocating student teams in internship programs. Section 4 then provides
a discussion of the results; the summary of the study’s key findings and its limitations is
included in Section 5.

2. Materials and Methods

Approaches to ontology development have been evolving in recent years. Authors
have proposed updated methodologies based on the review and identification of the
limitations of existing ontology development methods.

The methodology employed for ontology development is a hybrid framework based
on DSR (Hevner et al. 2004; Peffers et al. 2012), which leverages the “methontology”
approach (Baccigalupo and Plaza 2007), the 7-step methodology for ontology development
(Noy and McGuinness 2001) and the “Uschold and Gruninger” ontology building approach
(Uschold and Gruninger 1996). The Uschold and Gruninger approach provides detailed
information for delineating the purpose and scope, ontology formalization, evaluation, and
documentation. On the other hand, the methontology approach provides a more nuanced
approach toward knowledge acquisition, conceptualization, and implementation.

These phases have been identified in other studies, such as Badr et al. (2013). Figure 1
depicts this step-by-step research framework for developing the ontology and implement-
ing it pragmatically in a case study.

J. Intell. 2022, 10, 113 3 of 29
J. Intell. 2022, 10, x FOR PEER REVIEW 3 of 30

Figure 1. Research method. Source: Elaborated by the authors based on (Badr et al. 2013).

Based on this framework, it was first important to define the scope and purpose of
the ontology and to identify key resources from which the ontology is derived (Phase 1).
This was executed by enumerating and answering a set of ontology specification ques-
tions and by listing specific functional roles for the ontology. This phase was followed by
knowledge capture and the abstraction of relevant terms and their relationships in the
domain from the resources (Phase 2). The formalization process is then performed to pro-
duce meaningful models based on semantic relationships (Phase 3). This phase identifies
the hierarchies of subclasses as well as the existing semantic relationships between the
different classes. Beyond this stage, the ontology was formally coded using RDF/OWL
(Resource Description Framework/Web Ontology Language) (Van Assem et al. 2006) to
make it computer-interpretable (Phase 4). The coded ontology underwent internal logical
checks and was subsequently implemented in the case study. Further validation of the
results of a case study was then performed through a data-driven and criteria-based eval-
uation (Phase 5). The case study addressed a particular type of team composition problem
in an academic unit of a higher education institution. Finally, the documentation for each
class and the user manual and technical aspects of the ontology was generated (Phase 6).
The next section now presents the details of these six phases.

3. Results
In summary, the methodology we follow for development includes ontology defini-

tion, conceptualization, formalization, implementation, evaluation, and documentation.
Here we describe each in turn, giving specific technical elaborations.

3.1. Definition
The objective of a requirements specification is to produce a formal or informal de-

scription of the rationale behind the development of an ontology and to elucidate its

Figure 1. Research method. Source: Elaborated by the authors based on (Badr et al. 2013).

Based on this framework, it was first important to define the scope and purpose of
the ontology and to identify key resources from which the ontology is derived (Phase 1).
This was executed by enumerating and answering a set of ontology specification ques-
tions and by listing specific functional roles for the ontology. This phase was followed by
knowledge capture and the abstraction of relevant terms and their relationships in the
domain from the resources (Phase 2). The formalization process is then performed to pro-
duce meaningful models based on semantic relationships (Phase 3). This phase identifies
the hierarchies of subclasses as well as the existing semantic relationships between the
different classes. Beyond this stage, the ontology was formally coded using RDF/OWL (Re-
source Description Framework/Web Ontology Language) (Van Assem et al. 2006) to make
it computer-interpretable (Phase 4). The coded ontology underwent internal logical checks
and was subsequently implemented in the case study. Further validation of the results
of a case study was then performed through a data-driven and criteria-based evaluation
(Phase 5). The case study addressed a particular type of team composition problem in an
academic unit of a higher education institution. Finally, the documentation for each class
and the user manual and technical aspects of the ontology was generated (Phase 6). The
next section now presents the details of these six phases.

3. Results

In summary, the methodology we follow for development includes ontology definition,
conceptualization, formalization, implementation, evaluation, and documentation. Here
we describe each in turn, giving specific technical elaborations.

3.1. Definition

The objective of a requirements specification is to produce a formal or informal descrip-
tion of the rationale behind the development of an ontology and to elucidate its potential
uses (Fernández-López et al. 1997). This can be done by documenting this information

J. Intell. 2022, 10, 113 4 of 29

in natural language, by using specification questions, and by developing intermediate
representations. This study used the following set of specification questions adapted
from Fernández-López et al. (1997) to help determine the ontological rationale. This is
augmented by a use case diagram in response to the “intended use” question.

• What is the purpose? The objective of the ontology is to facilitate the integration of
metareasoning processes into advanced intelligent systems.

• What is the scope? The ontology will include information on the processes related
to metareasoning, such as allocation deliberation time, allocation evaluation effort,
detection of reasoning failures, meta-explanations, introspective monitoring and met-
alevel control.

• Who are the intended end users? Users include research groups in cognitive science,
artificial intelligence, and cognitive computing. Although the proposed ontology
addresses general topics of meta-reasoning, our focus is the application in educational
settings, mainly in solving academic problems in higher education institutions.

• What is the intended use? The main functional roles include the ability to model meta-
reasoning problems that can occur in intelligent systems in terms of monitoring and
controlling cognitive processes. The ontology is useful for reducing the discrepancies
between the data structures required in different components of the meta-reasoning
process. Discrepancies between data structures and language syntax make it even
more difficult to exchange information between meta-reasoning models, leading to
considerable information deviations when data flows are connected through the dif-
ferent designed components. Knowledge sharing among researchers, academics, and
developers can be facilitated by having an ontology for the meta-reasoning domain.
This is because the ontology reduces the ambiguity of terms and has a controlled
vocabulary. The ontology provides a semantic basis for communication between de-
signers, academics, and researchers so that designers share a common understanding
of knowledge.

Existing ontologies and publications in specialized databases were the main resources
identified as sources of information for the extraction of terms related to meta-reasoning.
Science Direct, IEEE Xplorer, ACM, Springer and IGI Global were searched using the
keywords “metareasoning”, “meta-reasoning”, ”metareasoning problem”, ”meta-level
control”, ”metacognition”, “anytime algorithm” and combinations of these keywords.
Similarly, a complementary search was conducted in Google Scholar and Scopus.

3.2. Conceptualization

Following the definition of the ontology requirements specification, the next step is to
describe how the domain knowledge was acquired and formalized. The main steps in this
phase include:

(i) Listing the relevant terms in the ontology;
(ii) Defining classes;
(iii) Defining class properties with specifications for their range and domain (Noy and

McGuinness 2001).

3.2.1. Listing the Relevant Terms in the Ontology

Knowledge relevant to the ontology was initially acquired through a detailed review
of existing studies on metareasoning ontologies. Two key publications proved especially
valuable. Table 1 lists the main terms that appear in existing ontologies from this literature
in the metareasoning domain.

J. Intell. 2022, 10, 113 5 of 29

Table 1. Literature sources for ontology knowledge and terms used in existing ontologies related to
metareasoning.

Literature Source Ontological Terms

(Schmill et al. 2007, 2011)

sensor, reasoning process, rebuild models, recommendation recover,
reinforcement learning, replan, response ontology, result, reward,
self-awareness, sensor, sensor failure, sensor malfunction, sensor not
reporting, state, system, failure, time, unanticipated perturbation

(Madera-Doval 2019)

agent, metacognition, self-regulation, metamemory, introspective
monitoring, meta-level control, cognitive elements, cognitive level,
task, reasoning, metareasoning, reasoning task, metareasoning task,
object level, cognitive function, perception, situation assessment,
categorization, recognition, belief maintenance, problem solving,
planning, prediction, expectation, sensor, observation

Given these terms as a base, we extended them by reviewing a select set of key papers
about metareasoning and related topics. Table 2 shows the literature reviewed, including
computational metacognition, introspective monitoring, and anytime planning algorithms.

Table 2. Papers reviewed for the stage of gathering information, knowledge acquisition and concep-
tualization.

Research Paper Terms per Paper Citations per Paper *

(Russell and Wefald 1991) 48 444
(Conitzer and Sandholm 2003) 67 41
(Cox 2005) 63 261
(Anderson and Oates 2007) 36 91
(Schmill et al. 2007) 77 21
(Cox and Raja 2008) 55 100
(Chen et al. 2013) 37 3
(Lin et al. 2015) 54 46
(Lieder and Griffiths 2017) 37 23
(Ackerman and Thompson 2017) 36 105
(Milli et al. 2017) 35 39
(Cserna et al. 2017) 34 9
(Karpas et al. 2018) 22 5
(Farmer 2018) 7 5
(Madera-Doval 2019) 27 1
(Houeland and Aamodt 2018) 25 5
(Parashar et al. 2018) 33 1
(Griffiths et al. 2019) 18 29
(Svegliato et al. 2018) 41 16
(Sung et al. 2021) 36 0

* Google Scholar was the source for the number of citations of the papers at the time of writing this article. Data
collected in June 2021.

The concept of data saturation was taken as an indicator of when to stop the literature
review process. Data saturation occurs when new information is not obtained with addi-
tional data collection effort (Fusch and Ness 2015). Figure 2 presents how data saturation
was achieved in this study. In this figure, a decreasing return trend (e.g., redundant data)
exists in the number of unique information attributes (used to construct concepts) identi-
fied from the reviewed papers. After article number 15, no additional unique information
elements were identified.

J. Intell. 2022, 10, 113 6 of 29

J. Intell. 2022, 10, x FOR PEER REVIEW 6 of 30

identified from the reviewed papers. After article number 15, no additional unique infor-
mation elements were identified.

Figure 2. Saturation level as the number of novel terms added by a subsequent article. The papers
were processed in the same order as in Table 2. The x-axis corresponds to the new terms provided
by each paper after analyzing them in order.

3.2.2. Defining Classes
The classes of the ontology are drawn from the term list presented in Section 3.2.1.

We selected terms that describe objects that have an independent existence or represent a
collection of individuals or objects. The selected terms define the ontological classes and
constitute the nodes in the class hierarchy (see Table 3).

Table 3. List of terms used for class definition in the ontology.

Classes of the Ontology
action, action selection, agent, algorithm, allocate deliberation time, allocating evaluation effort, answer, anytime algorithm, any-
time planner, assess anomaly, bayes algorithm, best action, calculate quality of current solution, choose query to ask, cognitive
level, cognitive problem, cognitive task, component, computational method,, computational step, computational step result,
computational time, compute expected utility, compute performance projection, compute solution quality, constraint, control,
control policy, current state of the world, default action, default solution, disambiguate state, evaluation task, evaluation test,
event, expectation, explain failure, explanation, failure, failure explanation, failure state, function, generate expectation, generate
learning goals, get current solution, goal, ground level, ground-level story, guided response, imxp, increment time step, infor-
mation gathering, information gathering policy, information gathering task, initialize performance history, initialize time step,
internal state, introspection, itmxp, knowing current state of the world, knowledge test, learner, learning goal, limited time,
make recommendation, mental action, meta level, metacognitive loop, metacognitive problem, metalevel control, metareasoner,
metareasoning component, metareasoning problem, metareasoning task, model, model of the self, model of the word, monitor
behavior, monotonicity, nag cycle, neural network, nonlinear regression, note anomaly object level, object-level process observa-
tion, online control policy, optimal information gathering policy, optimal test policy, outcome state, perception, performance
history, performance predictor, performance profile, performance projection, perturbation, perturbation detection, phase, plan,
planner, planning, planning task, policy, predict performance, problem, process, profile, problem space, property, question, rec-
ommendation action, reactivate learning, reasoner, reasoning, reasoning failure, reasoning problem, reasoning strategy, reason-
ing system, reasoning task, recommendation, recover, replan, resource, result, run test, save costs, selecting action, sensor, situa-
tion assessment, sleep, solution, solution quality,, start acting, start anytime algorithm, state, state of the world, stop reasoning,
stopping condition, story, story understanding task, strategy, success state, system, task, test, test policy, time, time dependent
utility function, trace, unanticipated perturbation, understanding task, unit of time, unusual event, utility function, vector, vio-
lated expectation

Figure 2. Saturation level as the number of novel terms added by a subsequent article. The papers
were processed in the same order as in Table 2. The x-axis corresponds to the new terms provided by
each paper after analyzing them in order.

3.2.2. Defining Classes

The classes of the ontology are drawn from the term list presented in Section 3.2.1.
We selected terms that describe objects that have an independent existence or represent a
collection of individuals or objects. The selected terms define the ontological classes and
constitute the nodes in the class hierarchy (see Table 3).

Table 3. List of terms used for class definition in the ontology.

Classes of the Ontology

action, action selection, agent, algorithm, allocate deliberation time, allocating evaluation effort,
answer, anytime algorithm, anytime planner, assess anomaly, bayes algorithm, best action,
calculate quality of current solution, choose query to ask, cognitive level, cognitive problem,
cognitive task, component, computational method, computational step, computational step result,
computational time, compute expected utility, compute performance projection, compute solution
quality, constraint, control, control policy, current state of the world, default action, default
solution, disambiguate state, evaluation task, evaluation test, event, expectation, explain failure,
explanation, failure, failure explanation, failure state, function, generate expectation, generate
learning goals, get current solution, goal, ground level, ground-level story, guided response, imxp,
increment time step, information gathering, information gathering policy, information gathering
task, initialize performance history, initialize time step, internal state, introspection, itmxp,
knowing current state of the world, knowledge test, learner, learning goal, limited time, make
recommendation, mental action, meta level, metacognitive loop, metacognitive problem,
metalevel control, metareasoner, metareasoning component, metareasoning problem,
metareasoning task, model, model of the self, model of the word, monitor behavior, monotonicity,
nag cycle, neural network, nonlinear regression, note anomaly object level, object-level process
observation, online control policy, optimal information gathering policy, optimal test policy,
outcome state, perception, performance history, performance predictor, performance profile,
performance projection, perturbation, perturbation detection, phase, plan, planner, planning,
planning task, policy, predict performance, problem, process, profile, problem space, property,
question, recommendation action, reactivate learning, reasoner, reasoning, reasoning failure,
reasoning problem, reasoning strategy, reasoning system, reasoning task, recommendation,
recover, replan, resource, result, run test, save costs, selecting action, sensor, situation assessment,
sleep, solution, solution quality, start acting, start anytime algorithm, state, state of the world, stop
reasoning, stopping condition, story, story understanding task, strategy, success state, system,
task, test, test policy, time, time dependent utility function, trace, unanticipated perturbation,
understanding task, unit of time, unusual event, utility function, vector, violated expectation

J. Intell. 2022, 10, 113 7 of 29

3.2.3. Define Class Properties with Specification of the Range and Domain

This section describes the relationships and properties of some class examples, but
due to the large number that has been identified, we do not report all in the ontology.
In cognitive systems with a metalevel-based architecture, the function of the object level
(i.e., the reasoning level) is to recognize and solve problems or situations in the environ-
ment where the system operates. In contrast, the main function of the meta-level is to
monitor and control the reasoning and learning processes that take place at the object level
(Cox and Raja 2011; Nelson 1990). The objective of monitoring and control is to achieve
more effective results in the processes carried out at the object level.

A meta level has a problem space and a metareasoner (see Table 4). The problem space
represents a collection of metareasoning problems and all possible paths to solving them.
The metareasoner is the computational algorithm that executes all metareasoning tasks.

Table 4. Properties and domain range of two classes in the ontology.

Class Property Domain Value Restriction

MetaLevel rdf:subClassOf CognitiveLevel
has_problemspace ProblemSpace Non-empty array
has_metareasoner Metareasoner An algorithm
has_current_metareasoning_loop Integer Positive integer

MetareasoningTask rdf:subClassOf MetacognitiveTask
has_goal Goal
has_id String Unique value
has_input Array An array of objects
has_output Array Non-empty
has_runtime Number Positive number
has_preconditions State Non-empty array of states
has_effects State Non-empty array of states
has_name String Alphanumerical value

Meta-reasoning tasks are a particular type of metacognitive task whose purpose is to
monitor and control the reasoning processes that take place at the object level (again, see
Table 4). Some properties of meta-reasoning tasks are the input parameters, the output,
the necessary conditions for its execution, the effects of its execution, as well as the event
and completeness states. Table 4 shows the properties and domain range of two classes in
the ontology.

3.3. Formalization

Hierarchical classifications use predefined semantic taxonomies (Silla and Freitas 2011).
A taxonomy contains only one root class and defines the “Is-A” relationships between
classes. An “Is-A” relationship is transitive and asymmetric. Some ontological hierarchies
were generated from the explicit descriptions in the reviewed papers, as can be seen in
Figures 3 and 4.

J. Intell. 2022, 10, x FOR PEER REVIEW 8 of 30

Figure 3. Class hierarchy according to (Conitzer and Sandholm 2003). Figure elaborated by the
authors.

Figure 4. Class hierarchy extracted from a previous ontology in (Schmill et al. 2007). Figure elabo-
rated by the authors.

Finally, other ontological hierarchies arose from the process of concept abstraction.
For example, reasoning tasks and metareasoning tasks abstract the task class.

In this ontology, the information about the metareasoning process is modeled accord-
ing to the standard vocabulary that facilitates a better semantic interpretation that can
resolve ambiguities in the terms used in the different data sets, metareasoning applica-
tions, or when a little additional knowledge can lead to the discovery of new relationships
between terms. In this sense, this ontology is designed to semantically represent a rich
and complex knowledge about the domain of metareasoning in intelligent systems.

The semantic relationships in the ontology are given through hierarchical relation-
ships of type Is-Un. When a relationship of this type is established between two classes,
one is a superclass, and the other is a subclass. The subclass shares the structure and be-
havior of the superclass. In the same way, the “HAS” relationships have been imple-
mented, which are structural and describe a set of links, which describe composition con-
nections between the terms.

The ontology has mechanisms to verify the consistency of this knowledge and make
explicit the implicit knowledge that can be generated in the monitoring and control pro-
cesses of reasoning in intelligent systems.

3.4. Implementation: The Integrated Metareasoning Ontology (IM-Onto)
This section presents the technical details of the Integrated Metareasoning Ontology

(IM-Onto). To make an ontology machine-readable, it is important to represent it in a for-
mal computational language (Noy and Mcguinness 2001). Hence, IM-Onto was imple-
mented using OWL/RDF (Allemang et al. 2005) in the Protégé environment (Horridge et
al. 2019).

The advantage of using OWL/RDF is that it allows for richer semantic expressions of
concepts, their attributes, and the relationships between them. At the same time, the use
of the OWL/RDF model supports improved interoperability or connection of information
silos with the added merit of being able to generate implicit semantic inferences based on
defined relationships (Horridge et al. 2019). In the context of this study, the use of this
model for linking information enables a machine-readable representation (through uni-
form resource identifiers) that also solves a vocabulary problem in this domain. In the
context of this study, the use of this model for metareasoning enables a machine-readable

Figure 3. Class hierarchy according to (Conitzer and Sandholm 2003). Figure elaborated by the authors.

J. Intell. 2022, 10, 113 8 of 29

J. Intell. 2022, 10, x FOR PEER REVIEW 8 of 30

Figure 3. Class hierarchy according to (Conitzer and Sandholm 2003). Figure elaborated by the
authors.

Figure 4. Class hierarchy extracted from a previous ontology in (Schmill et al. 2007). Figure elabo-
rated by the authors.

Finally, other ontological hierarchies arose from the process of concept abstraction.
For example, reasoning tasks and metareasoning tasks abstract the task class.

In this ontology, the information about the metareasoning process is modeled accord-
ing to the standard vocabulary that facilitates a better semantic interpretation that can
resolve ambiguities in the terms used in the different data sets, metareasoning applica-
tions, or when a little additional knowledge can lead to the discovery of new relationships
between terms. In this sense, this ontology is designed to semantically represent a rich
and complex knowledge about the domain of metareasoning in intelligent systems.

The semantic relationships in the ontology are given through hierarchical relation-
ships of type Is-Un. When a relationship of this type is established between two classes,
one is a superclass, and the other is a subclass. The subclass shares the structure and be-
havior of the superclass. In the same way, the “HAS” relationships have been imple-
mented, which are structural and describe a set of links, which describe composition con-
nections between the terms.

The ontology has mechanisms to verify the consistency of this knowledge and make
explicit the implicit knowledge that can be generated in the monitoring and control pro-
cesses of reasoning in intelligent systems.

3.4. Implementation: The Integrated Metareasoning Ontology (IM-Onto)
This section presents the technical details of the Integrated Metareasoning Ontology

(IM-Onto). To make an ontology machine-readable, it is important to represent it in a for-
mal computational language (Noy and Mcguinness 2001). Hence, IM-Onto was imple-
mented using OWL/RDF (Allemang et al. 2005) in the Protégé environment (Horridge et
al. 2019).

The advantage of using OWL/RDF is that it allows for richer semantic expressions of
concepts, their attributes, and the relationships between them. At the same time, the use
of the OWL/RDF model supports improved interoperability or connection of information
silos with the added merit of being able to generate implicit semantic inferences based on
defined relationships (Horridge et al. 2019). In the context of this study, the use of this
model for linking information enables a machine-readable representation (through uni-
form resource identifiers) that also solves a vocabulary problem in this domain. In the
context of this study, the use of this model for metareasoning enables a machine-readable

Figure 4. Class hierarchy extracted from a previous ontology in (Schmill et al. 2007). Figure elaborated
by the authors.

Other class hierarchies were drawn from existing ontologies, for example:
Finally, other ontological hierarchies arose from the process of concept abstraction. For

example, reasoning tasks and metareasoning tasks abstract the task class.
In this ontology, the information about the metareasoning process is modeled accord-

ing to the standard vocabulary that facilitates a better semantic interpretation that can
resolve ambiguities in the terms used in the different data sets, metareasoning applications,
or when a little additional knowledge can lead to the discovery of new relationships be-
tween terms. In this sense, this ontology is designed to semantically represent a rich and
complex knowledge about the domain of metareasoning in intelligent systems.

The semantic relationships in the ontology are given through hierarchical relationships
of type Is-Un. When a relationship of this type is established between two classes, one is a
superclass, and the other is a subclass. The subclass shares the structure and behavior of
the superclass. In the same way, the “HAS” relationships have been implemented, which
are structural and describe a set of links, which describe composition connections between
the terms.

The ontology has mechanisms to verify the consistency of this knowledge and make ex-
plicit the implicit knowledge that can be generated in the monitoring and control processes
of reasoning in intelligent systems.

3.4. Implementation: The Integrated Metareasoning Ontology (IM-Onto)

This section presents the technical details of the Integrated Metareasoning Ontology
(IM-Onto). To make an ontology machine-readable, it is important to represent it in a formal
computational language (Noy and McGuinness 2001). Hence, IM-Onto was implemented
using OWL/RDF (Allemang et al. 2005) in the Protégé environment (Horridge et al. 2019).

The advantage of using OWL/RDF is that it allows for richer semantic expressions of
concepts, their attributes, and the relationships between them. At the same time, the use of
the OWL/RDF model supports improved interoperability or connection of information
silos with the added merit of being able to generate implicit semantic inferences based
on defined relationships (Horridge et al. 2019). In the context of this study, the use of
this model for linking information enables a machine-readable representation (through
uniform resource identifiers) that also solves a vocabulary problem in this domain. In the
context of this study, the use of this model for metareasoning enables a machine-readable
representation (through uniform resource identifiers) that also solves a vocabulary problem
in this domain.

IM-Onto consists of seven sub-ontologies that map to key metareasoning problems.
These seven are as follows: the Allocating Deliberation Time Problem (ADTP); the Allo-
cating Evaluation Effort Problem (AEEP); the Knowledge Test Problem (KTP); the Stop-
ping Reasoning Problem (SRP); the Gathering Computational Performance Data Prob-
lem (GCPDP); the Detection of Reasoning Failure Problem (DRFP); and finally, the Self-
Explanation and Self-Understanding Problem (SE&SUP). Figure 5 shows the hierarchy of
these subontologies in IM-Onto.

J. Intell. 2022, 10, 113 9 of 29

J. Intell. 2022, 10, x FOR PEER REVIEW 9 of 30

representation (through uniform resource identifiers) that also solves a vocabulary prob-
lem in this domain.

IM-Onto consists of seven sub-ontologies that map to key metareasoning problems.
These seven are as follows: the Allocating Deliberation Time Problem (ADTP); the Allo-
cating Evaluation Effort Problem (AEEP); the Knowledge Test Problem (KTP); the Stop-
ping Reasoning Problem (SRP); the Gathering Computational Performance Data Problem
(GCPDP); the Detection of Reasoning Failure Problem (DRFP); and finally, the Self-Expla-
nation and Self-Understanding Problem (SE&SUP). Figure 5 shows the hierarchy of these
subontologies in IM-Onto.

Figure 5. Subontology hierarchy.

To facilitate the ontology reading process and to differentiate an ontology concept or
a concept-relation property from a regular term, the model uses the following.
• CAPITAL LETTERS denote concepts defined in the ontology. For example, ALLO-

CATE_DELIBERATION_TIME and OBJECT_LEVEL are important concepts and are
further described in the ontology term detailed description.

• Italics letters refer to a property of a relation between two or more ontology concepts.
For example, has_problem_solution is a property that relates the ontology term PROB-
LEM and SOLUTION.

3.4.1. The Allocating Deliberation Time Problem (ADTP) Subontology
In this section, the setting where an agent must allocate its deliberation time across

different problems is represented. Figure 6 portrays the entire sub-ontology, including the
ALLOCATE_DELIBERATION_TIME class with its relations. However, the concept of a
METAREASONING_PROBLEM is presented first due to its key role in the overall me-
tareasoning process.

A METAREASONING_PROBLEM is a class that represents the problem an agent has
of monitoring and controlling the progress of its own reasoning and problem-solving ac-
tivities and regulating the time and effort spent on them (Ackerman and Thompson 2017).
This definition is a good example of the creation of inferred abstract concepts such as the
concept PROBLEM. The PROBLEM class is considered part of the core of the ontology

Figure 5. Subontology hierarchy.

To facilitate the ontology reading process and to differentiate an ontology concept or a
concept-relation property from a regular term, the model uses the following.

• CAPITAL LETTERS denote concepts defined in the ontology. For example, ALLO-
CATE_DELIBERATION_TIME and OBJECT_LEVEL are important concepts and are
further described in the ontology term detailed description.

• Italics letters refer to a property of a relation between two or more ontology concepts.
For example, has_problem_solution is a property that relates the ontology term PROB-
LEM and SOLUTION.

3.4.1. The Allocating Deliberation Time Problem (ADTP) Subontology

In this section, the setting where an agent must allocate its deliberation time across
different problems is represented. Figure 6 portrays the entire sub-ontology, including
the ALLOCATE_DELIBERATION_TIME class with its relations. However, the concept
of a METAREASONING_PROBLEM is presented first due to its key role in the overall
metareasoning process.

A METAREASONING_PROBLEM is a class that represents the problem an agent has of
monitoring and controlling the progress of its own reasoning and problem-solving activities
and regulating the time and effort spent on them (Ackerman and Thompson 2017). This
definition is a good example of the creation of inferred abstract concepts such as the concept
PROBLEM. The PROBLEM class is considered part of the core of the ontology because it is
used by all the sub-ontologies. In the proposed design, every PROBLEM is part of a PROB-
LEM_SPACE and has a SOLUTION. The meta-level analyzes the DEFAULT_SOLUTION for
potential anomalies or optimizations after the object level generates it.

J. Intell. 2022, 10, 113 10 of 29

J. Intell. 2022, 10, x FOR PEER REVIEW 10 of 30

because it is used by all the sub-ontologies. In the proposed design, every PROBLEM is part
of a PROBLEM_SPACE and has a SOLUTION. The meta-level analyzes the DEFAULT_SO-
LUTION for potential anomalies or optimizations after the object level generates it.

Figure 6. ADTP subontology.

The ADT_PROBLEM class is a particular type of problem for which the main ele-
ments are part of the ADT_PROBLEM_ELEMENT class and are listed below: PERFOR-
MANCE_PROFILE, ANYTIME_ALGORITHM and METAREASONING_TASK.
• A PERFORMANCE_PROFILE generally represents a vector with the quality of the

solutions of an algorithm that is monitored in reasoning time intervals.
• ANYTIME_ALGORITHM is a class that represents an anytime algorithm whose

quality of results gradually improves as computation time increases and can return
a valid solution to a problem even if it is interrupted before completion. This kind of
algorithm offers a tradeoff between solution quality and computation time, which is
expected to find better solutions the longer it keeps running. In the context of this
work, an anytime algorithm works to solve a REASONING_PROBLEM.

• The METAREASONING_TASK class refers to tasks that are carried out in the
META_LEVEL, and its objective is to monitor and control the reasoning processes
that are carried out at the OBJECT_LEVEL. The main metareasoning tasks in this
problem are COMPUTE_SOLUTION_QUALITY, PREDICT_PERFORMANCE, AL-
LOCATE_DELIBERATION_TIME and SAVE_COST.
In this type of problem, a system has several algorithms that can be executed in par-

allel. Each algorithm solves one instance of a problem, but in some circumstances where
execution time is limited, the metalevel must select a subset of algorithms to execute.

For example, a shipping company may have three algorithms to calculate three
routes to three different cities. Each route is optimized by an anytime algorithm, but if a
time restriction is included, for example, the algorithm only has a third of the normal ex-
ecution time to optimize the route and save costs, the metalevel reviews the performance
profile of the three algorithms in the required time (1/3) and selects the algorithm with the
best-expected performance in the required time.

Figure 6. ADTP subontology.

The ADT_PROBLEM class is a particular type of problem for which the main ele-
ments are part of the ADT_PROBLEM_ELEMENT class and are listed below: PERFOR-
MANCE_PROFILE, ANYTIME_ALGORITHM and METAREASONING_TASK.

• A PERFORMANCE_PROFILE generally represents a vector with the quality of the
solutions of an algorithm that is monitored in reasoning time intervals.

• ANYTIME_ALGORITHM is a class that represents an anytime algorithm whose
quality of results gradually improves as computation time increases and can return
a valid solution to a problem even if it is interrupted before completion. This kind
of algorithm offers a tradeoff between solution quality and computation time, which
is expected to find better solutions the longer it keeps running. In the context of this
work, an anytime algorithm works to solve a REASONING_PROBLEM.

• The METAREASONING_TASK class refers to tasks that are carried out in the META_
LEVEL, and its objective is to monitor and control the reasoning processes that are
carried out at the OBJECT_LEVEL. The main metareasoning tasks in this problem
are COMPUTE_SOLUTION_QUALITY, PREDICT_PERFORMANCE, ALLOCATE_
DELIBERATION_TIME and SAVE_COST.

In this type of problem, a system has several algorithms that can be executed in
parallel. Each algorithm solves one instance of a problem, but in some circumstances where
execution time is limited, the metalevel must select a subset of algorithms to execute.

For example, a shipping company may have three algorithms to calculate three routes
to three different cities. Each route is optimized by an anytime algorithm, but if a time
restriction is included, for example, the algorithm only has a third of the normal execution
time to optimize the route and save costs, the metalevel reviews the performance profile
of the three algorithms in the required time (1/3) and selects the algorithm with the best-
expected performance in the required time.

3.4.2. Allocating Evaluation Effort Problem Subontology

In this section, we represent the setting where an agent is faced with multiple options
(actions) from which it eventually must choose one. The agent can use deliberation or

J. Intell. 2022, 10, 113 11 of 29

information gathering to evaluate each action, but with a given limited time, it must decide
which ones to evaluate.

Figure 7 shows the entire sub-ontology, including the Dynamically Allocating Evalua-
tion Effort Across Option class (EVALUATION_EFFORT_PROBLEM) with its relations.

J. Intell. 2022, 10, x FOR PEER REVIEW 11 of 30

3.4.2. Allocating Evaluation Effort Problem Subontology
In this section, we represent the setting where an agent is faced with multiple options

(actions) from which it eventually must choose one. The agent can use deliberation or
information gathering to evaluate each action, but with a given limited time, it must de-
cide which ones to evaluate.

Figure 7 shows the entire sub-ontology, including the Dynamically Allocating Eval-
uation Effort Across Option class (EVALUATION_EFFORT_PROBLEM) with its rela-
tions.

Figure 7. The AEEP subontology.

The EVALUATION_EFFORT _PROBLEM class is a particular type of problem whose
main elements are part of the DAEEAO_PROBLEM_ELEMENT class and are listed below:
ACTION, EVALUATION_TEST, PERFORMANCE_PROFILE and METAREASON-
ING_TASK.
• Class ACTION represents a set of actions that an agent could evaluate.
• EVALUATION_TEST allows to verify the history of events or failures of the execu-

tion of an action. This can bring savings to the ACTION selection evaluation effort.
• The main metareasoning tasks in this problem are ALLOCATING_EVALUA-

TION_EFFORT, COMPUTE_EXPECTED_UTILITY, and EVALUATE_TEST.
In this problem, the metareasoning process has already selected an algorithm to solve

a problem, but this algorithm has several different actions to perform the same task. The
meta-level must now recommend an action for the object level to perform a specific task,
and the recommendation is made based on the highest EXPECTED_UTILITY. In this
sense, given the current conditions of the system, the meta-level recommends that the
algorithm execute the action with the best-expected utility. The EXPECTED_UTILITY is
predicted based on the performance profile of an action, which is stored in the
MODEL_OF_THE_SELF.

For example, an application that forms work teams may have three ways of selecting
candidates to be part of the teams: (i) randomly, (ii) a person with experience in the posi-
tion, and (iii) maximum score in tests of attitude. The metareasoning problem arises when
the restriction is included, and there is only time to evaluate some of the available actions.
Then the META_LEVEL must allocate the evaluation effort only to the actions that have
the best EXPECTED_UTILITY. In this sense, the META_LEVEL monitors the PERFOR-
MANCE_PROFILE of previous evaluations of each action in previous similar cases. The

Figure 7. The AEEP subontology.

The EVALUATION_EFFORT _PROBLEM class is a particular type of problem whose
main elements are part of the DAEEAO_PROBLEM_ELEMENT class and are listed be-
low: ACTION, EVALUATION_TEST, PERFORMANCE_PROFILE and METAREASON-
ING_TASK.

• Class ACTION represents a set of actions that an agent could evaluate.
• EVALUATION_TEST allows to verify the history of events or failures of the execution

of an action. This can bring savings to the ACTION selection evaluation effort.
• The main metareasoning tasks in this problem are ALLOCATING_EVALUATION_

EFFORT, COMPUTE_EXPECTED_UTILITY, and EVALUATE_TEST.

In this problem, the metareasoning process has already selected an algorithm to solve a
problem, but this algorithm has several different actions to perform the same task. The meta-
level must now recommend an action for the object level to perform a specific task, and the
recommendation is made based on the highest EXPECTED_UTILITY. In this sense, given
the current conditions of the system, the meta-level recommends that the algorithm execute
the action with the best-expected utility. The EXPECTED_UTILITY is predicted based on
the performance profile of an action, which is stored in the MODEL_OF_THE_SELF.

For example, an application that forms work teams may have three ways of selecting
candidates to be part of the teams: (i) randomly, (ii) a person with experience in the
position, and (iii) maximum score in tests of attitude. The metareasoning problem arises
when the restriction is included, and there is only time to evaluate some of the available
actions. Then the META_LEVEL must allocate the evaluation effort only to the actions
that have the best EXPECTED_UTILITY. In this sense, the META_LEVEL monitors the
PERFORMANCE_PROFILE of previous evaluations of each action in previous similar
cases. The ACTION with the best EXPECTED_UTILITY will be chosen for evaluation, and
the PERFORMANCE_PROFILE of the action will be modified to reflect the QUALITY of
its output.

J. Intell. 2022, 10, 113 12 of 29

3.4.3. The Knowledge Test Problem (KTP) Subontology

In this section, we represent the problem whereby an agent has only one item to
evaluate, but it must choose the order of deliberation or information-gathering actions for
doing so. However, the system is not able to identify the status of the item to be evaluated
and needs to run a series of tests (knowledge tests) to disambiguate the status of the item,
but the system does not have enough time to run all the tests.

Figure 8 shows the entire sub-ontology, including the class STATE_DISAMBIGUATION_
PROBLEM with its relations.

J. Intell. 2022, 10, x FOR PEER REVIEW 12 of 30

ACTION with the best EXPECTED_UTILITY will be chosen for evaluation, and the PER-
FORMANCE_PROFILE of the action will be modified to reflect the QUALITY of its output.

3.4.3. The Knowledge Test Problem (KTP) Subontology
In this section, we represent the problem whereby an agent has only one item to eval-

uate, but it must choose the order of deliberation or information-gathering actions for do-
ing so. However, the system is not able to identify the status of the item to be evaluated
and needs to run a series of tests (knowledge tests) to disambiguate the status of the item,
but the system does not have enough time to run all the tests.

Figure 8 shows the entire sub-ontology, including the class STATE_DISAMBIGUA-
TION_PROBLEM with its relations.

Figure 8. The KTP subontology.

The STATE_DISAMBIGUATION_PROBLEM class is a particular type of METAREA-
SONING_PROBLEM, whose main elements are part of the STATE_DISAMBIGUATION
_PROBLEM_ELEMENT class and are listed below: KNOWLEDGE_TEST, QUERY, AN-
SWER and METAREASONING_TASK.
• The KNOWLEDGE_TEST class determines the answers to a set of questions to deter-

mine the current state of the world.
• Class QUERY represents a set of questions to determine the current state of the world.
• Class ANSWER contains the output of the queries.

In this problem, three sub-classes exist for the METAREASONING_TASK class. They
are CHOOSE_QUERY_TO_ASK, DISAMBIGUATE_STATE, and METALEVEL_GATH-
ERING_TASK.

This type of METAREASONING_PROBLEM occurs when the OBJECT_LEVEL is not
able to disambiguate the state of the world given the current observations. For example,
a ship traveling at high-speed stops abruptly because it cannot identify what type of ob-
stacle it has in front of it, whether it is a cloud, another ship, or a building. To identify the
type of obstacle, the OBJECT_LEVEL must perform a series of KNOWLEDGE_TESTs,
and, depending on the result of the test, it must act. If the obstacle is a cloud, then the
ACTION to follow is to move forward and go through the cloud. If the obstacle is another
ship, the ACTION is to decelerate and change altitude until the ship has passed, and if the
obstacle is a building, the ACTION is to change course. However, if the time to perform
the KNOWLEDGE_TESTs is limited and not all can be performed, then the META_LEVEL
must select which KNOWLEDGE_TEST to do to change the knowledge about the state of

Figure 8. The KTP subontology.

The STATE_DISAMBIGUATION_PROBLEM class is a particular type of METAREA-
SONING_PROBLEM, whose main elements are part of the STATE_DISAMBIGUATION
_PROBLEM_ELEMENT class and are listed below: KNOWLEDGE_TEST, QUERY, AN-
SWER and METAREASONING_TASK.

• The KNOWLEDGE_TEST class determines the answers to a set of questions to deter-
mine the current state of the world.

• Class QUERY represents a set of questions to determine the current state of the world.
• Class ANSWER contains the output of the queries.

In this problem, three sub-classes exist for the METAREASONING_TASK class. They are
CHOOSE_QUERY_TO_ASK, DISAMBIGUATE_STATE, and METALEVEL_GATHERING
_TASK.

This type of METAREASONING_PROBLEM occurs when the OBJECT_LEVEL is not
able to disambiguate the state of the world given the current observations. For example, a
ship traveling at high-speed stops abruptly because it cannot identify what type of obstacle
it has in front of it, whether it is a cloud, another ship, or a building. To identify the type
of obstacle, the OBJECT_LEVEL must perform a series of KNOWLEDGE_TESTs, and,
depending on the result of the test, it must act. If the obstacle is a cloud, then the ACTION
to follow is to move forward and go through the cloud. If the obstacle is another ship,
the ACTION is to decelerate and change altitude until the ship has passed, and if the
obstacle is a building, the ACTION is to change course. However, if the time to perform
the KNOWLEDGE_TESTs is limited and not all can be performed, then the META_LEVEL
must select which KNOWLEDGE_TEST to do to change the knowledge about the state
of the world. A knowledge test is based on a series of questions and answers that clarify
the state of the world. The questions are predefined by the designers, but in complex
systems, they can be self-generated from the agent’s observations, expectations, and prior

J. Intell. 2022, 10, 113 13 of 29

knowledge. This case of metareasoning is very particular because it requires that the
systems or agents act based on their knowledge and not on the information of their internal
state; most systems are not designed for this purpose.

3.4.4. The Stopping Reasoning Problem (SRP) Subontology

Stopping reasoning is the most basic decision of the metareasoning process in intelligent
systems. Figure 9 shows the entire sub-ontology, including the STOPPING_REASONING_
PROBLEM class with its relations. The STOPPING_REASONING_PROBLEM class is a par-
ticular type of METAREASONING_PROBLEM, whose main elements are part of the STOP-
PING_REASONING_PROBLEM_ELEMENT class and are listed below: TIME_DEPENDENT_
UTILITY, SOLUTION_QUALITY, PERFORMANCE_PREDICTOR, PERFORMANCE_ PRO-
FILE_HISTORY, PERFORMANCE_PROFILE_PROJECTION and METAREASONING_TASK.

• A TIME_DEPENDENT_UTILITY represents the utility of a solution computed by an
anytime algorithm.

• SOLUTION_QUALITY represents the quality of the solution to a problem. In this case,
a solution is generated by an algorithm to solve the current problem.

• A PERFORMANCE_PROFILE_HISTORY represents the past performance of an any-
time algorithm as a vector of solution qualities.

• A PERFORMANCE_PROFILE_PROJECTION represents the future performance of an
anytime algorithm as a vector of solution qualities.

• PERFORMANCE_PREDICTOR is a function that maps a PERFORMANCE_PROFILE_
HISTORY to a PERFORMANCE_PROFILE_PROJECTION.

J. Intell. 2022, 10, x FOR PEER REVIEW 13 of 30

the world. A knowledge test is based on a series of questions and answers that clarify the
state of the world. The questions are predefined by the designers, but in complex systems,
they can be self-generated from the agent’s observations, expectations, and prior
knowledge. This case of metareasoning is very particular because it requires that the sys-
tems or agents act based on their knowledge and not on the information of their internal
state; most systems are not designed for this purpose.

3.4.4. The Stopping Reasoning Problem (SRP) Subontology
Stopping reasoning is the most basic decision of the metareasoning process in intel-

ligent systems. Figure 9 shows the entire sub-ontology, including the STOPPING_REA-
SONING_PROBLEM class with its relations. The STOPPING_REASONING_PROBLEM
class is a particular type of METAREASONING_PROBLEM, whose main elements are
part of the STOPPING_REASONING_PROBLEM_ELEMENT class and are listed below:
TIME_DEPENDENT_UTILITY, SOLUTION_QUALITY, PERFORMANCE_PREDICTOR,
PERFORMANCE_PROFILE_HISTORY, PERFORMANCE_PROFILE_PROJECTION and
METAREASONING_TASK.
• A TIME_DEPENDENT_UTILITY represents the utility of a solution computed by an

anytime algorithm.
• SOLUTION_QUALITY represents the quality of the solution to a problem. In this

case, a solution is generated by an algorithm to solve the current problem.
• A PERFORMANCE_PROFILE_HISTORY represents the past performance of an an-

ytime algorithm as a vector of solution qualities.
• A PERFORMANCE_PROFILE_PROJECTION represents the future performance of

an anytime algorithm as a vector of solution qualities.
• PERFORMANCE_PREDICTOR is a function that maps a PERFORMANCE_PRO-

FILE_HISTORY to a PERFORMANCE_PROFILE_PROJECTION.

Figure 9. The SRP subontology.

In this problem, the sub-classes of METAREASONING_TASK are PREDICT_PERFOR-
MANCE, INTRINSIC_VALUE_FUNCTION, TIME_DEPENDENT_UTILITY_FUNCTION,
COMPUTE_PERFORMANCE_PROFILE, and INIT_PERFORMANCE_PROFILE_HISTORY.

Figure 9. The SRP subontology.

In this problem, the sub-classes of METAREASONING_TASK are PREDICT_ PERFOR-
MANCE, INTRINSIC_VALUE_FUNCTION, TIME_DEPENDENT_UTILITY_FUNCTION,
COMPUTE_PERFORMANCE_PROFILE, and INIT_PERFORMANCE_PROFILE_HISTORY.

The interruption of the reasoning process is considered the most basic decision of
the metareasoning process. In anytime systems that need to make decisions with limited

J. Intell. 2022, 10, 113 14 of 29

resources, the metareasoning process is responsible for making the decision to continue rea-
soning or act on the current plan. For this, various techniques have been proposed in the litera-
ture, but the most common is to make the decision based on a TIME_DEPENDENT_UTILITY_
FUNCTION. This is because the passage of time has a cost in itself, so a SOLUTION ob-
tained in a reasonable time is what is desired. For example, going back to the case of
the formation of teams, it is better to form a team with an EXPECTED_UTILITY of 0.7
using 5 min of reasoning than to form a team with an EXPECTED_UTILITY of 0.8 but
the reasoning for nine hours (the EXPECTED_UTILITY is given by the average of the
evaluation of all the skills of the team members).

The algorithm evaluates whether it is worthwhile to perform another reasoning cy-
cle or if, on the other hand, the cycle should be stopped in any iteration, and then the
CURRENT_PLAN is executed. A technique for the evaluation is to implement a predictor
(PERFORMANCE_PREDICTOR) or function that predicts the EXPECTED_UTILITY of
the solution in the next reasoning cycle; if the EXPECTED_UTILITY is positive, the algo-
rithm continues, but if the utility is negative, then the META_LEVEL stops the process
of reasoning.

3.4.5. The Gathering Computational Performance Data Problem (GCPDP) Subontology

Information gathering is a fundamental task for making metacognitive control deci-
sions. Information is collected to store information in models. If the model is about the state
of the world, then it is stored in the object level, and if the model is of the internal processes,
then it is stored in the meta-level. Figure 10 shows the entire sub-ontology, including the
INFORMATION_GATHERING_PROBLEM class with its relations.

J. Intell. 2022, 10, x FOR PEER REVIEW 14 of 30

The interruption of the reasoning process is considered the most basic decision of the
metareasoning process. In anytime systems that need to make decisions with limited re-
sources, the metareasoning process is responsible for making the decision to continue rea-
soning or act on the current plan. For this, various techniques have been proposed in the
literature, but the most common is to make the decision based on a TIME_DEPEND-
ENT_UTILITY_FUNCTION. This is because the passage of time has a cost in itself, so a
SOLUTION obtained in a reasonable time is what is desired. For example, going back to
the case of the formation of teams, it is better to form a team with an EXPECTED_UTILITY
of 0.7 using 5 min of reasoning than to form a team with an EXPECTED_UTILITY of 0.8
but the reasoning for nine hours (the EXPECTED_UTILITY is given by the average of the
evaluation of all the skills of the team members).

The algorithm evaluates whether it is worthwhile to perform another reasoning cycle
or if, on the other hand, the cycle should be stopped in any iteration, and then the CUR-
RENT_PLAN is executed. A technique for the evaluation is to implement a predictor
(PERFORMANCE_PREDICTOR) or function that predicts the EXPECTED_UTILITY of
the solution in the next reasoning cycle; if the EXPECTED_UTILITY is positive, the algo-
rithm continues, but if the utility is negative, then the META_LEVEL stops the process of
reasoning.

3.4.5. The Gathering Computational Performance Data Problem (GCPDP) Subontology
Information gathering is a fundamental task for making metacognitive control deci-

sions. Information is collected to store information in models. If the model is about the
state of the world, then it is stored in the object level, and if the model is of the internal
processes, then it is stored in the meta-level. Figure 10 shows the entire sub-ontology, in-
cluding the INFORMATION_GATHERING_PROBLEM class with its relations.

Figure 10. The GCPDP subontology.

The INFORMATION_GATHERING_PROBLEM class is a particular type of ME-
TAREASONING_PROBLEM, the main elements of which are part of the INFOR-
MATION_GATHERING_PROBLEM_ELEMENT class and are listed below:

Figure 10. The GCPDP subontology.

The INFORMATION_GATHERING_PROBLEM class is a particular type of METAR-
EASONING_PROBLEM, the main elements of which are part of the INFORMATION_
GATHERING_PROBLEM_ELEMENT class and are listed below:

• MODEL_OF_THE_WORLD is an internal model that stores information related to
the perception history that describes the state of the environment or world that is
perceived by the system.

J. Intell. 2022, 10, 113 15 of 29

• MODEL_OF_THE_SELF is a dynamic model of the object level. This model is part of
the meta-level and contains updated information on the current state of the reasoning
processes that are carried out at the object level.

The following are the sub-classes of COGNITIVE_TASK in this problem: PERCEP-
TION, REASONING_TASK, and SITUATION_ASSESSMENT.

Monitoring of reasoning processes has been less studied than meta-level control. In
this sense, the META_LEVEL executes a series of tasks to gather information on the state
of the reasoning processes that are carried out at the OBJECT_LEVEL. The information
collected is stored in performance profiles that make up the MODEL_OF_THE_SELF. The
model of the self allows the META_LEVEL to have an updated view in real time of the
internal states of the reasoning processes. This information is used for learning processes
and for decision-making in the meta-level control.

3.4.6. Detection of Reasoning Failure Problem (DRFP) Subontology

Stopping reasoning is the most basic decision of the metareasoning process in in-
telligent systems. Reasoning about reasoning failures is an important research topic in
metareasoning. In this sense, at some level of abstraction, the ways in which a system can
fail are finite. Thus, the knowledge of how systems fail and how to recover from these
failures must be represented. Figure 11 shows the full sub-ontology, including the class
SOLVING_REASONING_FAILURE_PROBLEM along with its relations.

J. Intell. 2022, 10, x FOR PEER REVIEW 16 of 30

Figure 11. The DRFP subontology.

3.4.7. Self-Explanation and Self-Understanding Problem (SE&SUP) Subontology
If the reasoning that is performed at the object level (and not just its results) is repre-

sented in a declarative knowledge structure that captures the mental states and decision-
making sequence, then these knowledge structures can themselves be passed to the met-
alevel for monitoring. Figure 12 shows the entire sub-ontology, including the
SELF_METAEXPLANATION_PROBLEM class with its relations.

The SELF_METAEXPLANATION_PROBLEM class is a particular type of ME-
TAREASONING_PROBLEM, whose main elements are part of the SELF_METAEXPLA-
NATION_PROBLEM_ELEMENT class and are listed below: REASONING_TRACE,
IMXP, TMXP, FAILURE_EXPLANATION, and LEARNING_GOAL. In this problem, the
sub-classes of METAREASONING_TASK are STORY_UNDERSTANDING_TASK, EX-
PLAIN_FAILURE, GENERATE_LEARNING_GOAL, and INTROSPECTION.

The SELF_METAEXPLANATION_PROBLEM class represents the METAREASON-
ING_PROBLEM that occurs when the OBJECT_LEVEL is unable to generate an EXPLA-
NATION for an ANOMALY in the performance of the reasoning process when a
STORY_UNDERSTANDING_TASK is running. With STORY_UNDERSTAND-
ING_TASK a system must be able to reason introspectively about how to complete a task
and what specific pieces of knowledge it needs to improve its performance at that exact
moment to effectively learn the current task that is running at the object level. The
META_LEVEL reads the REASONING_TRACE that contains the decisions made and the
internal state of the system at the time of the decision. The META_LEVEL then runs a
meta-understanding process (e.g., EXPLAIN_FAILURE) based on a REASON-
ING_TRACE to understand the cause of the REASONING_FAILURE and why the OB-
JECT_LEVEL could not explain it. Once the cause is understood, the META_LEVEL gen-
erates a LEARNING_GOAL to recommend the actions that the OBJECT_LEVEL should
take. The reasoning trace, the generated goals, the FAILURE_EXPLANATION and the
recommendations are stored for future reference.

Figure 11. The DRFP subontology.

The SOLVING_REASONING_FAILURE_PROBLEM class is a particular type of METAR-
EASONING_PROBLEM whose main elements are part of the SOLVING_REASONING_
FAILURE _PROBLEM_ELEMENT class. These elements are listed below:

REASONING_FAILURE, ANOMALY, EXPECTATION, RECOMMENDATION, and
GOAL.

Furthermore, in this problem, the METAREASONING_TASK class has three sub-
classes. They are MAKE_RECOMMENDATION, ANOMALY_DETECTION, and GENER-
ATE_EXPECTATION.

J. Intell. 2022, 10, 113 16 of 29

During the reasoning process, errors such as incomplete tasks or unexpected results
can occur that can affect the execution of critical tasks for an intelligent system. These errors
are called reasoning failures and are represented in the class REASONING_FAILURE. An
unexpected result is considered an ANOMALY in the performance of the task or process.
Many designers of intelligent systems establish metareasoning points because monitoring
and controlling all the reasoning processes of the system can be costly in terms of resource
consumption. A METAREASONING_POINT is a TASK or process that is considered impor-
tant for the operation of the system, and therefore, it is necessary to monitor its performance.
The META_LEVEL keeps a record of the decisions made at the metareasoning points to
analyze these traces of reasoning in the event of failures. When a REASONING_FAILURE is
detected, then the META_LEVEL identifies the failure and proceeds to fix it based on the
knowledge acquired from previous failures. The detection of a REASONING_FAILURE
is carried out by monitoring the states of the metareasoning points. The most common
failures are excessive processing time, excessive pause time waiting for a response from
another task, and unexpected results that produce violations of expectations (e.g., VIO-
LATED_EXPECTATION). Performance expectations are generated from historical data and
are contrasted against current observations of the performance of the task or process. After
a REASONING_FAILURE is detected, the META_LEVEL generates a GOAL to solve the
failure at the OBJECT_LEVEL. The GOAL is embodied in a RECOMMENDATION that can
include any of the following options: abort the task, pause the task, reconfigure the task or
resume the task. Finally, the SOLUTION is stored for future reference.

3.4.7. Self-Explanation and Self-Understanding Problem (SE&SUP) Subontology

If the reasoning that is performed at the object level (and not just its results) is
represented in a declarative knowledge structure that captures the mental states and
decision-making sequence, then these knowledge structures can themselves be passed
to the metalevel for monitoring. Figure 12 shows the entire sub-ontology, including the
SELF_METAEXPLANATION_PROBLEM class with its relations.

J. Intell. 2022, 10, x FOR PEER REVIEW 17 of 30

Figure 12. The SE&SUP subontology.

3.4.8. Improving the Ability of the Approach to Generalize to New (or Existing but
Unstudied) Problems

The proposed ontology can be extended beyond the seven subontologies to capture
new meta-reasoning problems that were not covered by this research. In this sense, it may
be the case that different meta-reasoning problems induce new subontologies. To prevent
new subontologies from generating counterproductive effects in terms of sharing
knowledge in an easier way, a version-based approach will be adopted. In this way, when
exchanging knowledge between applications or research teams, the use of different ver-
sions of the ontology can be avoided.

In relation to the creation of new subontologies and their relationship with existing
ones, two different approaches can be taken to preserve the integrity of the ontology. Re-
searchers can opt for a manual approach following the method described in this paper;
the resulting subontology will be evaluated by experts to be integrated into IM-Onto. The
second is a semi-automated approach based on (Althubaiti et al. 2020), in which the term
extraction process for the new subontologies is carried out through an analysis of the cor-
pus contained in documents that describe meta-reasoning problems. This approach uses
a semi-automated approach to recognize the mention of IM-Onto classes in the text. The
approach is based solely on labels and synonyms of the classes within the IM-Onto ontology
and can be used to determine whether a word refers to an IM-Onto class; see Figure 13.

Figure 12. The SE&SUP subontology.

The SELF_METAEXPLANATION_PROBLEM class is a particular type of METAREA-
SONING_PROBLEM, whose main elements are part of the SELF_METAEXPLANATION_
PROBLEM_ELEMENT class and are listed below: REASONING_TRACE, IMXP, TMXP,
FAILURE_EXPLANATION, and LEARNING_GOAL. In this problem, the sub-classes of

J. Intell. 2022, 10, 113 17 of 29

METAREASONING_TASK are STORY_UNDERSTANDING_TASK, EXPLAIN_FAILURE,
GENERATE_LEARNING_GOAL, and INTROSPECTION.

The SELF_METAEXPLANATION_PROBLEM class represents the METAREASON-
ING_PROBLEM that occurs when the OBJECT_LEVEL is unable to generate an EX-
PLANATION for an ANOMALY in the performance of the reasoning process when a
STORY_UNDERSTANDING_TASK is running. With STORY_UNDERSTANDING_TASK
a system must be able to reason introspectively about how to complete a task and what
specific pieces of knowledge it needs to improve its performance at that exact moment
to effectively learn the current task that is running at the object level. The META_LEVEL
reads the REASONING_TRACE that contains the decisions made and the internal state of
the system at the time of the decision. The META_LEVEL then runs a meta-understanding
process (e.g., EXPLAIN_FAILURE) based on a REASONING_TRACE to understand the
cause of the REASONING_FAILURE and why the OBJECT_LEVEL could not explain
it. Once the cause is understood, the META_LEVEL generates a LEARNING_GOAL to
recommend the actions that the OBJECT_LEVEL should take. The reasoning trace, the
generated goals, the FAILURE_EXPLANATION and the recommendations are stored for
future reference.

3.4.8. Improving the Ability of the Approach to Generalize to New (or Existing but
Unstudied) Problems

The proposed ontology can be extended beyond the seven subontologies to capture
new meta-reasoning problems that were not covered by this research. In this sense, it may be
the case that different meta-reasoning problems induce new subontologies. To prevent new
subontologies from generating counterproductive effects in terms of sharing knowledge in
an easier way, a version-based approach will be adopted. In this way, when exchanging
knowledge between applications or research teams, the use of different versions of the
ontology can be avoided.

In relation to the creation of new subontologies and their relationship with existing
ones, two different approaches can be taken to preserve the integrity of the ontology.
Researchers can opt for a manual approach following the method described in this paper;
the resulting subontology will be evaluated by experts to be integrated into IM-Onto. The
second is a semi-automated approach based on (Althubaiti et al. 2020), in which the term
extraction process for the new subontologies is carried out through an analysis of the
corpus contained in documents that describe meta-reasoning problems. This approach
uses a semi-automated approach to recognize the mention of IM-Onto classes in the text.
The approach is based solely on labels and synonyms of the classes within the IM-Onto
ontology and can be used to determine whether a word refers to an IM-Onto class; see
Figure 13.

First, the IM-Onto ontology is obtained in Web Ontology Language (OWL) format,
and the list of class labels and synonyms is extracted from the ontology, also using a body
of text (article or description of the new meta-reasoning problem) as input to the process.
Text mining tasks are performed with the Whatizit tool (Rebholz-Schuhmann et al. 2008).
Word embeddings (i.e., vector space encodings of the contexts in which a word occurs)
are then generated for all words in the text corpus, and a supervised machine learning
model is trained to classify whether a word refers to a class in IM-Onto or not (using
the ontology words and their synonyms as positive training examples and all others as
negative examples). This approach broadly identifies terms that refer to classes within the
domain of a meta-reasoning problem (according to the number of classes there are in the
ontology). The method generates “seed” words in the text and then uses these seeds first
to generate context-based features (via Word2Vec (Mikolov et al. 2013), and it uses these
context-based features in a supervised machine learning classifier.

J. Intell. 2022, 10, 113 18 of 29J. Intell. 2022, 10, x FOR PEER REVIEW 18 of 30

Figure 13. Semi-automated approach to creating new subontologies based on (Althubaiti et al. 2020).

First, the IM-Onto ontology is obtained in Web Ontology Language (OWL) format,
and the list of class labels and synonyms is extracted from the ontology, also using a body
of text (article or description of the new meta-reasoning problem) as input to the process.
Text mining tasks are performed with the Whatizit tool (Rebholz-Schuhmann et al. 2008).
Word embeddings (i.e., vector space encodings of the contexts in which a word occurs)
are then generated for all words in the text corpus, and a supervised machine learning
model is trained to classify whether a word refers to a class in IM-Onto or not (using the
ontology words and their synonyms as positive training examples and all others as nega-
tive examples). This approach broadly identifies terms that refer to classes within the do-
main of a meta-reasoning problem (according to the number of classes there are in the
ontology). The method generates “seed” words in the text and then uses these seeds first
to generate context-based features (via Word2Vec (Mikolov et al. 2013), and it uses these
context-based features in a supervised machine learning classifier.

3.5. Evaluation and Case Study
This section evaluates the use of IM-Onto in an application to solve a real-world prob-

lem. The resulting case study enables the use of automatic consistency checking and mul-
tiple performance evaluations (i.e., task-based, data-driven, and criteria-based evalua-
tion). In this sense, the ontology evaluation consists of automated consistency checking
(ontology verification) and task-based, data-driven, and criteria-based evaluations.

Running Example: The Team Allocation for Internship Programs (TAIP)
IM-Onto was applied to a real-world problem to demonstrate its practical use in sup-

porting metareasoning problems. This case study has been based on the assignment of
internships as a degree option in the undergraduate program of Computer Science (Li-
cenciatura en Informática) at the University of Córdoba—Colombia. Allocating student
teams to internship programs is a particular type of team composition problem (An-
drejczuk et al. 2019). The problem has been selected because different studies (Georgara
et al. 2020a) have used anytime algorithms to find approximate solutions to team alloca-
tion in the education context based on the Feasible Team-For-Task Allocation Problem

Figure 13. Semi-automated approach to creating new subontologies based on (Althubaiti et al. 2020).

3.5. Evaluation and Case Study

This section evaluates the use of IM-Onto in an application to solve a real-world
problem. The resulting case study enables the use of automatic consistency checking and
multiple performance evaluations (i.e., task-based, data-driven, and criteria-based evalua-
tion). In this sense, the ontology evaluation consists of automated consistency checking
(ontology verification) and task-based, data-driven, and criteria-based evaluations.

Running Example: The Team Allocation for Internship Programs (TAIP)

IM-Onto was applied to a real-world problem to demonstrate its practical use in sup-
porting metareasoning problems. This case study has been based on the assignment of
internships as a degree option in the undergraduate program of Computer Science (Licen-
ciatura en Informática) at the University of Córdoba—Colombia. Allocating student teams
to internship programs is a particular type of team composition problem (Andrejczuk et al.
2019). The problem has been selected because different studies (Georgara et al. 2020a) have
used anytime algorithms to find approximate solutions to team allocation in the education
context based on the Feasible Team-For-Task Allocation Problem (FTAP). FTAP considers
the problem of putting together teams of students suitable for internship tasks in companies
and institutions, given that it is increasingly common for students to spend some time doing
internships in a company as part of their study plan. Figure 14 shows the representation of
knowledge generated in the process of monitoring and control of the Team Allocation for
Internship Programs Problem (TAIP).

The undergraduate program of Computer Science has several internship programs to
which students can apply. An internship program is characterized by the skill requirements
for students and the limitations of team size. In the internship program selected for the
case study, a student is characterized by their skills and their level of mastery of each
skill. Students must meet 5 skill requirements. These are (a) principles of image theory
and photography, (b) STEAM (science, technology, engineering, arts, and math) skills, (c)
web development, (d) fluency in the Spanish language, and (e) protégé video production,
whereas the required team size is 3 members. Each student has a required mastery level in
each of the skills.

J. Intell. 2022, 10, 113 19 of 29

Figure 14 shows a partial view of the ontology that represents the knowledge generated
in the process of monitoring and control of the Team Allocation for Internship Programs
Problem (TAIP) (Georgara et al. 2020b), and a knowledge base is constructed in this case
study by adding instances to the classes defined in the ontology.

J. Intell. 2022, 10, x FOR PEER REVIEW 19 of 30

(FTAP). FTAP considers the problem of putting together teams of students suitable for
internship tasks in companies and institutions, given that it is increasingly common for
students to spend some time doing internships in a company as part of their study plan.
Figure 14 shows the representation of knowledge generated in the process of monitoring and con-
trol of the Team Allocation for Internship Programs Problem (TAIP).

The undergraduate program of Computer Science has several internship programs
to which students can apply. An internship program is characterized by the skill require-
ments for students and the limitations of team size. In the internship program selected for
the case study, a student is characterized by their skills and their level of mastery of each
skill. Students must meet 5 skill requirements. These are (a) principles of image theory
and photography, (b) STEAM (science, technology, engineering, arts, and math) skills, (c)
web development, (d) fluency in the Spanish language, and (e) protégé video production,
whereas the required team size is 3 members. Each student has a required mastery level
in each of the skills.

Figure 14 shows a partial view of the ontology that represents the knowledge gener-
ated in the process of monitoring and control of the Team Allocation for Internship Pro-
grams Problem (TAIP) (Georgara et al. 2020b), and a knowledge base is constructed in this
case study by adding instances to the classes defined in the ontology.

Figure 14. Representation of knowledge generated in the process of monitoring and control of the
Team Allocation for Internship Programs Problem (TAIP).

The steps followed for the implementation of an intelligent agent based on the ontol-
ogy specifications are presented below.

Figure 14. Representation of knowledge generated in the process of monitoring and control of the
Team Allocation for Internship Programs Problem (TAIP).

The steps followed for the implementation of an intelligent agent based on the ontology
specifications are presented below.

1. A Python package was developed that contains the classes common to the 7 types of
problems addressed in this article. In this package, a basic cognitive system is made
up of two cognitive levels, as specified in the ontology. A Beta version of the package
is available at: https://github.com/dairdr/carina (login is required).

2. A polymorphic meta-reasoner was created at the meta-level, which monitors the object
level by accessing the data that is updated in the model of the self (MoS); this model is
designed according to the MODELOFTHESELF class. The monitoring and gathering
of information are done through the MoS, which is updated in real-time from the
object level. The MoS stores the profiles of the cognitive tasks that are executed at
the object level; this is done automatically and does not require human intervention.
Figure 15 shows a dataset based on the performance profile of the object-level reasoner
and the history of a stopping reasoning problem (SRP). The meta-level uses the dataset
to train SRP using a random forest algorithm; see Figure 15, section A. The MoS is
stored in the working memory of the cognitive system, serving as a bridge between

https://github.com/dairdr/carina

J. Intell. 2022, 10, 113 20 of 29

the object level and the meta-level. The meta-reasoner runs in parallel with the object
level and analyzes the reasoning traces of the cognitive task profile. The meta-reasoner
analyzes the data using a random forest algorithm to select the method to execute
according to the meta-reasoning problem detected. Profiles store data about cognitive
tasks such as start time, execution time, output quality, and data that are common to
any task executed at the object level. In this sense, the scaling of the meta-reasoner is
facilitated, encompassing new models due to its polymorphic design.

3. A cognitive system with two cognitive levels was designed: the object level and the
meta-level. The object level was configured according to the IM-Onto object level class
specifications. Where the problem or cognitive task performed by the object level
was defined considering the REASONINGPROBLEM class, then the elements of the
problem were added according to the PROBLEMELEMENT class. In this case study,
the object level is based on three anytime algorithms that are monitored and controlled
by a meta-level until a suitable solution is found in cost and time. An example of
the implementation of the FTAP problem is available at: https://github.com/dairdr/
carina/blob/master/miscellaneous.py (login is required).

4. The system was configured with three algorithms to induce some meta-reasoning
problems to observe the behavior of the meta-level. In this sense, for TAIP, one algo-
rithm randomly selects the members of the team, another selects the most qualified
members for each competition and thus assembles the team, while another algorithm
receives parameters that restrict the selection; for example, if the average skill pro-
ficiency of a selected team has a student with low performance, then the algorithm
replaces the student. The meta-level selects the best algorithm profile according to a
set of constraints stipulated in the problem configuration, such as deliberation time
and algorithm performance. Figure 15 shows some outcomes resulting from the vali-
dations of the system. Section A shows a subset of features obtained from the profiles
of the cognitive tasks that are stored in the MoS and are used by the meta-level for
monitoring and control; in this case, it is a training dataset for the problem of stopping
the reasoning process. Section B shows the behavior of the time-dependent utility
function of the algorithm that is running at the object level, which is used to predict
the stopping of the reasoning process. Section C presents the profiles of the three
algorithms with respect to the behavior of the time-dependent utility function.

3.6. Ontology Evaluation

This section describes four approaches for the evaluation of IM-Onto. First, the au-
tomated consistency check approach is used to evaluate the internal consistency of the
ontology. Second, the task-based assessment evaluates that IM-Onto can accomplish the
competency tasks defined in the specification by using completeness questions. Third,
data-driven evaluation rigorously tests the integrity and conciseness of the ontology. Finally,
criteria-based assessment further addresses the ontology clarity metric.

3.6.1. Automated Consistency Checking

The consistency check of an ontology is used to confirm that there are no contradictory
facts according to descriptive logic (DL). IM-Onto was evaluated using the Pellet reasoner.
Pellet is an OWL-DL reasoner built into the open source Protégé with reasoning support for
individuals (instances), cardinality constraints, user-defined data types, sub-property ax-
ioms, reflexivity constraints, symmetric properties, and disjoint properties (Sirin et al. 2007).
Pellet checks for implicit subclass relationships based on user-defined class relationships.
From a development point of view, it also incorporates debugging support for the iterative
process of designing and coding a DL error-free ontology. Errors in the ontology have been
flagged by error messages, and inconsistent classes are marked for review. Figure 16 shows
the result of several verification cycles until the ontology was free of DL errors.

https://github.com/dairdr/carina/blob/master/miscellaneous.py
https://github.com/dairdr/carina/blob/master/miscellaneous.py

J. Intell. 2022, 10, 113 21 of 29J. Intell. 2022, 10, x FOR PEER REVIEW 21 of 30

Figure 15. Data resulting from the validation process of TAIP. Section (A): dataset generated in a
stopping reasoning problem. Section (B): behavior of the time-dependent utility function used to
predict the stopping of the reasoning process. Section (C): performance profiles of three algorithms
that solve TAIP, which ADTP uses to select a subset of algorithms according to the problem con-
straints. The x-axis represents reasoning loops.

3.6. Ontology Evaluation
This section describes four approaches for the evaluation of IM-Onto. First, the auto-

mated consistency check approach is used to evaluate the internal consistency of the on-
tology. Second, the task-based assessment evaluates that IM-Onto can accomplish the
competency tasks defined in the specification by using completeness questions. Third,
data-driven evaluation rigorously tests the integrity and conciseness of the ontology. Fi-
nally, criteria-based assessment further addresses the ontology clarity metric.

3.6.1. Automated Consistency Checking
The consistency check of an ontology is used to confirm that there are no contradic-

tory facts according to descriptive logic (DL). IM-Onto was evaluated using the Pellet rea-
soner. Pellet is an OWL-DL reasoner built into the open source Protégé with reasoning
support for individuals (instances), cardinality constraints, user-defined data types, sub-
property axioms, reflexivity constraints, symmetric properties, and disjoint properties (Si-
rin et al. 2007). Pellet checks for implicit subclass relationships based on user-defined class
relationships. From a development point of view, it also incorporates debugging support
for the iterative process of designing and coding a DL error-free ontology. Errors in the
ontology have been flagged by error messages, and inconsistent classes are marked for
review. Figure 16 shows the result of several verification cycles until the ontology was free
of DL errors.

Figure 15. Data resulting from the validation process of TAIP. Section (A): dataset generated in a
stopping reasoning problem. Section (B): behavior of the time-dependent utility function used to
predict the stopping of the reasoning process. Section (C): performance profiles of three algorithms
that solve TAIP, which ADTP uses to select a subset of algorithms according to the problem constraints.
The x-axis represents reasoning loops.

J. Intell. 2022, 10, x FOR PEER REVIEW 22 of 30

Figure 16. Results of verification cycle.

3.6.2. Task-Based Evaluation
This section describes the evaluation in terms of how the ontology can be used to

answer questions about certain tasks (France-Mensah and O’Brien 2019), using the RDF
query language (SPARQL) for information retrieval to answer sample queries related to
the metareasoning problems.

When solving the FTAP problem, the object-level employs three anytime algorithms
that are monitored and controlled by a meta-level until a suitable cost- and time-opti-
mized solution is found. In the context of the Allocating Deliberation Time Problem
(ADTP), the ontology can answer questions related to the information collected about the
several algorithms that can be executed in parallel at the object level. Each algorithm
solves one instance of FTAP, but in some circumstances where execution time is limited,
the meta-level must select a subset of algorithms to further deliberation. A relevant ques-
tion in the context of the ADTP is: Which algorithm was selected by the metalevel to allocate
more deliberation time to obtain a better solution that solves the problem at the object level?

This question is written in SPARQL query in scenario 1 of Figure 17. In the response,
it is observed that the meta-level has selected the anytyme_alg_01, and the ADTP was
detected.

The SPARQL query used in the second scenario corresponds to the question: What is
the information related to the configuration of the meta-reasoning problems that the meta-level can
solve? The response of the ontology provides information related to the configuration of
the metareasoning problems that the meta-level can solve. In this case, the information is
linked between the elements of ADTP metareasoning problem and the current state of the
reasoning processes (performance, algorithms, quality of the solution, computational
time). This information provides important context for possible actions to take if a me-
tareasoning problem is identified.

In scenario 3, the SPARQL query represents the question: What are the elements that
are part of the configuration of the problem at the object level? The response of the ontology
generates information about the context of the reasoning problems and how to address
them.

Figure 16. Results of verification cycle.

3.6.2. Task-Based Evaluation

This section describes the evaluation in terms of how the ontology can be used to
answer questions about certain tasks (France-Mensah and O’Brien 2019), using the RDF
query language (SPARQL) for information retrieval to answer sample queries related to the
metareasoning problems.

When solving the FTAP problem, the object-level employs three anytime algorithms
that are monitored and controlled by a meta-level until a suitable cost- and time-optimized
solution is found. In the context of the Allocating Deliberation Time Problem (ADTP),
the ontology can answer questions related to the information collected about the several

J. Intell. 2022, 10, 113 22 of 29

algorithms that can be executed in parallel at the object level. Each algorithm solves one
instance of FTAP, but in some circumstances where execution time is limited, the meta-level
must select a subset of algorithms to further deliberation. A relevant question in the context
of the ADTP is: Which algorithm was selected by the metalevel to allocate more deliberation time to
obtain a better solution that solves the problem at the object level?

This question is written in SPARQL query in scenario 1 of Figure 17. In the response,
it is observed that the meta-level has selected the anytyme_alg_01, and the ADTP was de-
tected.

J. Intell. 2022, 10, x FOR PEER REVIEW 23 of 30

Figure 17. Questions asked to the ontology in SPARQL language.

3.6.3. Data-Driven Evaluation
This section describes the validation process using precision and recall as metrics for

evaluating IM-Onto with respect to information retrieval. This evaluation approach
makes a comparative analysis consisting of counting the related terms that appear be-
tween a predefined set of knowledge elements and the ontology (Guo and Goh 2017).
Precision measures the ratio of correctly found knowledge correspondences (true posi-
tives) over the total number of returned knowledge correspondences (true positives and
false positives) (Brewster et al. 2004). Recall reflects the proportion of knowledge that is ac-
curately detected relative to all the knowledge items it should identify from the predefined
set (Brewster et al. 2004). The numerator of Equations (1) and (2) describe that knowledge
that is accurately detected and corresponds to the intersection of the relevant entities and
the retrieved entities. In each equation, only the denominator differs. As shown in Equation
(3), the F-measure we use is F_1, the harmonic means of precision and recall. precision | relevantentities ∩ retrievedentities || retrievedentities | (1)

Figure 17. Questions asked to the ontology in SPARQL language.

The SPARQL query used in the second scenario corresponds to the question: What is
the information related to the configuration of the meta-reasoning problems that the meta-level can
solve? The response of the ontology provides information related to the configuration of
the metareasoning problems that the meta-level can solve. In this case, the information is
linked between the elements of ADTP metareasoning problem and the current state of the
reasoning processes (performance, algorithms, quality of the solution, computational time).

J. Intell. 2022, 10, 113 23 of 29

This information provides important context for possible actions to take if a metareasoning
problem is identified.

In scenario 3, the SPARQL query represents the question: What are the elements that are
part of the configuration of the problem at the object level? The response of the ontology generates
information about the context of the reasoning problems and how to address them.

3.6.3. Data-Driven Evaluation

This section describes the validation process using precision and recall as metrics for
evaluating IM-Onto with respect to information retrieval. This evaluation approach makes
a comparative analysis consisting of counting the related terms that appear between a
predefined set of knowledge elements and the ontology (Guo and Goh 2017). Precision
measures the ratio of correctly found knowledge correspondences (true positives) over the
total number of returned knowledge correspondences (true positives and false positives)
(Brewster et al. 2004). Recall reflects the proportion of knowledge that is accurately detected
relative to all the knowledge items it should identify from the predefined set (Brewster et al.
2004). The numerator of Equations (1) and (2) describe that knowledge that is accurately
detected and corresponds to the intersection of the relevant entities and the retrieved
entities. In each equation, only the denominator differs. As shown in Equation (3), the
F-measure we use is F_1, the harmonic means of precision and recall.

precision =
|{relevantentities} ∩ {retrievedentities}|

|{retrievedentities}| (1)

recall =
|{relevantentities} ∩ {retrievedentities}|

|{relevantentities}| (2)

F1 = 2× precision× recall
precision + recall

(3)

For data-driven evaluation, a corpus in the domain of metareasoning was used. The
corpus is a set of answers to questions extracted from five papers that were selected as
relevant in the literature review stage but that were not included for the development of
the ontology due to the saturation criterion described in Section 3.2.1. For the evaluation,
35 questions were used that covered the information related to the metareasoning problems
described in the literature. The questions were manually annotated to extract the main
concepts needed to answer them. This is demonstrated in Figure 18. In this figure, a sample
question is presented with a list of relevant and retrieved concepts.

Table 5 compares the performance (i.e., recall and precision rates) of IM-Onto with
that of both the Metacognitive Loop (MCL) (Schmill et al. 2007, 2011) and Meta-level
Control Ontology (MLCO) (Madera-Doval 2019). The precision and recall rate results
demonstrate that the low recovery rates of MCL and MLCO reiterate the limitations of
existing ontologies and further underscore the need for IM-Onto to support the design of
metareasoning systems. On the other hand, the high performance of IM-Onto shows that
it contains a high percentage of the relevant entities (recall = 90%) to support the design
of systems with integrated support of various types of metareasoning. This reinforces the
integrity of the ontology. Similarly, the accuracy rate (91%) of IM-Onto indicates that most
of the knowledge elements in the ontology are useful information for the integration of
various types of metareasoning in intelligent systems. This supports the conciseness of
the ontology.

J. Intell. 2022, 10, 113 24 of 29

J. Intell. 2022, 10, x FOR PEER REVIEW 24 of 30

recall | relevantentities ∩ retrievedentities || relevantentities | (2)

F 2 precision recallprecision recall (3)

For data-driven evaluation, a corpus in the domain of metareasoning was used. The
corpus is a set of answers to questions extracted from five papers that were selected as
relevant in the literature review stage but that were not included for the development of
the ontology due to the saturation criterion described in Section 3.2.1. For the evaluation,
35 questions were used that covered the information related to the metareasoning prob-
lems described in the literature. The questions were manually annotated to extract the
main concepts needed to answer them. This is demonstrated in Figure 18. In this figure, a
sample question is presented with a list of relevant and retrieved concepts.

Figure 18. Sample of questions. Manually annotated questions for relevant and retrieved entities. In
the response to the question formulated, the terms highlighted in red were not recovered by the
corresponding ontologies.

Table 5 compares the performance (i.e., recall and precision rates) of IM-Onto with
that of both the Metacognitive Loop (MCL) (Schmill et al. 2007, 2011) and Meta-level Con-
trol Ontology (MLCO) (Madera-Doval 2019). The precision and recall rate results demon-
strate that the low recovery rates of MCL and MLCO reiterate the limitations of existing
ontologies and further underscore the need for IM-Onto to support the design of metarea-
soning systems. On the other hand, the high performance of IM-Onto shows that it con-
tains a high percentage of the relevant entities (recall = 90%) to support the design of systems
with integrated support of various types of metareasoning. This reinforces the integrity of
the ontology. Similarly, the accuracy rate (91%) of IM-Onto indicates that most of the
knowledge elements in the ontology are useful information for the integration of various
types of metareasoning in intelligent systems. This supports the conciseness of the ontology.

Table 5. Precision and recall rates for comparing ontologies.

Ontologies Precision Recall F-Measure
IM-Onto 92% 90% 91%
MCL (Schmill et al. 2007, 2011) 47% 37% 41%
MLCO (Madera-Doval 2019) 63% 45% 53%

Figure 18. Sample of questions. Manually annotated questions for relevant and retrieved entities.
In the response to the question formulated, the terms highlighted in red were not recovered by the
corresponding ontologies.

Table 5. Precision and recall rates for comparing ontologies.

Ontologies Precision Recall F-Measure

IM-Onto 92% 90% 91%
MCL (Schmill et al. 2007, 2011) 47% 37% 41%
MLCO (Madera-Doval 2019) 63% 45% 53%

3.6.4. Criteria-Based Evaluation

For this type of evaluation, the five criteria chosen include competence, consistency,
integrity, clarity, and conciseness (El-Diraby 2014). The coherence and consistency criteria
were primarily demonstrated by automated consistency checks and task-based assessments,
respectively. The data-driven evaluation also demonstrates satisfactory performance in
terms of conciseness and completeness through precision analysis and recall, respectively.
In the context described, this section focuses on addressing the clarity criterion.

Clarity: The clarity of an ontology is determined when the knowledge elements of the
ontology have an unambiguous meaning (El-Diraby 2014). In this study, the terms used for
the ontology components were selected from the literature review. The definitions of the
terms were obtained by comparing aspects common to all the ontologies studied. In this
sense, it is guaranteed that the definitions are objective and independent of the social and
computational context.

Three experts complemented this technical evaluation, where the experts recom-
mended making some adjustments to the ontology due to taxonomic errors that concern
the taxonomic structure and are referred to as inconsistency, incompleteness and redun-
dancy. Some examples are presented in Figure 19.

The experts checked those three types of “inconsistency,” both logical and semantic,
have been highlighted: circularity errors (e.g., a concept that is a specialization of itself),
partitioning errors (e.g., a concept defined as a specialization of two disjoint concepts or
a concept defined as a specialization of two different classes), and semantic errors (e.g., a
taxonomic relationship in contradiction with the user knowledge). In this sense, the experts
found (0) errors of circularity, (1) error of partitioning and (2) semantic errors.

J. Intell. 2022, 10, 113 25 of 29

Incompleteness occurs when, for instance, relationships or axioms are missing. In rela-
tion to this, the experts found (2) errors. Finally, redundancy occurs when, for instance, a
taxonomical relationship can be deduced from others by logical inference. In this topic, the
experts found (0) errors.

J. Intell. 2022, 10, x FOR PEER REVIEW 25 of 30

3.6.4. Criteria-Based Evaluation
For this type of evaluation, the five criteria chosen include competence, consistency,

integrity, clarity, and conciseness (El-Diraby 2014). The coherence and consistency criteria
were primarily demonstrated by automated consistency checks and task-based assess-
ments, respectively. The data-driven evaluation also demonstrates satisfactory performance
in terms of conciseness and completeness through precision analysis and recall, respec-
tively. In the context described, this section focuses on addressing the clarity criterion.

Clarity: The clarity of an ontology is determined when the knowledge elements of
the ontology have an unambiguous meaning (El-Diraby 2014). In this study, the terms
used for the ontology components were selected from the literature review. The defini-
tions of the terms were obtained by comparing aspects common to all the ontologies stud-
ied. In this sense, it is guaranteed that the definitions are objective and independent of the
social and computational context.

Three experts complemented this technical evaluation, where the experts recom-
mended making some adjustments to the ontology due to taxonomic errors that concern
the taxonomic structure and are referred to as inconsistency, incompleteness and redun-
dancy. Some examples are presented in Figure 19.

Figure 19. Examples of errors detected in expert validation. Section (A) shows two semantic errors
in the relations colored in red, and section (B) shows the adjustments suggested by the experts.
Section (C) shows an “incompleteness” error, where the experts commented that class ALLO-
CATE_DELIBERATION_TIME was inherited from two different classes, which was confusing. Sec-
tion (D) presents the suggestion given by the experts.

The experts checked those three types of “inconsistency,” both logical and semantic,
have been highlighted: circularity errors (e.g., a concept that is a specialization of itself),
partitioning errors (e.g., a concept defined as a specialization of two disjoint concepts or a
concept defined as a specialization of two different classes), and semantic errors (e.g., a

Figure 19. Examples of errors detected in expert validation. Section (A) shows two semantic errors
in the relations colored in red, and section (B) shows the adjustments suggested by the experts.
Section (C) shows an “incompleteness” error, where the experts commented that class ALLOCATE_
DELIBERATION_TIME was inherited from two different classes, which was confusing. Section (D)
presents the suggestion given by the experts.

3.7. Ontology Documentation

The IM-Onto ontology itself is available at the following link: https://tinyurl.com/
2ymcrk44 (login required). In the documentation, it is possible to find a detailed description
of the properties and relationships of each class that is part of the ontology. Additionally
included are definitions that allow disambiguating each of the terms that the ontology con-
tains. Similarly, instructions exist at this location for the use of the ontology in information
retrieval tasks as well as reasoning tasks for intelligent systems.

4. Discussion

The main contribution of this paper was the presentation of a consistent ontology
that provides a visual means of sharing a common understanding of the structure and
relationships among terms and concepts related to the metareasoning domain in intelligent
systems. In this paper, the application of IM-Onto to the problem of allocating student
teams to internship programs has been demonstrated in three main tasks. They are (i)

https://tinyurl.com/2ymcrk44
https://tinyurl.com/2ymcrk44

J. Intell. 2022, 10, 113 26 of 29

providing information linking the elements of a metareasoning problem and the current
state of the reasoning processes; (ii) providing information related to the configuration of
metareasoning problems the meta-level can solve; and (iii) generating information about
the context of the reasoning problems and how to address them.

The high performance of IM-Onto shows that it contains a high percentage of the
relevant entities (recall = 90%) to support the design of systems with integrated support of
various types of metareasoning. On the other hand, the precision and recall rate results of
the validation demonstrate that the low recovery rates of MCL (Schmill et al. 2007, 2011)
and MLCO (Madera-Doval 2019) reiterate the limitations of existing ontologies.

The accuracy rate (91%) of IM-Onto indicates that most of the knowledge elements in
the ontology are useful information for the integration of various types of metareasoning
in intelligent systems. In this sense, MCL and MLCO demonstrate low accuracy rates.
These results should be considered when considering the design of intelligent systems
with metareasoning capabilities. MCL and MLCO were designed to respond to reasoning
failures in intelligent systems, while IM-Onto was designed to handle a wider variety of
metareasoning problems.

This study may be expanded in the future to include aspects of metareasoning in
humans, metareasoning in inference engines in ontologies and monitoring and control of
tasks that expire in time. The inclusion of these three topics can broaden the scope of the
IM-Onto ontology, which is currently limited to the domain of metareasoning in intelligent
systems. In this sense, it would be interesting to analyze the conceptual differences between
metareasoning in human beings, in ontology inference engines and in the monitoring and
control of computational processes.

5. Conclusions

This paper has presented an ontology called IM-Onto that captures key terms, concepts
and relationships related to metareasoning and computational metacognition. The main
research objective was to create a common language and conceptualization of metareasoning
in the AI domain through the development of an ontology focused on the context of metarea-
soning problems described in published research. To achieve this, a rigorous research method
was followed to guarantee that the two main requirements of the ontology were satisfied
(completeness based on relevant knowledge and agreed upon by researchers and practition-
ers). The research method was based on (Badr et al. 2013), following the phases of definition,
conceptualization, formalization, implementation, evaluation, and documentation.

IM-Onto can act as a unifying framework for data sharing across metareasoning
problems in an intelligent system. This representation also solves a vocabulary problem in
this domain by providing a standard semantic model for cross-functional metareasoning
problems. IM-Onto consists of a sub-ontology for each metareasoning problem found on
an in-depth analysis of the relevant literature as follows: Allocating Deliberation Time
Problem (ADTP), Allocating Evaluation Effort Problem (AEEP), Knowledge Test Problem
(KTP), Stopping Reasoning Problem (SRP), Gathering Computational Performance Data
problem (GCPDP), Detection of Reasoning Failure Problem (DRFP), Self-explanation and
Self-understanding Problem (SE&SUP).

Four approaches were used to evaluate IM-Onto. First, the automated consistency
check approach ensures that the ontology is internally consistent. Second, the task-based
assessment demonstrated that IM-Onto was able to accomplish the competency tasks
defined above using completeness questions. Third, data-driven evaluation rigorously tests
the integrity and conciseness of the ontology by demonstrating its comparative performance
with previous ontologies. Finally, criteria-based assessment further addresses the ontology
clarity metric.

Author Contributions: M.F.C., M.T.C. and R.E.T.-M. actively participated in the conceptualization,
methodology, validation, in the formal writing of the first draft and the consequent revised versions.
All authors have read and agreed to the published version of the manuscript.

J. Intell. 2022, 10, 113 27 of 29

Funding: This research was funded in part by NSF grant number 1849131 and by the Office of
Naval Research grant number N00014-18-1-2009. This research was funded in part by University of
Córdoba—Colombia.

Institutional Review Board Statement: The study was carried out in accordance with the Declaration
of Helsinki and was approved by the Research Ethics Committee of the University of Córdoba (issue
date: 15 November 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy issues and property
rights. The IM-Onto ontology is available at the following link (account creation and login required).
https://tinyurl.com/2ymcrk44.

Conflicts of Interest: The authors declare no conflict of interest.

References
Ackerman, Rakefet, and Valerie Thompson. 2017. Meta-Reasoning: Monitoring and Control of Thinking and Reasoning. Trends in

Cognitive Sciences 21: 607–17. [CrossRef] [PubMed]
Allemang, Dean, Irene Polikoff, and Ralph Hodgson. 2005. Enterprise architecture reference modeling in OWL/RDF. In International

Semantic Web Conference (ISWC 2005). Edited by Yolanda Gil, Enrico Motta, V. Richard Benjamins and Mark A. Musen. Lecture
Notes in Computer Science. Berlin: Springer, vol. 3729, pp. 844–57.

Althubaiti, Sara, Şenay Kafkas, Marwa Abdelhakim, and Robert Hoehndorf. 2020. Combining lexical and context features for automatic
ontology extension. Journal of Biomedical Semantics 11: 1–13. [CrossRef]

Anderson, Michael, and Timothy Oates. 2007. A review of recent research in metareasoning and metalearning. AI Magazine 28: 12.
Andrejczuk, Ewa, Filippo Bistaffa, Christian Blum, Juan A. Rodríguez-Aguilar, and Carles Sierra. 2019. Synergistic team composition:

A computational approach to foster diversity in teams. Knowledge-Based Systems 182: 104799. [CrossRef]
Baccigalupo, Claudio, and Enric Plaza. 2007. Poolcasting: A social Web radio architecture for group customisation. Paper presented at

the 3rd International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution, AXMEDIS
2007, Barcelona, Spain, November 28–30; pp. 115–22.

Badr, Kamal Badr Abdalla, Afaf Badr Abdalla Badr, and Mohammad Nazir Ahmad. 2013. Phases in Ontology Building Methodologies: A
Recent Review. In Ontology-Based Applications for Enterprise Systems and Knowledge Management. Hershey: IGI Global, pp. 100–23.

Borghetti, Brett, and Maria Gini. 2008. Weighted prediction divergence for metareasoning. Metareasoning: Paper presented at the 2008
AAAI Workshop, Chicago, IL, USA, July 13–17.

Brewster, Christopher, Harith Alani, Srinandan Dasmahapatra, and Yorick Wilks. 2004. Data driven ontology evaluation. Paper
presented at the 4th International Conference on Language Resources and Evaluation, LREC 2004, Lisbon, Portugal, May 26–28.

Caleiro, Carlos, Luca Vigano, and David Basin. 2005. Metareasoning about security protocols using distributed temporal logic. Electronic
Notes in Theoretical Computer Science 125: 67–89. [CrossRef]

Caro, Manuel, Darsana Josyula, and Jovani A. Jiménez. 2014. A formal model for metacognitive reasoning in intelligent systems.
International Journal of Cognitive Informatics and Natural Intelligence 8: 70–86. [CrossRef]

Chen, Xiaoping, Zhiqiang Sui, and Jianmin Ji. 2013. Towards metareasoning for human-robot interaction. In Intelligent Autonomous
Systems 12. Berlin/Heidelberg: Springer, pp. 355–67. [CrossRef]

Conitzer, Vincent, and Tuomas Sandholm. 2003. Definition and complexity of some basic metareasoning problems. Paper presented at
the IJCAI International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9–15; pp. 1099–106.

Cox, Michael. 2005. Metacognition in computation: A selected research review. Artificial Intelligence 169: 104–41. [CrossRef]
Cox, Michael T. 2011. Metareasoning, monitoring, and self-explanation. In Metareasoning: Thinking about Thinking. Edited by Michael T.

Cox and Anita Raja. Cambridge: MIT Press, pp. 131–49.
Cox, Michael, and Anita Raja. 2008. Metareasoning: A manifesto. In Metareasoning: Thinking about Thinking, Proceedings of the 2008 AAAI

Workshop, Chicago, IL, USA, July 13–17. Technical Report WS-08-07. Edited by Michael T. Cox and Anita Raja. Menlo Park: AAAI
Press, pp. 1–4.

Cox, Michael, and Anita Raja. 2011. Metareasoning: An introduction. In Metareasoning: Thinking about Thinking. Edited by Michael T.
Cox and Anita Raja. Cambridge: MIT Press, pp. 3–14.

Cserna, Bence, Wheeler Ruml, and Jeremy Frank. 2017. Planning time to think: Metareasoning for on-line planning with durative
actions. Paper presented at the International Conference on Automated Planning and Scheduling, Pittsburgh, PA, USA, June
18–23; vol. 27, pp. 56–60.

Dannenhauer, Dustin, Michael Cox, and Hector Munoz-Avila. 2018. Declarative metacognitive expectations for high-level cognition.
Advances in Cognitive Systems 6: 231–50.

Dannenhauer, Dustin, Michael T. Cox, Shubham Gupta, Matt Paisner, and Don Perlis. 2014. Toward meta-level control of autonomous
agents. Procedia Computer Science 41: 226–32. [CrossRef]

Dunlosky, John, and Robert Bjork. 2008. Handbook of Metamemory and Memory. New York: Psychology Press.

https://tinyurl.com/2ymcrk44
http://doi.org/10.1016/j.tics.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28625355
http://doi.org/10.1186/s13326-019-0218-0
http://doi.org/10.1016/j.knosys.2019.06.007
http://doi.org/10.1016/j.entcs.2004.05.020
http://doi.org/10.4018/IJCINI.2014070105
http://doi.org/10.1007/978-3-642-33932-5_34
http://doi.org/10.1016/j.artint.2005.10.009
http://doi.org/10.1016/j.procs.2014.11.107

J. Intell. 2022, 10, 113 28 of 29

El-Diraby, Tamer. 2014. Validating ontologies in informatics systems: Approaches and lessons learned for AEC. Journal of Information
Technology in Construction 19: 474–93.

Farmer, William. 2018. Incorporating quotation and evaluation into Church’s type theory. Information and Computation 260: 9–50. [CrossRef]
Fernández-López, Mariano, Asunción Gómez-Pérez, and Natalia Juristo. 1997. Methontology: From ontological art towards ontological

engineering. Paper presented at the AAAI97 Spring Symposium Series on Ontological Engineering, Palo Alto, CA, USA, March
24–25; pp. 33–40.

France-Mensah, Jojo, and William O’Brien. 2019. A shared ontology for integrated highway planning. Advanced Engineering Informatics
41: 100929. [CrossRef]

Fusch, Patricia, and Lawrence Ness. 2015. Are we there yet? Data saturation in qualitative research. Qualitative Report 20: 1408–16.
[CrossRef]

Georgara, Athina, Carles Sierra, and Juan Rodríguez. 2020a. Edu2Com: An anytime algorithm to form student teams in companies.
Paper presented at the AI for Social Good Workshop 2020, Virtual, July 20–21.

Georgara, Athina, Carles Sierra, and Juan Rodríguez. 2020b. TAIP: An anytime algorithm for allocating student teams to internship
programs. arXiv arXiv:2005.09331.

Griffiths, Thomas, Frederick Callaway, Michael Chang, Erin Grant, Paul Krueger, and Falk Lieder. 2019. Doing more with less:
Meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences 29: 24–30. [CrossRef]

Gruber, Thomas. 1995. Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-
Computer Studies 43: 907–28. [CrossRef]

Guo, Brian, and Yang Miang Goh. 2017. Ontology for design of active fall protection systems. Automation in Construction 82: 138–53.
[CrossRef]

Hayes-Roth, Frederick, Donald Waterman, and Douglas Lenat. 1983. Building Expert Systems. Boston: Addison-Wesley Longman Publishing
Co., Inc.

Hevner, Alan, Salvatore March, Jinsoo Park, and Sudha Ram. 2004. Design science in information systems research. MIS Quarterly:
Management Information Systems 28: 75–105. [CrossRef]

Horridge, Matthew, Rafael Gonçalves, Csongor Nyulas, Tania Tudorache, and Mark Musen. 2019. WebProtégé: A cloud-based ontology
editor. Paper presented at the Web Conference 2019—Companion of the World Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13–17; pp. 686–89. [CrossRef]

Horvitz, Eric. 1987. Reasoning About Beliefs and Actions Under Computational Resource Constraints. Paper presented at the Third
Conference on Uncertainty in Artificial Intelligence (UAI1987), Seattle, WA, USA, July 10–12.

Houeland, Tor Gunnar, and Agnar Aamodt. 2018. A learning system based on lazy metareasoning. Progress in Artificial Intelligence 7:
129–46. [CrossRef]

Karpas, Erez, Oded Betzalel, Solomon Eyal Shimony, David Tolpin, and Ariel Felner. 2018. Rational deployment of multiple heuristics
in optimal state-space search. Artificial Intelligence 256: 181–210. [CrossRef]

Kuokka, Daniel. 1991. MAX: A meta-reasoning architecture for “X”. ACM SIGART Bulletin 2: 93–97. [CrossRef]
Lieder, Falk, and Thomas Griffiths. 2017. Strategy selection as rational metareasoning. Psychological Review 124: 762. [CrossRef]
Lin, Christopher, Andrey Kolobov, Ece Kamar, and Eric Horvitz. 2015. Metareasoning for Planning Under Uncertainty. Paper presented

at the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25–31.
Madera-Doval, Dalia Patricia. 2019. A validated ontology for meta-level control domain. Acta Scientiæ Informaticæ 6: 26–30.
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and

their compositionality. In Advances in Neural Information Processing Systems. Lake Tahoe: Curran Associates, Inc., vol. 26.
Milli, Smitha, Falk Lieder, and Thomas Griffiths. 2017. When does bounded-optimal metareasoning favor few cognitive systems?

Paper presented at the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, February 4–9; vol. 31.
Nelson, Thomas. 1990. Metamemory: A theoretical framework and new findings. In The Psychology of Learning and Motivation: Advances

in Research and Theory. Edited by Gordon Bower. New York: Academic Press, pp. 125–73.
Noy, Natalya, and Deborah McGuinness. 2001. Ontology Development 101: A Guide to Creating Your First Ontology. Knowledge

Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880. Stanford, CA.
Available online: https://protege.stanford.edu/conference/2005/slides/T1_Noy_Ontology101.pdf (accessed on 1 October 2022).

Parashar, Priyam, Ashok Goel, Bradley Sheneman, and Henrik Christensen. 2018. Towards life-long adaptive agents: Using metareasoning
for combining knowledge-based planning with situated learning. The Knowledge Engineering Review 33: e24. [CrossRef]

Peffers, Ken, Marcus Rothenberger, Tuure Tuunanen, and Reza Vaezi. 2012. Design science research evaluation. In International
Conference on Design Science Research in Information Systems. Berlin and Heidelberg: Springer, pp. 398–410.

Rebholz-Schuhmann, Dietrich, Miguel Arregui, Sylvain Gaudan, Harald Kirsch, and Antonio Jimeno. 2008. Text processing through
Web services: Calling Whatizit. Bioinformatics 24: 296–98. [CrossRef]

Russell, Stuart, and Eric Wefald. 1991. Principles of metareasoning. Artificial Intelligence 49: 361–95. [CrossRef]
Schmill, Matt, Darsana Josyula, Michael L. Anderson, Shomir Wilson, Tim Oates, Don Perlis, and Scott Fults. 2007. Ontologies for

Reasoning about Failures in AI Systems. Paper presented at the Workshop on Metareasoning in Agent Based Systems at the Sixth
International Joint Conference on Autonomous Agents and Multiagent Systems, Honolulu, HI, USA, May 14–18.

http://doi.org/10.1016/j.ic.2018.03.001
http://doi.org/10.1016/j.aei.2019.100929
http://doi.org/10.46743/2160-3715/2015.2281
http://doi.org/10.1016/j.cobeha.2019.01.005
http://doi.org/10.1006/ijhc.1995.1081
http://doi.org/10.1016/j.autcon.2017.02.009
http://doi.org/10.2307/25148625
http://doi.org/10.1145/3308560.3317707
http://doi.org/10.1007/s13748-017-0138-0
http://doi.org/10.1016/j.artint.2017.11.001
http://doi.org/10.1145/122344.122363
http://doi.org/10.1037/rev0000075
https://protege.stanford.edu/conference/2005/slides/T1_Noy_Ontology101.pdf
http://doi.org/10.1017/S0269888918000279
http://doi.org/10.1093/bioinformatics/btm557
http://doi.org/10.1016/0004-3702(91)90015-C

J. Intell. 2022, 10, 113 29 of 29

Schmill, Matthew, Michael Anderson, Scott Fults, Darsana Josyula, Tim Oates, Don Perlis, Hamid Shahri, Shomir Wilson, and Dean
Wright. 2011. The metacognitive loop and reasoning about anomalies. In Metareasoning: Thinking about Thinking. Edited by
Michael Cox and Anita Raja. Cambridge: The MIT Press, pp. 183–98.

Silla, Carlos, and Alex Freitas. 2011. A survey of hierarchical classification across different application domains. Data Mining and
Knowledge Discovery 22: 31–72. [CrossRef]

Sirin, Evren, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. 2007. Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics 5: 51–53. [CrossRef]

Sung, Yoonchang, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2021. Learning When to Quit: Meta-Reasoning for Motion Planning.
Paper presented at the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
September 27–October 1; pp. 4692–99.

Svegliato, Justin, and Shlomo Zilberstein. 2018. Adaptive Metareasoning for Bounded Rational Agents. Paper presented at the
CAI-ECAI Workshop on Architectures and Evaluation for Generality, Autonomy and Progress in AI (AEGAP), Stockholm,
Sweden, July 15.

Svegliato, Justin, Connor Basich, Sandhya Saisubramanian, and Shlomo Zilberstein. 2021. Using Metareasoning to Maintain and
Restore Safety for Reliably Autonomy. Paper presented at the Submission to the IJCAI Workshop on Robust and Reliable
Autonomy in the Wild (R2AW), Virtual, August 19–26.

Svegliato, Justin, Kyle Hollins Wray, and Shlomo Zilberstein. 2018. Meta-Level Control of Anytime Algorithms with Online Performance
Prediction. Paper presented at the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
July 13–19.

Uschold, Mike, and Michael Gruninger. 1996. Ontologies: Principles, Methods and Applications. The Knowledge Engineering Review 11:
93–136. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.5917&rep=rep1&type=pdf (accessed on
1 October 2022). [CrossRef]

Van Assem, Mark, Aldo Gangemi, and Guus Schreiber. 2006. Conversion of WordNet to a standard RDF/OWL representation. Paper
presented at the Fifth International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, May 22–28.

http://doi.org/10.1007/s10618-010-0175-9
http://doi.org/10.1016/j.websem.2007.03.004
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.5917&rep=rep1&type=pdf
http://doi.org/10.1017/S0269888900007797

	Introduction
	Materials and Methods
	Results
	Definition
	Conceptualization
	Listing the Relevant Terms in the Ontology
	Defining Classes
	Define Class Properties with Specification of the Range and Domain

	Formalization
	Implementation: The Integrated Metareasoning Ontology (IM-Onto)
	The Allocating Deliberation Time Problem (ADTP) Subontology
	Allocating Evaluation Effort Problem Subontology
	The Knowledge Test Problem (KTP) Subontology
	The Stopping Reasoning Problem (SRP) Subontology
	The Gathering Computational Performance Data Problem (GCPDP) Subontology
	Detection of Reasoning Failure Problem (DRFP) Subontology
	Self-Explanation and Self-Understanding Problem (SE&SUP) Subontology
	Improving the Ability of the Approach to Generalize to New (or Existing but Unstudied) Problems

	Evaluation and Case Study
	Ontology Evaluation
	Automated Consistency Checking
	Task-Based Evaluation
	Data-Driven Evaluation
	Criteria-Based Evaluation

	Ontology Documentation

	Discussion
	Conclusions
	References

