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Abstract: Feature extraction plays an important role in machine learning for signal processing,
particularly for low-dimensional data visualization and predictive analytics. Data from real-world
complex systems are often high-dimensional, multi-scale, and non-stationary. Extracting key features
of this type of data is challenging. This work proposes a novel approach to analyze Epileptic EEG
signals using both wavelet power spectra and functional principal component analysis. We focus on
how the feature extraction method can help improve the separation of signals in a low-dimensional
feature subspace. By transforming EEG signals into wavelet power spectra, the functionality of
signals is significantly enhanced. Furthermore, the power spectra transformation makes functional
principal component analysis suitable for extracting key signal features. Therefore, we refer to this
approach as a double feature extraction method since both wavelet transform and functional PCA are
feature extractors. To demonstrate the applicability of the proposed method, we have tested it using
a set of publicly available epileptic EEGs and patient-specific, multi-channel EEG signals, for both
ictal signals and pre-ictal signals. The obtained results demonstrate that combining wavelet power
spectra and functional principal component analysis is promising for feature extraction of epileptic
EEGs. Therefore, they can be useful in computer-based medical systems for epilepsy diagnosis and
epileptic seizure detection problems.

Keywords: wavelet power spectra; feature extraction; functional PCA; medical informatics; data
visualization

1. Introduction

In data classification, including biomedical signals classification, feature extraction
is used to reduce the dimension of input data so that a classification method’s efficiency
can be improved [1–4]. Many current studies of this type of research are focusing on
time-frequency feature extraction. Fourier transform, wavelet transform, empirical mode
decomposition and sparse representation of signals are often used to extract signal features,
while principal component analysis (PCA), linear discriminant analysis (LDA), indepen-
dent component analysis (ICA), as well as canonical correlation analysis (CCA), are popular
techniques for dimension reduction. In [5], a method was developed to find the optimal
discrete wavelet transform (DWT) settings so that classification accuracy is improved and
the computational cost of seizure detection is then reduced. In [6], EEG signals are first de-
composed using DWT, then extracted wavelet features were used as an input to a mixture
expert network for classification. In [7], a robust feature extraction method based on PCA
was designed to classify multi-class EEG signals. In [8], the DWT method was employed
for pre-processing, and approximate entropy was used as features for classification using
artificial neural networks. In [9], a novel patient-specific seizure detection approach using
wavelet decomposition of multi-channel EEG recordings was proposed, and the features
extracted from different frequency bands were used to classify the seizure and non-seizure
signals. In [10], an empirical mode decomposition (EMD)-based dictionary approach was
proposed for epilepsy seizure detection, and the high accuracy of the obtained results sug-
gests that the proposed method may be promising for classifying long-term multi-channel
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EEG recordings. In [11], a hybrid dimension reduction model that uses ICA and PCA was
developed as a feature extraction method for epileptic seizure detection. For the data they
considered in [11], the results showed significant performance using the combination of
ICA and PCA.

More recent research is focusing on the methods that combine both domain trans-
formation and data dimension reduction. Wavelet PCA, multi-scale PCA, and wavelet
ICA are some of the examples. In [12], a method that combines independent component
analysis, and continuous wavelet transformation was used to remove EKG artifact from
EEG data. The technique demonstrated that it outperformed other algorithms that used
general statistical features for artifact rejection. In [13], PCA, ICA and LDA were used to
reduce the dimension of input data after DWT, and the extracted features were used as
the input of support vector machines. The performance of classification showed that the
proposed classification process was promising. In [14], multi-scale PCA (MSPCA) was
used as a de-noising method, and the study showed that MSPCA greatly improves the
classification performance in epileptic seizures detection. In [15], the wavelet-based sparse
functional linear model was developed to capture discriminative random components of
EEG signals. The proposed method outperformed many other state-of-the-art techniques
for the EEG data from the University of Bonn. EEG signals’ spectral information has been
shown to be useful in epilepsy classification [16–18]. In [17,18], Fourier domain functional
PCA was used for extracting the feature of EEG signals. The studies in [17,18] illustrated the
success of combining the Fourier domain transformation and functional PCA. The rationale
behind using the domain transform and dimension reduction approach is that after the
data transformation, the separability of the extracted feature is greatly improved. The role
of domain transform is to make data behave more discriminable.

The successful classification of the extracted low-dimensional features makes the
complicated, multiple domains-based feature extraction more practical and appealing in
data visualization. In medical information systems, data visualization enables a better
understanding of data patterns and makes the decision more interpretable. Because of this,
much of recent research focuses on data visualization problems for information systems.
For instance, in [19], a medical data visualization system was developed to allow physicians
to see the development of the patients at one glance. The study was done with the aim of
assessing the system’s usability. To help with the processing of high-dimensional signals,
enable signal visualization, and improve the performance of simple classification methods,
we develop a new feature extraction approach by focusing on using wavelet transformation
and low-dimensional principal component features. We propose a novel approach that
extracts epileptic EEG signal features using functional principal component analysis of
wavelet power spectra. The transformation of signals from the time domain to wavelet
spectral-domain helps improve random signals’ functionality. Furthermore, the functional
principal component analysis is applied to reduce the signal dimension. The preliminary
study of this work was presented in [20], where mainly the functional mean wavelet power
spectra were studied. Within this new work, we focus on an in-depth discussion of the
technical aspects of the proposed methodologies. We also aim to demonstrate the proposed
method’s applicability more intensively by considering additional, patient-specific, multi-
channel EEG signals. Within this study, epilepsy diagnosis and epileptic seizure detection
problems using extracted features will be discussed.

The significance of this work is the novelty of the proposed feature extraction method-
ology and the achieved high separability for the data we consider, which are useful for
both epilepsy diagnosis and epileptic seizure detection problems. The proposed feature
extraction method makes the use of simple classification methods possible. Also, the pro-
posed methods are applicable to other types of signals, such as financial time series and
long-term observational economic data for classification or pattern recognition problems.
To the best of our knowledge, functional PCA in the wavelet spectral-domain is used for
the first time in biomedical signal processing.
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This paper is organized as follows. In Section 2, we discuss wavelet spectral anal-
ysis and functional principal component analysis. We provide a detailed mathematical
description of how the proposed method is developed and how the features are extracted
via functional principal component analysis. In Section 3, publicly available short-term
EEG data are analyzed, and the results are analyzed, including the study of the effect of
the number of components in approximating wavelet power spectra on the separability
of extracted features. We also analyze a set of patient-specific multi-channel long-term
epileptic EEG signals and compare the extracted features from both interictal and ictal
signals. Finally, we conclude our findings and provide further remarks in Section 4.

2. Methods

In this section, we focus on the in-depth discussion of the technical aspects of our
proposed method. We summarize the wavelet power spectra, including both the discrete
and continuous wavelet power spectra, and principal component analysis, to ensure that
the paper is self-contained. We also discuss how the functional PCA approach is combined
with the wavelet power spectra to serve as a double feature extraction method. For a
complete reading on the wavelet methods and functional PCA, we refer readers to [21,22].

2.1. Wavelet Power Spectra

Mathematically speaking, the power spectrum transforms a given signal from the time
domain to the spectral domain. If the transformation is a wavelet function, then we have
a wavelet power spectrum. There are two types of wavelet power spectrum: continuous
wavelet power spectrum and discrete wavelet power spectrum. We first briefly discuss
the power spectrum based on continuous wavelet transform (CWT). We then discuss the
wavelet power spectrum based on the discrete wavelet transform (DWT) and explain its
superiority compared to CWT.

2.1.1. Continuous Wavelet Transform

The continuous wavelet transform of a continuous random signal x(t) concerning a
given wavelet function ψ(t) is defined as

Wb(a) =
1√
a

∫ +∞

−∞
x(t)ψ∗

( t− b
a
)
dt, (1)

where the (*) indicate the complex conjugate and ψ( t−b
a ) is the dilated and translated

version of wavelet function ψ(t) with a being the dilation parameter and b being the
translation parameter. In continuous wavelet transform, the most common choices of ψ(t)
are Morlet, Mexican hat, or Paul wavelets, to name a few [22]. If the random signal is
discrete and is denoted by xk, k = 1, 2, . . . , N, the CWT of xk becomes

Wb(a) =
1√
a

N

∑
k=1

xkψ∗
( k− b

a
)
. (2)

After the wavelet transforms, one can define the wavelet power spectrum as |Wb(a) |2.
Notice that |Wb(a) |2 is a two-dimensional quantity. This work further considers the global
wavelet power spectrum, which is defined as the average power spectrum over all the local
wavelet spectra in time. It is given as follows

W2(a) =
1
T

∫ T

0
|Wb(a) |2 db, (3)
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for a continuous random signal. If a random signal is discrete, then the global wavelet
power spectrum can be estimated by

W2(a) =
1
N

N

∑
b=1
|Wb(a) |2 . (4)

This is referred to as the wavelet variance of a signal at the scale a.

2.1.2. Discrete Wavelet Transform

The discrete wavelet transform is done by taking discrete values of the dilation and
translation factors a and b. A common approach is to take the logarithmic discretization of
the dilation factor a and link it to b by making b be proportional to a. This implies that we
have the following forms of discretization of the normalized wavelet function:

ψm,n =
1√
am

0
ψ
( t− nb0am

0
am

0

)
, (5)

which is the result by taking a = am
0 , and b = nb0am

0 , respectively, in Equation (2). Here m,
n are all integers that control dilation and translation, respectively. a0 is the fixed dilation
step and is greater than one. b0 is the location parameter that has to be greater than zero.

In practice, a common choice of a0 and b0 are 2 and 1, respectively. This leads to the
so-called dyadic scaling of wavelet transform. The dyadic scaling wavelet function is then
defined as

ψm,n =
1√
2m

ψ
( t− n2m

2m

)
= 2−m/2ψ(2−mt− n). (6)

Based on this wavelet function, the wavelet transform of a sequence of discrete values
of signal xk becomes

Wn(m) = 2−m/2
N

∑
k=1

xkψ∗(2−mk− n). (7)

The global wavelet power spectrum is then defined as

W2(m) =
1

Nm

Nm

∑
n=0
|Wn(m) |2, (8)

where Nm is the total number of translation values associated with dilation parameter m.
If the signal length N is power of 2, then N = 2M, Nm = 2M−m − 1 and m = 1, 2, . . . , M.

Notice that the wavelet power spectrum is different from a scaleogram for wavelets,
which can be used to estimate instantaneous frequency. Instead, the wavelet power
spectrum can be interpreted as a density function of instantaneous frequency. Using the
wavelet power spectrum, one reduces the dimension of wavelet transform and extract the
functionality of frequency values so that the application of functional principal component
analysis becomes sensible.

2.2. Principal Component Analysis

In multivariate statistics, principal component analysis (PCA) of a p-variate random
vector X = (X1, X2, . . . , Xp) looks for a set of weight values, ξ j = (ξ1j, ξ1j, . . . , ξpj), so that

at the jth step, the linear combinations of variable X(j)
i , for j = 1,2,· · · , p, has the greatest
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variance [23], with X(1)
i being the original signal Xi. Mathematically, the solution of weight

values can be found by solving for the following maximization problem

max
ξij

Var
( p

∑
i=1

ξijX
(j)
i

)
, or , max

ξ j
Var

(
ξ>j X(j)

)
. (9)

After the first principal component ξ1 is obtained, the maximization process in (9)
is repeated for j = 2, . . . , p by replacing X j−1

i with the value that subtracts X j−1
i by the

previous principal component, subject to the normalization and orthogonality constraints,
which are ∑

p
i=1 ξ2

ij = 1 and ∑
p
i=1 ξijξil = 0 for j < l, and 1 ≤ l, j ≤ p. That is to say in

Equation (9), we have

X(j) = X(j−1) − ξ>j−1X(j−1), for j = 2, 3, . . . , p.

The iterative input of X(j) will lead to the solution of ξ j in the optimization problem
in (9), for j = 1, 2, . . . , p.

Alternatively, due to the fact that

Var(ξ>j X) = Cov(ξ>j X, ξ>j X) = ξ jCov(X, X)ξ>j ,

the optimization problem in (9) is mathematically equivalent to the following non-linear
programming problem

max
ξ j

ξ jCov(X, X)ξ>j , subject to

ξ jξ
>
j = 1, and ξ jξ

>
l = 0. (10)

Furthermore, for n samples of X (with zero mean for each variate), we have a n× p
data matrix X that implies Cov(X, X) = 1

n−1 X>X, and the optimization problem becomes

max
ξ j

1
n− 1

ξ jX>Xξ>j , subject to

ξ jξ
>
j = 1, and, ξ jξ

>
l = 0, (11)

which can be solved by finding the solution of the following eigen equation

Vξ = λξ, (12)

where V = 1
n−1 X>X is sample variance-covariance matrix calculated based on the n

samples of X, and λ is the eigenvalue associated with the eigenvector ξ. There are a
sequence of pairs (λj, ξ j ), satisfying the eigen equation. This eigen analysis leads to
the solutions for both the eigenvalues and the eigenvectors. In PCA, we refer ξ j to the
jth principal component. For feature extraction of data matrix X, we then compute Xξ>j ,
for j = 1, 2, . . . , p, and they are referred to as principal component scores.

2.3. Functional Principal Component Analysis

Now let us consider functional principal component analysis [24,25], which will be
applied to the wavelet power spectra. We first consider the case when CWT was applied to
a signal xt, in which the wavelet power spectra W2(a) is obtained. For a set of n samples,
we denote the wavelet power spectrum of the ith signal by Ii(a), where Ii(a) = W2

i (a).
Thus, the mean wavelet power spectrum of these n signals becomes Ī(a). The functional
variance-covariance at wavelet scales a and a′ can be estimated by

Cov(a, a′) =
1

n− 1

n

∑
i

(
Ii(a)− Ī(a)

)(
Ii(a′)− Ī(a′)

)
. (13)
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Suppose that the wavelet power spectrum of a given signal can be approximated
using K basis functions, and it is given as follows:

Ii(a) ≈ µ0(a) +
K

∑
k=1

βikφk(a), (14)

where µ0(a) is the functional mean of wavelet power spectra. Without the loss of generality,
for the purpose of function approximation, we can take µ0(a) to be a constant value denoted
as µ0. Since we consider an approximation of Ii(a) rather than represent the function exactly
using infinity number of basis functions, we may then express Equation (14) in a matrix form

I− µ = Cφ, (15)

where µ = (µ0, µ0, . . . , µ0)
>, φ = (φ1, φ2, . . . , φK)

>, and the coefficient C is n × K matrix
given as follows:

C =


β11 β12 β13 . . . β1K
β21 β22 β23 . . . β2K

...
...

...
. . .

...
βn1 βn2 βn3 . . . βnK

.

Now we consider how to obtain the functional principal components and their scores.
Let us first denote the variance-covariance function by v(a, a′), which is defined in (13).
In matrix terms the variance-covariance function is

v(a, a′) =
1

n− 1
φ>(a)C>Cφ(a′).

To find the principal component weight functions, we have to solve the following
eigen equation for an appropriate eigenvalue λ∫

v(a, a′)ξ(a′)da′ = λξ(a). (16)

Suppose that eigen function ξ(a) in the left hand side of Equation (16) has an expansion

ξ(a) =
K

∑
k=1

bkφk(a),

or in matrix notation

ξ(a) = φ>(a)b,

where b = (b1, b2, . . . , bK)
>. This yields∫

v(a, a′)ξ(a′)da′ =
1

n− 1

∫
φ>(a)C>Cφ(a′)φ>(a′)bda′

=
1

n− 1
φ>(a)C>CΦb.

Here, Φ =
∫

φφ>da′ is a K × K matrix, and it has entries
∫

φk1 φk2 da′, where k1 =
1, 2, . . . , K and k2 = 1, 2, . . . , K. The eigen equation in (16) becomes

1
n− 1

φ>(a)C>CΦb = λφ>(a)b. (17)
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Since (17) must hold for all a, this implies that the following matrix equation must hold

1
n− 1

C>CΦb = λb. (18)

To obtain the required principal components, we define u = Φ1/2b, i.e., b = Φ−1/2u,
Equation (18) becomes

1
n− 1

Φ1/2C>CΦ1/2u = λu. (19)

By solving the symmetric eigenvalue problem in (19) for u, and then compute b =
Φ−1/2u to obtain the eigen function ξ(a), we obtain

ξ(a) = φ>(a)Φ−1/2u. (20)

If φk(a) are orthonormal, we have Φ = I, which is an K× K identity matrix. The eige-
nanalysis of functional PCA problem in (18) reduces to

1
n− 1

C>Cb = λb.

This becomes a PCA problem where the variance-covariance matrix is replaced by
the coefficient matrix C obtained from function approximation of wavelet power spectra.
However, one should realize that when orthogonal basis functions are used in functional
PCA, the problem is not a standard PCA. From the discussion above, PCA conducts
eigenanalysis for a p× p covariance matrix. If we apply PCA to the signal matrix, then
this p becomes the length of signal n. With function approximation using K basis function,
the eigenanalysis of functional PCA is applied to a K×K coefficient matrix, which depends
on the value of K and often K � p. From the computational complexity perspective, when
using a sparse approximation, the functional PCA is more efficient.

If wavelet power spectra are obtained using DWT, then the left hand side of the
equation in (14) is replaced by Ii(m), which is defined as Ii(m) = W2(m). Let us consider
the discrete wavelet transform using the dyadic scale, with m taking values from 1 to M,
where M is determined by 2M = n. Because of this, the value of K cannot be larger than M.
The eigen equation in (16) becomes

M

∑
m′=1

v(m, m′)ξ(m′) = λξ(m). (21)

By subsitituting the new form of eigen function ξ(m), it gives the following new eigen
euqation

1
N − 1

φ>(m)C>CΦb = λφ>(m)b, (22)

where Φ = ∑M
m=1 φ(m)φ>(m) is a M×M matrix. This matrix has entries ∑M

m=1 φk1(m)φk2(m)
for k1 = 1, 2, . . . , K and k2 = 1, 2, . . . , K. The equations of (18) and (19) remain the same
in the case of DWT, but one should realize that the matrices and vectors contained in the
equations are corresponding to the results from DWT. Finally, the eigenfunction becomes

ξ(m) = φ>(m)Φ−1/2u for m = 1, 2, . . . , M. (23)
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Feature Extraction by Functional Principal Component Analysis

After the eigen function ξ(a) is obtained, we can extract the jth principal component
scores, denoted by Pj, for the given power spectra I(a) by the following

Pj =
∫

I(a)ξ j(a)da, j = 1, . . . , K.

Substituting (15) and (20) to the equation above, we obtain

Pj =
∫
(µ + Cφ(a))φ>(a)Φ−1/2ujda.

=
∫

µφ>(a)Φ−1/2ujda +
∫

Cφ(a)φ>(a)Φ−1/2ujda

= µ̄Φ−1/2uj + CΦ−1/2uj.

Here, µ̄ =
∫

µφ>(a)da is a K× K matrix, where µ = (µ0, µ0, . . . , µ0)
>. We refer P1 to

the first principal component score vector of the n power spectra of signals, and P2 is the
second principal component score vector, and so on. When DWT is applied, we can simply
replace I(a) and ξ j(a) by I(m) and ξ j(m), respectively.

2.4. Discussion

There are other possible choices for transforming high-dimensional signals, such as
Fourier transform. Additionally, different PCA variants may be considered. By comparing
with our previous work in [17,18], we found that discrete wavelet domain transformation
outperforms the Fourier domain transform in terms of the sparsity of functional approxi-
mation of power spectra. The Fourier power spectra tend to be less smooth, while discrete
wavelet power spectra are smoother. Because of this, the separability of extracted features
from power spectra is less affected by the non-smoothness for the discrete wavelet power
spectra case. When CWT is used to obtain power spectra, this advantage disappears. This
may imply that the sparsity on function approximation is critical for the success of feature
extraction. On the other hand, to approximate the power spectra and extract the signal
features, kernel PCA may be considered due to the nature of kernel methods. However,
the kernel PCA is more suitable when the extension of dimension is needed rather than
when dimension reduction is concerned. Functional PCA aims at approximating the func-
tion via a set of basis functions, and the sparsity of the approximation can be controlled by
selecting the number of basis functions. This makes functional PCA a unique choice for
feature extraction of functional data.

3. Results
3.1. Feature Extraction of Short Epileptic EEGs

To illustrate the application of the proposed method, we first use a set of epileptic
EEG signals that is from the University of Bonn, Germany. (http://epileptologie-bonn.
de/cms/front_content.php?idcat=193, accessed on 1 January 2018). This data set has
been widely used to test machine learning algorithms for epilepsy diagnosis and epileptic
seizure detection. There are five different data sets, denoted as A, B, C, D and E. Signals in
sets A and B are from healthy people with eyes closed and open. Signals in sets C, D and E
are epileptic signals from patients who have epilepsy. Signals in set C were collected from
patients’ non-epileptogenic zone, and signals in set D were from patients’ epileptogenic
zone. Signals in set E were obtained when epilepsy seizure was onset. Each type of signal
(i.e., A, B, C, D, E) contains 100 single-channel scalp EEG segments of 23.6 seconds, and they
were sampled at 173.61 Hz (i.e., N = 4096).

In Figures 1a and 2a, the extracted two-dimensional features of wavelet power spectra
using CWT for signals in sets A, B, C, D, and E are presented. The maximum number of
basis functions (i.e., K = 114) is used to estimate the wavelet power spectra. The results
show that the extracted features form clusters according to their signal types and are well

http://epileptologie-bonn.de/cms/front_content.php?idcat=193
http://epileptologie-bonn.de/cms/front_content.php?idcat=193
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separated by different types of signals. Even though both sets A and B are from healthy
people, we do not see the same wavelet power spectra patterns. This may suggest that
the brain activities (i.e., Eyes Open and Eyes Closed) can lead to different power spectra.
Additionally, for epileptic signals, the wavelet power spectra depend on which zone of
brains that EEG signals were collected. From Figure 2a, we observe that E set signals (i.e.,
seizure onset) are well separated from sets C and D (i.e., non seizure signals). This may
imply that a simple classifier such as k-NN can successfully classify the signals based
on the extracted two-dimensional signal features. In Figures 1b and 2b, the same type
of results is reported, but they are obtained using DWT with maximum number of basis
functions, i.e., K = 12. Notice that the wavelet power spectra under the DWT are obtained
for a dyadic scale only. They can be interpreted as the wavelet variances at the dyadic scale
by summarizing the variations of the neighbouring CWT coefficients at the corresponding
dyadic scale. Because of this, the wavelet power spectra under DWT capture the overall
smoother pattern so that the extracted features may be less noisy and more separable in
a low-dimensional feature subspace. The results shown in Figures 1 and 2 suggest that
feature extraction by functional PCA of wavelet power spectra leads to non-linear separable
features that facilitate both epileptic seizure detection and epilepsy diagnosis problems.

(a) (b)
Figure 1. The plots of extracted two-dimensional principal component scores of wavelet power spec-
tra for data sets A (Normal: Eyes Closed, Black), B (Normal: Eyes Open, Red), C (Non-epileptogenic
zone, Green) and D (Epileptogenic zone, Blue) respectively. Both I(a) and I(m) consist of wavelet
power spectra from sets A, B, C and D. (a) Using CWT, (b) Using DWT.

(a) (b)
Figure 2. The plots of extracted two-dimensional principal component scores of wavelet power
spectra for data sets C (Non-epileptogenic zone, Green), D (Epileptogenic zone, Blue) and E (Seizure
on set, Light Blue) respectively. Both I(a) and I(m) consist of wavelet power spectra from sets C, D
and E. (a) Using CWT, (b) Using DWT.
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Another interesting question is how the number of basis functions K affects the
feature separability. That is, how the sparsity of the number of basis functions affects
the feature separability. The influence from the choice of the value of K is much more
significant when CWT is used. From the results reported in Figure 3, one can see that
principal component scores are overlapped when K is smaller than 20, but the results
are improved with the increase of the K value. This implies that approximation using
a small number of basis functions is not enough in capturing differences among signal
groups for a two-dimensional feature vector. However, when K is larger than 30, they are
clearly separable for all sets, i.e., A, B, C, and D. The results are almost the same for all
choices of K if K > 30. By increasing the number of basis functions, it does not give extra
benefit on improving the feature separability. We conclude that the sparsity of function
approximation in functional PCA affects the feature extractions. For DWT, the sparsity of
functional approximation corresponds to different wavelet levels, and the level is at the
dyadic scale, so the maximum level allowed in function approximation is small. This has
become superior when compared to the case using CWT, which requires a much larger
number of basis functions for approximating the wavelet power spectra. Our study shows
that DWT is a better choice for feature extraction using functional PCA. Using the wavelet
power spectra based on DWT, feature separation level is much higher than the method
using CWT, for the signals we consider. The results shown in Figures 3 and 4 may suggest
a potential application of the proposed method to the epilepsy diagnosis problem, while
the results presented in Figure 5 seem to be promising for epileptic seizure detection. Due
to the significant difference in signal power spectra between seizure on-set signals (Set E)
and the non-seizure signals (i.e., Sets C and D), we do not observe a significant impact
from the choice of the value of K on the feature separability. One can see that the pattern
of the extracted features remain the same starting from K = 5. We also notice that when
K = 4, the extracted features behave differently, but it remains linearly separable in the
two-dimensional feature subspace.

(a) (b)

(c) (d)
Figure 3. The plots of extracted two-dimensional principal component scores of CWT power spectra
for data sets A (Normal: Eyes Closed, Black), B (Normal: Eyes Open, Red), C (Non-epileptogenic
zone, Green) and D (Epileptogenic zone, Blue) respectively, with different values of K, the number of
basis functions, (a) K = 5, (b) K = 20, (c) K = 25, (d) K = 30.
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Figure 4. The plots of extracted two-dimensional principal component scores of DWT power spectra
for data sets A (Normal: Eyes Closed, Black), B (Normal: Eyes Open, Red), C (Non-epileptogenic
zone, Green) and D (Epileptogenic zone, Blue) respectively, with different values of K, the number of
basis functions. (a) K = 4, (b) K = 5, (c) K = 6, (d) K = 7.

(a) (b)

(c) (d)
Figure 5. The plots of extracted two-dimensional principal component scores of DWT power spectra
for data sets C (Non-epileptogenic zone, Green), D (Epileptogenic zone, Blue), and E (Seizure on
set, Light Blue), respectively, with different values of K, the number of basis functions. (a) K = 4,
(b) K = 5, (c) K = 6, (d) K = 7.
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Finally, the eigenvalues and eigenfunctions of the power spectra under both CWT and
DWT are presented in Figure 6. The first three eigenfunctions share some commonalities in
terms of their shapes of functions between CWT and DWT. For eigenvalues, the method
using CWT has a higher number of significant eigenvalues than the one using DWT
because CWT captures more details in the local fluctuation of the power spectra. As we
have discussed, for features extracted using DWT, the signals can be separated according
to their groups using only the first PC. The is reflected by the first eigenvalue shown in (c)
of Figure 6.

(a) Eigenvalues (b) Basis Functions

(c) Eigenvalues (d) Basis Functions

Figure 6. The eigenvalues and the first three eigenfunctions under the maximum number of basis
functions for functional principal components of power spectra. The signals from Sets A, B, C and
D are used. The first eigenfunction is in black, the second eigenfunction is in red and the third
eigenfunction is in green. The results shown in (a,b) are corresponding to power spectra using CWT,
while (c,d) are the results using DWT.

3.2. Feature Extraction of Long Term Multi-Channel Patient Specific Epileptic EEGs

To further demonstrate the applicability of the proposed method in the epileptic
seizure detection problem, we analyze EEG signals at interictal and ictal stages from four
epileptic patients. These EEG signals were collected from six channels. Figure 7 displays
the DWT power spectra of each channel’s signals of interictal patients. We observe that all
wavelet power spectra contain some commonalities: the overall decaying pattern is the
same, but some power spectra of selected channels appear to have heavy tails. The feature
extraction from these power spectra would then become separable due to the different
tail patterns of wavelet power spectra. This can be seen from the results displayed in
Figure 8. The results clearly show the separability of the extracted features according to
each channel of signals. The principal component score values are high when the tail
of wavelet power spectra is heavy. For instance, features of channel 2 signals (in red) of
patient 1 have the largest values of principal component scores, and they are well separated.
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Channel 4 of patient 3, channels 5 and 6 of patient 4, and channel 2 of patient 6 lead to
linearly separable feature patterns that may be associated with the epileptic zone. This
indicates that signals from the epileptic zone have higher values of wavelet power for
the higher wavelet decomposition level. To study the variability of the extracted features,
which are the principal component scores, we report the 95% confidence intervals for both
first and second PCs, by patients and by channels. The results are displayed in Table 1.
The comparison by channels between different patients is shown in Figure 9. The obtained
results demonstrated that extracted features behave completely differently for a different
channel between patients. For example, using the signals from channel 2 or 3, the first
principal component scores can be used to differentiate EEG signals. It seems that channel
6 shares more commonalities than other channels due to the similar extracted features.
This may suggest that the analysis of interictal epileptic EEGs should be done on a patient-
specific basis. If combining signals from different patients, then an effort to select a specific
channel less affected by the patients may be needed.

Table 1. The 95% confidence intervals for the mean value of extracted features by different patients
and different channels for both interictal and ictal signals. The features are the principal component
scores of DWT power spectra at the thousand scale.

First PC Second PC Third PC

Patient Channel Lower Upper Lower Upper Lower Upper

P1 c1 79 84 −39 −37 0 2
c2 196 204 −72 −71 −9 −7
c3 −412 −410 −50 −49 1 1
c4 140 144 21 23 −1 0
c5 333 341 16 19 −5 1
c6 −209 −204 −15 −15 −18 −17

P3 c1 57 65 −36 −34 −2 −1
c2 569 577 −12 −9 −1 1
c3 −100 −96 −29 −28 −12 −11
c4 −13 −7 −42 −41 −7 −6
c5 −90 −83 4 7 −8 −6
c6 −89 −88 −8 −8 −2 −1

P4 c1 −103 −99 66 68 −2 0
c2 94 100 121 123 −9 −8
c3 −551 −550 −54 −54 1 2
c4 −114 −112 4 5 1 1
c5 −110 −103 −23 −21 6 7
c6 −57 −51 15 15 12 13

P6 c1 1053 1071 −35 −30 0 4
c2 −309 −309 −6 −6 −1 −1
c3 −119 −113 0 2 3 4
c4 −33 −27 −11 −11 25 27
c5 −80 −77 161 164 1 2
c6 −208 −207 −6 −5 0 0
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The plots of functional wavelet power spectra for six channels long term interictal signal of
patient 1. The maximum number of B-splines basis functions are used to smooth the sample wavelet
power spectra, i.e., K = 10. (a) Channel 1, (b) Channel 2, (c) Channel 3, (d) Channel 4, (e) Channel 5,
(f) Channel 6.
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(a) (b)

(c) (d)

Figure 8. The plots of extracted two-dimensional features of DWT wavelet power spectra of patient
specific interictal EEG signals. The maximum number of B-splines basis functions are used to smooth
the sample wavelet power spectra, i.e., K = 10. (a) Patient 1, (b) Patient 3, (c) Patient 4, (d) Patient 6.

The results obtained from the ictal signals are presented in Figure 10. We can observe
that the extracted features are formed into clusters by different channels and by different
patients. Channels 1 and 2 are significantly overlapped for patients 1, 3 and 4, while they
are well separated for patient 6. channels 3 and 4 and channels 5 and 6 are also overlapped
for patients 1, 3 and 4. Although for patient 6, the extracted features are well separated by
different channels, we still can see that they make into three groups, similar to those for
patients 1, 3 and 4. This may imply that there are commonalities of the extracted features for
the ictal signals from epileptic patients, and they may be useful in computer-aided epileptic
seizure detection. To further verify this, we compare the variability by constructing the
95% confidence intervals for the first two PC of extracted features for both interictal and
ictal. The results are shown in Table 2. We observe that the 95% confidence intervals
do not overlap for interictal signals and ictal signals. In Figure 11, we observe some big
differences in the first PC of wavelet power spectra between interictal and ictal types for
channels 1 and 2, channels 3 and 4, and channels 5 and 6, for different patients. The large
values of the PC scores are due to the stage of seizure onset. Due to this clear separation of
extracted features and their low variability, feature extraction of DWT power spectra via
functional PCA becomes useful for classifying the interictal and ictal signals. Additionally,
the high degree of separation of these two types of signals through the proposed feature
extraction methods implies the usability of simple classification method methods such as
the K-NN classifier. This makes computer-aided medical diagnosis easily developed due
to the simplicity of the classification method.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The pairwise comparisons of lower and upper 95% confidence limits of extracted first and
second principal component scores of DWT power spectra for all channels (i.e., c1, c2, c3, c4, c5,
and c6) for patients at the interitcal stage. (a) Patient 1 vs. Patient 3, 1st PC, (b) Patient 1 vs. Patient 3,
2nd PC, (c) Patient 3 vs. Patient 4, 1st PC, (d) Patient 3 vs. Patient 4, 2nd PC, (e) Patient 4 vs. Patient
6, 1st PC, (f) Patient 4 vs. Patient 6, 2nd PC.

Table 2. The 95% confidence intervals for the mean value of extracted features by different patients and different groups of
channels for both interictal and ictal signals. The features are the principal component scores of DWT power spectra at the
thousand scale.

Interictal Ictal Interictal Ictal

First PC First PC Second PC Second PC

Patients Channel Lower Upper Lower Upper Lower Upper Lower Upper

#1 c1–c2 197 221 291 297 −13 −7 472 479
c3–c4 −22 16 310 313 −46 −41 21 22
c5–c6 −197 −153 −422 −419 −43 −41 −28 −27

#3 c1–c2 337 377 2264 2617 4 7 −28 −17
c3–c4 −101 −98 516 525 15 24 −371 −362
c5–c6 38 49 −94 −93 32 48 −16 −15

#4 c1–c2 −340 −297 41 49 −27 −22 −22 −19
c3–c4 −102 −99 −1273 −1272 −2 −1 29 44
c5–c6 −113 −109 −143 −139 −12 −9 −60 −56

#6 c1–c2 −44 −40 319 321 1 3 −21 −19
c3–c4 439 545 −87 −81 56 74 −3 0
c5–c6 −263 −253 −1191 −1148 −6 −5 −16 −15
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(a) (b)

(c) (d)

Figure 10. The plots of extracted two-dimensional features of DWT wavelet power spectra of patient
specific ictal EEG signals. The maximum number of B-splines basis functions are used to smooth the
sample wavelet power spectra, i.e., K = 10. (a) Patient 1, (b) Patient 3, (c) Patient 4, (d) Patient 6.

(a) (b)

Figure 11. The plots of lower and upper 95% confidence limits of extracted first and second principal
component scores of DWT power spectra for combined channels (i.e., c1–c2, c3–c4, and c5–c6) at both
interitcal and ictal stages. (a) Interictal vs. Ictal, 1st PC, (b) Interictal vs. Ictal, 2nd PC.

4. Conclusions

In this work, we proposed an approach that first transforms signals to the wavelet
power spectra. Then Functional PCA is used to extract features of wavelet power spectra
to facilitate epilepsy diagnosis and epileptic seizure detection problems. Transforming
EEG signals to wavelet power spectra enhances the functionality of input signals so that
functional PCA becomes useful in feature extraction. We applied the proposed method
to both short EEGs and long-term, multi-channel EEGs. Using the proposed method,
different types of epileptic EEG signal becomes linear or non-linear separable in the low-
dimensional feature subspace. The extracted features are formed into clusters by channels
for multi-channel signals and behave differently and non-linear separable for different
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patients. The degree of feature separation depends on selecting the number of basis
functions used to approximate the power spectra in functional PCA. These may indicate
the natural complexity of epileptic signals, and the analysis needs to be done on patient-
specific. Fortunately, we can produce linear or non-linear separable features to classify the
interictal and ictal signals. The obtained results demonstrated that the proposed method is
promising for epilepsy diagnosis and seizure detection problems. The proposed method
can also be applied to other types of random signals, such as financial or economic time
series, for similar purposes. Our future work will be investigating how different ways of
achieving sparsity of functional approximation of power spectra affect the separability of
extracted low-dimensional features.
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