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Abstract: The semi-analytical solution for transient electroosmotic flow through elliptic cylindrical
microchannels is derived from the Navier-Stokes equations using the Laplace transform. The
electroosmotic force expressed by the linearized Poisson-Boltzmann equation is considered the
external force in the Navier-Stokes equations. The velocity field solution is obtained in the form of
the Mathieu and modified Mathieu functions and it is capable of describing the flow behavior in the
system when the boundary condition is either constant or varied. The fluid velocity is calculated
numerically using the inverse Laplace transform in order to describe the transient behavior. Moreover,
the flow rates and the relative errors on the flow rates are presented to investigate the effect of
eccentricity of the elliptic cross-section. The investigation shows that, when the area of the channel
cross-sections is fixed, the relative errors are less than 1% if the eccentricity is not greater than 0.5. As
a result, an elliptic channel with the eccentricity not greater than 0.5 can be assumed to be circular
when the solution is written in the form of trigonometric functions in order to avoid the difficulty in
computing the Mathieu and modified Mathieu functions.

Keywords: transient electroosmotic flow; elliptic microchannel; eccentricity; Navier-Stokes equations;
linearized Poisson-Boltzmann equation

1. Introduction

A manipulation on fluid flow under a microscale system has been studied intensively
worldwide over the past decades [1–6] due to the utility of its applications in various
fields; for example, lab-on-the-chips, portable medical devices, drug delivery devices and
computer chips. One key to success in controlling fluid behavior through a very small scale
channel is to employ an application of the well-known electrokinetic phenomenon, namely
electroosmosis. Electroosmosis is a phenomenon of the fluid movement through a channel
by the electrokinetic force, which relies on two layers of ions [7]. The first layer is the ions
on the inner wall surface of the channel due to the chemical reaction between the channel
surface and the fluid. The second layer is the counterions in the fluid adjacent to the channel
wall as a result of the electrokinetic force from the first layer. The formation of these two
electrical layers is called the electrical double layer (EDL) shown by red highlighted area in
Figure 1. An application of an external electric field to the channel leads to a movement of
the counterions in the fluid by electrokinetic force called as electroosmotic force. Therefore,
the fluid flow in consequence of the drag force from the moving counterions induced by
electroosmotic force is named as electroosmotic flow (EOF).

Since EDL locates on the interface of the channel and the fluid, the cross-sectional
shape of cylindrical channel plays an important role on the fluid behavior [8]. Recently,
understanding of fluid behavior through microchannels has been achieved using both ex-
perimental and theoretical studies [9–14]. In literature, the channels are considered as cylin-
drical microtubes with various cross-sections including rectangles [15,16], circles [17,18],
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annuli [19,20], ellipses [21,22] and other complex shapes [21,23], according to the occur-
rences of microfluidic applications.

(a) Cross-section view (b) Along the channel length view

Figure 1. The electrical double layer (red highlighted area) and electroosmotic flow: (a) Cross-section
view; (b) Along the channel length view.

With regard to the shape of many microfluidic devices and natural systems such as
the vascular system, elliptic cylindrical geometry is considered to be the channel in many
researches [21,22,24–26] in order to study the behavior of electroosmotic flow. However,
the solution for fluid velocity through an elliptic cylindrical channel using the mathematical
methodology is obtained in the form of Mathieu functions [22] which have difficulty in
numerically computing its value due to the convergence of the function [27]. In 2015,
Liu et al. [28] studied the effect of eccentricity on pure electroosmotic flow through an
elliptic channel. Pressure-driven force was neglected and the flow was considered to be
fully developed which means the transient behavior was omitted. Furthermore, the effect
of eccentricity was investigated only when the circumference of the channel cross-section
was fixed.

Therefore, in this study, we derive the solution for transient combined electroosmotic
and pressure-driven flow through an elliptic cylindrical microchannel. The governing
equation for fluid velocity is written in the homogeneous linear partial differential equation
depending on both ξ and η in the (ξ, η) elliptic coordinates. By employing the Laplace
transform to eliminate the time-derivative term in the governing equation, the solution is
obtained as the function of ξ and η. As a consequence, the solution is capable of describing
the electroosmotic flow in the system when the boundary condition is either constant or var-
ied on η, which normally occurs in an elliptic cross-sectional microchannel [4,21,22,29,30].
However, the solution of the Laplace transform which is in the form of the special func-
tions namely the Mathieu and modified Mathieu functions has complexity to find the
inverse Laplace transform analytically. Thus, the numerical inverse Laplace transform is
employed to yield the semi-analytical solution. This semi-analytical solution for transient
electroosmotic flow allows us to investigate behavior of electroosmotic flow directly via
the expression of the solution and takes an advantage of making the problem tractable
for variations of domain and boundary condition which provide more efficiency (speed
and accuracy) in computing the numerical results compared to the traditional numerical
method. Moreover, the velocity profiles of the fluid flow are calculated numerically from
the semi-analytical solution in order to demonstrate the transient behavior of electroos-
motic flow. The effect of eccentricity of the elliptic channel on flow characteristics including
the velocity profile, the volumetric flow rate and the relative error on the volumetric flow
rate is investigated with two aspects: the circumference of the channel cross-section is fixed
and the area of the channel cross-section is fixed.

2. Preliminaries on the Elliptic Coordinate System
2.1. Elliptic Coordinate System

The elliptic coordinate system (ξ, η) for an elliptic geometry with two foci at (c, 0)
and (−c, 0) of the Cartesian coordinate system (x, y) is an orthogonal coordinate system
in which ξ represents the confocal ellipses and η represents the confocal hyperbolas.
The elliptic coordinates can be illustrated as shown in Figure 2.
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Figure 2. Elliptic coordinate system (ξ, η): the blue line represents the coordinate ξ and the red line
represents the coordinate η.

The elliptic coordinates (ξ, η) are defined by

x = c cosh ξ cos η, (1)

y = c sinh ξ sin η, (2)

where 0 ≤ ξ < ∞ and 0 ≤ η < 2π. The identities of the elliptic coordinates related to the
Cartesian coordinates are

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1, (3)

x2

c2 cos2 η
− y2

c2 sin2 η
= 1, (4)

and the Laplacian in the elliptic coordinates is

∇2 =
1

c2(cosh2 ξ − cos2 η)

(
∂2

∂ξ2 +
∂2

∂η2

)
. (5)

2.2. Mathieu Functions

Consider the 2-dimensional wave equation in the elliptic coordinates

1
c2(cosh2 ξ − cos2 η)

(
∂2W
∂ξ2 +

∂2W
∂η2

)
+ k2W = 0. (6)

By substituting W(ξ, η) = F(ξ)G(η) and the identity

cosh2 ξ − cos2 η =
cosh 2ξ − cos 2η

2
, (7)

we can split Equation (6) into two second order ordinary differential equations as follows:

d2G
dη2 + (a− 2q cos 2η)G = 0, (8)

d2F
dξ2 − (a− 2q cosh 2ξ)F = 0, (9)
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where a is the separation constant and q = 0.25k2c2. The solutions of the ordinary differ-
ential Equations (8) and (9) are written in the form of two special functions introduced
by French mathematician, Émile Léonard Mathieu in 1868 [31]. The special functions are
called as the Mathieu functions and modified Mathieu functions. Combining the solutions
of Equations (8) and (9), we obtain the solution of Equation (6) as

W(ξ, η) =
∞

∑
m=0

[
C1

m(q)Cem(ξ; q) cem(η; q) + C2
m(q) Fem(ξ; q) cem(η; q)

]
+

∞

∑
m=1

[
S1

m(q) Sem(ξ; q) sem(η; q) + S2
m(q)Gem(ξ; q) sem(η; q)

]
, (10)

where cem(η; q), sem(η; q) are the periodic Mathieu functions;
Cem(η; q), Sem(η; q) are the periodic modified Mathieu functions

corresponding to cem(η; q), sem(η; q), respectively;
Fem(η; q), Gem(η; q) are the non-periodic modified Mathieu functions

corresponding to cem(η; q), sem(η; q), respectively.

The coefficients C1
m(q), C2

m(q), S1
m(q) and S2

m(q) are functions depending solely on
q, and the integer m denotes the order of the Mathieu and modified Mathieu functions.
The formula of the above special functions can be found in [27].

According to the elliptic coordinate system (ξ, η), where η represents the confocal
hyperbolas defined on [0, 2π), the symmetric properties of the periodic Mathieu functions
cem(η; q) and sem(η; q) can be derived as follows:

1. ce2m(η; q) is symmetrical about both x- and y-axes,
2. ce2m+1(η; q) is symmetrical about x-axis but antisymmetrical about y-axis,
3. se2m+1(η; q) is antisymmetrical about x-axis but symmetrical about y-axis,
4. se2m+2(η; q) is antisymmetrical about both x- and y-axes,

for all integer m ≥ 0. Moreover, the orthogonality of the periodic Mathieu functions is∫ 2π

0
cem(η; q) cen(η; q)dη = 0, for all integer m, n ≥ 0 and m 6= n (11)∫ 2π

0
sem(η; q) sen(η; q)dη = 0, for all integer m, n > 0 and m 6= n (12)∫ 2π

0
cem(η; q) sen(η; q)dη = 0, for all integer m ≥ 0 and n > 0. (13)

3. Mathematical Modeling
3.1. Electroosmotic Force

The electroosmotic force is given by

FEOF = ρeE, (14)

where E denotes the applied external electric field and ρe denotes the ionic charge density
which can be expressed by the Poisson-Boltzmann equation as follows:

∇2ψ(ξ, η) = −ρe

ε
=

2n0 p+zν

ε
sinh

(
p+zνψ

kBT

)
, (15)

where ψ denotes the potential inside the channel, n0 denotes the ionic concentration at
the bulk, p+ denotes the charge of a proton, zv denotes the valence of the ions in the fluid,
ε denotes the permittivity of the fluid, kB is the Boltzmann constant, and T denotes the
absolute temperature.
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If the potential ψ has low value, we can simplify Equation (15) by using sinh x ≈ x to
be the well-known Debye-Hückel approximation in the elliptic coordinates as

∇2ψ =
1

c2(cosh2 ξ − cos2 η)

(
∂2ψ

∂ξ2 +
∂2ψ

∂η2

)
= κ2ψ, (16)

where κ = (2n0 p+
2
z2

νε−1k−1
B T−1)1/2 represents the reciprocal of the EDL thickness. Com-

bining Equations (14)–(16), we can write the electroosmotic force related to the potential
ψ as

FEOF = −εκ2Eψ. (17)

Since Equation (16) is in the form of Equation (6), the general solution is obtained in
the similar form as follows:

ψ(ξ, η) =
∞

∑
m=0

[
A1

m(q)Cem(ξ;−q) cem(η;−q) + A2
m(q) Fem(ξ;−q) cem(η;−q)

]
+

∞

∑
m=1

[
A3

m(q) Sem(ξ;−q) sem(η;−q) + A4
m(q)Gem(ξ;−q) sem(η;−q)

]
, (18)

where A1
m(q), A2

m(q), A3
m(q) and A4

m(q) are constant with q = 0.25κ2c2.
According to the symmetric property of an elliptic geometry, the potential ψ is sup-

posed to be symmetrical about both x- and y-axes. Hence, we can express the boundary
conditions of ψ in the elliptic coordinate system by the following equations:

∂ψ

∂η
(ξ, 0) = 0, (19)

∂ψ

∂η

(
ξ,

π

2

)
= 0, (20)

∂ψ

∂ξ
(0, η) = 0. (21)

The general solution shown in Equation (18) can be reduced, according to the sym-
metric property of the potential ψ, as follows:

ψ(ξ, η) =
∞

∑
m=0

[
A1

2m(q)Ce2m(ξ;−q) ce2m(η;−q) + A2
2m(q) Fe2m(ξ;−q) ce2m(η;−q)

]
. (22)

Since the partial derivative of the modified Mathieu function Fe2m(ξ;−q) with respect
to ξ does not vanish when ξ = 0 [27], the constant A2

2m(q) has to be zero in order to satisfy
the boundary condition (21). Therefore, the general solution (22) is reduced to

ψ(ξ, η) =
∞

∑
m=0

A2m(q)Ce2m(ξ;−q) ce2m(η;−q), (23)

where A2m(q) = A1
2m(q). Moreover, if the potential at the wall surface is determined by the

function f (η), we can write the boundary of the potential ψ at the boundary of the elliptic
channel ξ = ξ0 as

ψ(ξ0, η) = f (η). (24)

Now, we apply the boundary condition (24) to the general solution (23). Thus, the or-
thogonality of the Mathieu functions ce2m(η;−q) yields the constant A2m as

A2m =

∫ 2π
0 f (η) · ce2m(η;−q) dη∫ 2π

0 Ce2m(ξ0;−q) ce2
2m(η;−q) dη

. (25)
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3.2. Fluid Velocity

Suppose that the fluid flow does not swirl, we can describe the fluid behavior of
electroosmotic flow through an elliptic cylindrical microchannel along z-axis by the Navier-
Stokes equations with the electroosmotic force in the elliptic cylindrical coordinate system
(ξ, η, z) as shown:

1
c2(cosh2 ξ − cos2 η)

(
∂2u
∂ξ2 +

∂2u
∂η2

)
− ρ

µ

∂u
∂t

=
pz

µ
− FEOF

µ
, (26)

where u(ξ, η, t) denotes the fluid velocity in z-direction, ρ denotes the fluid density, µ denotes
the fluid viscosity, and pz denotes the constant pressure gradient in z-direction. Substituting
the term of electroosmotic force in Equation (26) with the relation in Equation (17) yields

1
c2(cosh2 ξ − cos2 η)

(
∂2u
∂ξ2 +

∂2u
∂η2

)
− ρ

µ

∂u
∂t

=
pz

µ
+

εκ2E
µ

ψ. (27)

To eliminate the time-derivative, we employ the Laplace transform L defined by

v(ξ, η, s) = L {u(ξ, η, t)} =
∫ ∞

0
u(ξ, η, t)e−stdt, (28)

and the initial condition u(ξ, η, 0) = 0. Therefore, Equation (27) becomes

1
c2(cosh2 ξ − cos2 η)

(
∂2v
∂ξ2 +

∂2v
∂η2

)
− ρs

µ
v =

pz

µs
+

εκ2E
µs

ψ, (29)

which has the general solution written in the form of

v(ξ, η, s) = vc(ξ, η, s) + vp1(ξ, η, s) + vp2(ξ, η, s), (30)

where vc is the complementary solution (homogeneous solution), vp1 is the particular
solution corresponding to non-homogeneous term pzµ−1s−1, and vp2 is the particular
solution corresponding to non-homogeneous term εκ2Eψµ−1s−1.

For the complementary solution vc, we consider the homogeneous equation

1
c2(cosh2 ξ − cos2 η)

(
∂2vc

∂ξ2 +
∂2vc

∂η2

)
− ρs

µ
vc = 0. (31)

Since Equation (31) is in the form of Equation (6), the complementary solution vc is
obtained in the similar form as follows:

vc =
∞

∑
m=0

[
B1

m(qs)Cem(ξ;−qs) cem(η;−qs) + B2
m(qs) Fem(ξ;−qs) cem(η;−qs)

]
+

∞

∑
m=1

[
B3

m(qs) Sem(ξ;−qs) sem(η;−qs) + B4
m(qs)Gem(ξ;−qs) sem(η;−qs)

]
, (32)

where B1
m(qs), B2

m(qs), B3
m(qs), and B4

m(qs) are constant with qs = 0.25ρc2sµ−1.
For the particular solution vp1 , since the non-homogeneous term pzµ−1s−1 does not

depend on both ξ and η, we can assume that vp1 is constant. By the method of undetermined
coefficients, we obtain vp1 as follows:

vp1 = − pz

ρs2 . (33)
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For the particular solution vp2 , since the non-homogeneous term εκ2Eψµ−1s−1 is in the
form of the Mathieu and modified Mathieu functions shown in Equation (23), we assume
that the particular solution vp2 is also in the same formula as

vp2 =
∞

∑
m=0

C2m Ce2m(ξ;−q) ce2m(η;−q). (34)

Since vp2 is the particular solution of the corresponding non-homogeneous equation

1
c2(cosh2 ξ − cos2 η)

(
∂2v
∂ξ2 +

∂2v
∂η2

)
− ρs

µ
v =

εκ2E
µs

ψ, (35)

we have

∇2 ∑∞
m=0 C2m Ce2m(ξ;−q) ce2m(η;−q)− ρs

µ ∑∞
m=0 C2m Ce2m(ξ;−q) ce2m(η;−q)

= εκ2E
µs ∑∞

m=0 A2m Ce2m(ξ;−q) ce2m(η;−q).
(36)

Moreover, substituting Equation (23) into Equation (16) and equating the term having
the function A2m(q) with the same integer m, then we obtain

∇2[Ce2m(ξ;−q) ce2m(η;−q)] = κ2 Ce2m(ξ;−q) ce2m(η;−q), (37)

for all integer m ≥ 0. Observe that

∇2 ∑∞
m=0 C2m Ce2m(ξ;−q) ce2m(η;−q) = ∑∞

m=0 C2m∇2[Ce2m(ξ;−q) ce2m(η;−q)]
= ∑∞

m=0 C2mκ2 Ce2m(ξ;−q) ce2m(η;−q),
(38)

we can rewritten Equation (36) as

∑∞
m=0 C2mκ2 Ce2m(ξ;−q) ce2m(η;−q)− ρs

µ ∑∞
m=0 C2m Ce2m(ξ;−q) ce2m(η;−q)

= εκ2E
µs ∑∞

m=0 A2m(q)Ce2m(ξ;−q) ce2m(η;−q).
(39)

By equating coefficients of the terms having the same order of the periodic Mathieu
function ce2m(η;−q), we can derive the constant C2m for the particular solution vp2 from(

κ2 − ρs
µ

)
C2m =

εκ2E
µs

A2m(q) or C2m =
εκ2E

s(µκ2 − sρ)
A2m(q), (40)

for all integer m ≥ 0.
Combining Equations (30), (32)–(34) yields the general solution of Equation (29)

as follows:

v(ξ, η, s) = ∑∞
m=0

[
B1

m(qs)Cem(ξ;−qs) cem(η;−qs) + B2
m(qs) Fem(ξ;−qs) cem(η;−qs)

]
+∑∞

m=1
[
B3

m(qs) Sem(ξ;−qs) sem(η;−qs) + B4
m(qs)Gem(ξ;−qs) sem(η;−qs)

]
− pz

ρs2 + ∑∞
m=0 C2m Ce2m(ξ;−q) ce2m(η;−q).

(41)

Similarly to the potential ψ, we also suppose that v is symmetrical about both x- and
y-axes. Therefore, the solution in Equation (41) is reduced to

v(ξ, η, s) = ∑∞
m=1 B1

2m(qs)Ce2m(ξ;−qs) ce2m(η;−qs)
+∑∞

m=0 C2m Ce2m(ξ;−q) ce2m(η;−q)− pz
ρs2 . (42)

In this study, we consider the no-slip condition of the fluid, that is, u(ξ0, η, t) = 0
which implies

v(ξ0, η, s) = 0. (43)
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As a result, the constant B1
2m can be determined using the orthogonality of the Mathieu

function ce2m(η;−qs) by

B1
2m =

∫ 2π
0 b(ξ0, η, s) ce2m(η;−qs)dη∫ 2π

0 Ce2m(ξ0;−qs) ce2
2m(η;−qs)dη

, (44)

for all integer m ≥ 0, where

b(ξ, η, s) =
pz

ρs2 −
∞

∑
n=0

C2n Ce2n(ξ;−q) ce2n(η;−q). (45)

The fluid velocity u can be obtained by employing the inverse Laplace transform
as follows:

u(ξ, η, t) = L −1{v(ξ, η, s)} = 1
2πi

lim
T→∞

∫ γ+iT

γ−iT
estv(ξ, η, s)ds, (46)

where γ is a number that Re(γ) is greater than the real part of all singularities of v(ξ, η, s)
in the complex s-plane.

For steady flow, the time-derivative of the fluid velocity is vanished. Therefore,
Equation (26) with the relation in Equations (14) and (15) can be reduced to

1
c2(cosh2 ξ − cos2 η)

(
∂2u
∂ξ2 +

∂2u
∂η2

)
=

pz

µ
+

εE
µ
∇2ψ, (47)

where u is now the function depending only on ξ and η. Let

u(ξ, η) = w(ξ, η) +
εE
µ

ψ(ξ, η) +
c2 pz(cosh 2ξ + cos 2η)

8µ
. (48)

We can rewrite Equation (47) by using the identity in Equation (7) to be the Laplace
equation of the function w(ξ, η) as

1
c2(cosh2 ξ − cos2 η)

(
∂2w
∂ξ2 +

∂2w
∂η2

)
= 0. (49)

Using the method of separation of variables, we obtain

w(ξ, η) = D0 +
∞

∑
m=1

D2m cosh(2mξ) cos(2mη), (50)

where D2m is constant. Substituting the general solution w(ξ, η) into Equation (48) yields

u(ξ, η) = D0 +
∞

∑
m=1

D2m cosh(2mξ) cos(2mη) +
εE
µ

ψ +
c2 pz

8µ
(cosh 2ξ + cos 2η), (51)

where the constant D2m can be derived from the no-slip condition u(ξ0, η, t) = 0 with the
orthogonality of the trigonometric functions as

D2m =

∫ 2π
0 [εE f (η)µ−1 + 0.125c2 pzµ−1[cosh(2ξ0) + cos(2η)]] cos(2mη) dη∫ 2π

0 cosh(2mξ0) cos2(2mη) dη
. (52)

4. Numerical Results

In this section, we employ the numerical inverse Laplace transform on the general
solution of fluid velocity as shown in Equation (42) in order to investigate the behavior of
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transient electroosmotic flow through an elliptic cylindrical microchannel. The calculation
of ce2m(z; q), Ce2m(z; q), ce2m(z;−q) and Ce2m(z;−q) is presented in Appendix A. The
dimensions of the elliptic cross-section, the fluid properties [8] and the other parameters
used in the investigation are presented in Table 1.

Table 1. Table of parameters used in the transient flow investigation.

Name Symbol Value SI Unit

Focal length c 4.50× 10−5 m
Eccentricity e 0.60 -

Fluid density ρ 1.00× 103 kg m−3

Fluid viscosity µ 9.00× 10−4 Pa s
Fluid permittivity ε 6.95× 10−10 F m−1

Pressure gradient in z-axis pz −2.00 Pa m−1

Reciprocal of EDL thickness κ 8.00× 104 m−1

Surface potential f (η) −2.49× 10−3 V
External electric field E 5.00× 102 V m−1

Figure 3 illustrates the velocity profiles of transient flow along both x- and y-axes.
The results show that the flow develops only from the area adjacent to the wall at the
beginning time t = 0.1 and t = 0.25 ms represented by the red and green lines, respectively.
This is due to the effect of the moving ions in the fluid within the electrical double layers.
However, at time t = 0.5 ms, represented by the cyan line, the flow at the center of the
channel starts developing. The flow becomes fully developed at time t = 2.5 ms, which
represented by the gray line.

(a) Along x-axis (b) Along y-axis

Figure 3. Variation of the velocity profiles of transient electroosmotic flow on time: (a) Along x-axis;
(b) Along y-axis.

After fully developing, the flow becomes steady. As a result, we use the velocity of
steady flow shown in Equation (51) to investigate the effect of eccentricity on fluid flow
through the elliptic channel. The eccentricity of ellipses varies from 0 (circle) to 0.9 by
increment of 0.1. The variation of the elliptic cross-sections of the channel on various
eccentricities is presented in Figure 4.
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(a) Fixed area (b) Fixed circumference

Figure 4. Variation of the elliptic cross-sections of the channel on various eccentricities with: (a) Fixed
area of the channel cross-sections; (b) Fixed circumference of the channel cross-sections.

The investigation on the effect of eccentricity consists of two parts. For the first part,
we fix the area A of all ellipses to be 4500π µm2 (see Figure 4a). This value is obtained
by calculating the area of the ellipse having the parameters as shown in Table 1. Then,
for each eccentricity, we can calculate the focal length c and the boundary ξ0 of the ellipse
as follows:

c = e

√
A√

1− e2
, (53)

ξ0 = ln

(
1 +
√

1− e2

e

)
. (54)

Figure 5 presents the comparison of the velocity profiles of electroosmotic flow through
the elliptic channel with various eccentricities when the area is fixed. The velocity profiles
along x- and y-axes are shown in Figure 5a,b, respectively. The results show that there is
no significant difference for the velocity profiles along both x- and y-axes in the channels
with the eccentricity between 0 and 0.6. However, when the eccentricity is greater than 0.6,
the velocity drops along the entire x- and y-axes as an increase of the eccentricity.

(a) Along x-axis (b) Along y-axis

Figure 5. Variation of the velocity profiles of steady electroosmotic flow, when the area of the channel
cross-sections is fixed, with various eccentricities: (a) Along x-axis; (b) Along y-axis.

For the second part, we fix the circumference C of all ellipses equal to about 412.7 µm
(see Figure 4b). This value is also obtained by calculating the circumference of the ellipse
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having the parameters as shown Table 1. Then, for each eccentricity, we can calculate the
boundary ξ0 of the ellipse by Equation (54) and the focal length c as

c =
eC∫ 2π

0

√
1− e2 sin η dη

. (55)

Figure 6 presents the comparison of the velocity profiles of electroosmotic flow through
the elliptic channel with various eccentricities when the circumference is fixed. The velocity
profiles along x- and y-axes are shown in Figure 6a,b, respectively. The results show that
the pattern of the velocity profiles is quite similar compared to the one when the area is
fixed. Indeed, the velocity profiles are not significantly different when the eccentricity is
between 0 and 0.6. However, the velocity decreases along the entire x- and y-axes as an
increase of the eccentricity when the eccentricity is greater than 0.6.

(a) Along x-axis (b) Along y-axis

Figure 6. Variation of the velocity profiles of steady electroosmotic flow, when the circumference of
the channel cross-sections is fixed, with various eccentricities: (a) Along x-axis; (b) Along y-axis.

Since the efficiency of flow control in microfluidics mainly relies on the accuracy of
flow rate, we also investigate the effect of eccentricity on the volumetric flow rate Q of the
fluid through the elliptic cylindrical microchannel. The flow rates can be calculated by
integrating the fluid velocity of steady flow, shown in Equation (51), over the cross-sectional
area. Therefore, the formula of the flow rate is expressed as

Q(t) =
2π∫
0

ξ0∫
0

c2(cosh2 ξ − cos2 η)u(ξ, η, t) dξ dη. (56)

Figure 7 demonstrates the comparison of the flow rates calculated when the area
(see Figure 7a) and the circumference (see Figure 7b) of ellipse are fixed by using the
parameters from the first and the second parts of the investigation on the fluid velocity,
respectively. The results show that, when the area is fixed, there is no significant difference
for the flow rate in the channels with the eccentricity between 0 and 0.5. When the
eccentricity is greater than 0.5; however, the flow rate decreases rapidly as the eccentricity
increases. On the other hand, when the circumference is fixed, the flow rate increases
significantly when the eccentricity is between 0.2 and 0.6 but the flow rate decreases
dramatically when the eccentricity is greater than 0.6.
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(a) Fixed area (b) Fixed circumference

Figure 7. Variation of the flow rates of steady electroosmotic flow on various eccentricities with:
(a) Fixed area of the channel cross-sections; (b) Fixed circumference of the channel cross-sections.

Furthermore, we define the relative error δ of the flow rate by

δi =

∣∣∣∣Qi −Q0

Q0

∣∣∣∣, (57)

where Qi is the flow rate with the eccentricity equal i. The comparison of the relative
errors of the flow rates is presented in Figure 8 when the area and the circumference of the
ellipse are fixed (Figure 8a,b, respectively). In addition, to investigate the effect of external
electric field on the relative error, we consider the variation of the external electric field on
the electroosmotic flow to be 0.1 and 10 times of the value shown in Table 1. Indeed, we
investigate the relative error using the three different values of the external electric field
E = 50, 500 and 5000 V m−1, respectively.

(a) Fixed area (b) Fixed circumference

Figure 8. Variation of the relative errors with three different values of external electric field on
various eccentricities with: (a) Fixed area of the channel cross-sections; (b) Fixed circumference of the
channel cross-sections.

The results show that, when the area is fixed, the relative errors of all three cases are
less than 1% in the channel with the eccentricity not greater than 0.5. However, when the
eccentricity is greater than 0.5, the relative errors increase sharply as an increase of the
eccentricity. On the other hand, when the circumference is fixed, the relative errors are
less than 1% if the eccentricity is not greater than 0.2. However, there is a fluctuation in
the relative errors with the value greater than 1% when the eccentricity is greater than 0.2.
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Moreover, the results show that, in all three cases, the relative errors increase as a decrease
of the external electric field.

Since the relative error defined by Equation (57) can be used to describe the error of
the flow rate in the elliptic channel when we consider it as the circular channel. Therefore,
the results in Figure 8 also show that the consideration of an elliptic channel as the circular
channel with the same circumference of the cross-section may cause high error in the flow
rate which is inappropriate to use for any investigation. This influence of eccentricity
agrees with that of Liu [28].

However, this study reveals a significant result that, when the area of cross-section is
fixed, we can assume that the elliptic channel with the eccentricity not greater than 0.5 to
be the circular channel. This assumption can be used to avoid the difficulty in computing
the velocity solution for electroosmotic flow in the elliptic channel, which is in the form
of the Mathieu and modified Mathieu functions. Moreover, it provides a simpler way to
further the numerical investigation of electroosmotic flow in some elliptic systems.

5. Conclusions

In this study, we present the semi-analytical solution for transient pressure-driven
electroosmotic flow through elliptic cylindrical microchannels based on the Mathieu and
modified Mathieu functions. The velocity profiles of transient pressure-driven electroos-
motic flow are calculated numerically in order to investigate the transient behavior. More-
over, the variations of the fluid velocities, the flow rates and the relative errors of the flow
rates with various eccentricities of the channel cross-section are presented to investigate the
effect of eccentricity of the elliptic cross-sectional microchannel. The results show that the
elliptic channel with the eccentricity not greater than 0.5 can be considered as the circular
channel with the same area of the cross-section to avoid the difficulty in numerically com-
puting the solution for fluid velocity in the elliptic channel, which is based on the Mathieu
and modified Mathieu functions. In addition, this assumption provides a simpler way of
furthering numerical investigation of electroosmotic flow in some elliptic systems.
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Appendix A

The procedure to calculate the Mathieu and modified Mathieu functions including
ce2m(z; q), Ce2m(z; q), ce2m(z;−q) and Ce2m(z;−q), which are in the formula of the solution,
is presented as follows [27]:
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For q > 0 and integer m ≥ 0, the functions ce2m(z; q), Ce2m(z; q), ce2m(z;−q) and
Ce2m(z;−q) can be expressed by

ce2m(z; q) =
∞

∑
r=0

A(2m)
2r cos 2rz, (A1)

Ce2m(z; q) =
∞

∑
r=0

A(2m)
2r cosh 2rz, (A2)

ce2m(z;−q) = (−1)n
∞

∑
r=0

(−1)r A(2m)
2r cos 2rz, (A3)

Ce2m(z;−q) = (−1)n
∞

∑
r=0

(−1)r A(2m)
2r cosh 2rz. (A4)

To find the coefficients A(2m)
2r , substituting Equation (A1) into Equation (8) and equat-

ing the coefficients of the term cos 2rz for each r = 0, 1, 2, . . . yield the following recur-
rence relations:

a2m A(2m)
0 − qA(2m)

2 = 0, (A5)

[a2m − 4]A(2m)
2 − q

[
A(2m)

4 + 2A(2m)
0

]
= 0, (A6)

[a2m − 4r2]A(2m)
2r − q

[
A(2m)

2r+2 + A(2m)
2r−2

]
= 0, r ≥ 2, (A7)

where a2m is the separation constant a corresponding to ce2m. Dividing Equations (A5)
and (A6) by A(2m)

0 and Equation (A7) by A(2m)
2r−2, we obtain

a2m − qv(2m)
0 = 0, (A8)

[a2m − 4]v(2m)
0 − q

[
v(2m)

0 v(2m)
2 + 2

]
= 0, (A9)

[a2m − 4r2]v(2m)
2r−2 − q

[
v(2m)

2r−2v(2m)
2r + 1

]
= 0, r ≥ 2, (A10)

where

v(2m)
2r =

A(2m)
2r+2

A(2m)
2r

. (A11)

Rearranging Equations (A8)–(A10), we have

v(2m)
0 =

a2m

q
, (A12)

−v(2m)
0 =

1
2 q

1− 1
4

[
a2m − qv(2m)

2

] , (A13)

−v(2m)
2r−2 =

1
4r2 q

1− 1
4r2

[
a2m − qv(2m)

2r

] , r ≥ 2. (A14)

Solving the recurrence relations (A13) and (A14) yields

− v0 =
1
2 q

1− 1
4 a2m −

1
64 q2

1− 1
16 a2m −

1
576 q2

1− 1
36 a2m −

1
2304 q2

1− 1
64 a2m − · · ·

. (A15)



Computation 2021, 9, 27 15 of 16

Substituting v0 from Equation (A12) into Equation (A15), we can calculate a2m by
solving the following equation:

a2m =
− 1

2 q2

1− 1
4 a2m −

1
64 q2

1− 1
16 a2m −

1
576 q2

1− 1
36 a2m −

1
2304 q2

1− 1
64 a2m − · · ·

. (A16)

Since v(2m)
2r → 0 as r → 0, we suppose v(2m)

2r = 0 for all r ≥ R provided R is

large enough. Then v(2m)
2R−2, v(2m)

2R−4, . . . , v(2m)
0 can be obtained by solving the recurrence

relations (A12)–(A14). The normalization of ce2m(z; q) by

1
π

∫ 2π

0
ce2

2m(z; q) dz = 1, (A17)

yields

1 = 2
[

A(2m)
0

]2
+
[

A(2m)
2

]2
+
[

A(2m)
4

]2
+
[

A(2m)
6

]2
+ · · · , (A18)

or

1

A(2m)
0

= 2

[
A(2m)

0

A(2m)
0

]2

+

[
A(2m)

2

A(2m)
0

]2

+

[
A(2m)

4

A(2m)
0

]2

+

[
A(2m)

6

A(2m)
0

]2

+ · · ·

= 2 +
[
v(2m)

0

]2
+
[
v(2m)

0 v(2m)
2

]2
+
[
v(2m)

0 v(2m)
2 v(2m)

4

]2
+ · · · . (A19)

Therefore, A(2m)
0 , A(2m)

2 , . . . , A(2m)
2R can be calculated using Equations (A11) and (A19)

and the values of v(2m)
0 , v(2m)

2 , . . . , v(2m)
2R−2.

It should be noted that the values of A(2m)
2r by the above procedure can be use for all

of the functions ce2m(z; q), Ce2m(z; q), ce2m(z;−q) and Ce2m(z;−q).
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