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Abstract: Structure evolution and mechanical response of the carbon nanotube (CNT) bundle under
lateral biaxial compression is investigated in plane strain conditions using the chain model. In this
model, tensile and bending rigidity of CTN walls, and the van der Waals interactions between them
are taken into account. Initially the bundle in cross section is a triangular lattice of circular zigzag
CNTs. Under increasing strain control compression, several structure transformations are observed.
Firstly, the second-order phase transition leads to the crystalline structure with doubled translational
cell. Then the first-order phase transition takes place with the appearance of collapsed CNTs. Further
compression results in increase of the fraction of collapsed CNTs at nearly constant compressive stress
and eventually all CNTs collapse. It is found that the potential energy of the CNT bundle during
deformation changes mainly due to bending of CNT walls, while the contribution from the walls
tension-compression and from the van der Waals energies is considerably smaller.

Keywords: carbon nanotube bundle; plane strain conditions; lateral compression; equilibrium
structure; thermal stability; chain model

1. Introduction

Carbon atoms can create a huge number of allotropes because four valence electrons can form
the sp1, sp2 and sp3 bond configurations. The action of van der Waals forces produces a variety of
secondary structures including structures with a translational symmetry such as fullerite crystal [1–3],
graphite [4,5], and crystals made of carbon nanotubes (CNTs) [6–8]. Such van der Waals crystals have
properties not exhibited by their structural elements, for example, chemical properties typical for
molecular crystals and peculiar mechanical properties related to deformability of the structural units [1–8].
This work is devoted to the mechanical properties of CNT bundles under lateral compression.
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CNTs have superior mechanical properties such as tensile strength up to 63 GPa, tensile Young’s
modulus up to 1.3 TPa, and ultimate fracture strain up to about 10% [9–12]. In addition, they are
flexible, have low weight, high thermal and electrical conductivity, which makes them very promising
for a number of applications [13–16]. CNT forests are produced by means of various experimental
techniques [17–21] and used for making super-strong ropes [7,22], fibers [23–27], fillers for composite
materials [28–30], solid lubricants [30–33], etc.

Mechanical properties of vertically aligned CNT forests and brushes have been tested with respect
to tension [7,22–27] and compression [34–41]. Lateral compression of CNT bundles or isolated CNTs
is also of interest [42–46]. Horizontally aligned CNT array are produced from as grown vertically
aligned CNT bundles by drawing, rolling, and shear pressing [47–50]. It has been shown that CNT
bundles are linear elastic up to 1.5 GPa hydrostatic pressure with the volume compressibility of
0.024 GPa−1 [51]. In the experimental study [52] it has been shown that the deformation of CNT
bundles under non-hydrostatic pressure becomes irreversible for pressures above 5 GPa. Experimental
and computational works on mechanical properties of CNTs have been discussed in the review [53].

It is well accepted by the scientific community that computational studies become increasingly
important in evaluation of the mechanical properties of nanomaterials helping to reduce the cost and
speed up the research. A number of computational approaches have been developed for the study of
structures based on CNTs in addition to the well-known molecular dynamics method. Deformation
mechanisms of CNT forest have been studied with mesoscopic modeling in [54,55]. A continuum thin
shell theory is capable of describing large deformations of CNTs [56]. Mechanical properties of CNTs
under transverse loading have been studied in [8]. In the review [57] the power of the nonlocal beam,
plate and shell theories in modeling mechanical properties of nanomaterials is described. Application
of the continuum beam theory has been demonstrated in [58]. Simulation of the mechanical properties
and failure of the CNT bundles have been performed using a nonlinear coarse-grained stretching and
bending potentials [59].

Notably, CNTs of diameter greater than a threshold value can exist in circular and collapsed forms
due to the competition between CNT wall bending and van der Waals interactions [60–63].

In the existing works devoted to the mechanics of CNT bundles, little attention was paid to the
discussion of structure evolution under lateral compression up to large strain levels. This problem
is interesting from the standpoint of fundamental science because materials with highly deformable
structural units should have peculiar mechanical properties and CNT bundle is an example of such
material, as CNT cross section can obtain various shapes under pressure. Unlike dense materials,
CNT crystal can demonstrate very high compressibility in the elastic region and highly stretchable or
compressible elastic materials are actively studied in recent years [64–66]. Practically, CNT bundles
can be used, e.g., for protection against shocks and vibrations [34,67,68].

Here the mechanical properties of CNT bundle under lateral compression will be addressed in
frames of the chain model offered in [69] and modified for the CNT bundle in [70]. The efficiency of
the chain model in modelling secondary sp2-carbon structures such as folded and scrolled carbon
nanoribbons has been demonstrated in a series of works [69–75].

2. Simulation Setup

Lateral biaxial compression of CNT bundle is considered in this study under plane strain condition.
The CNTs are aligned along the z-axis creating a triangular lattice in cross-section. For definiteness,
the zigzag CNTs are considered. In Figure 1, the computational cell is schematically shown and the
geometrical parameters are specified: a is the distance between carbon atoms in the CNT wall, d is the
distance between the walls of neighboring CNTs, D is CNT diameter and A = D + d is the distance
between centers of neighboring CNTs. The atoms move on the (x, y) plane and each atom stands for
a rigid row of carbon atoms oriented along the z-axis. The computational cell includes 20× 24 CNTs
(the case of 2× 2 CNTs is presented in Figure 1). Each CNT has 30 atoms and total number of atoms in
the computational cell is N = 20× 24× 30 = 14400. Much smaller computational cell can be used for
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simulation of structures with a long-range order, but for irregular structures a representative volume
should be considered and, as it will be shown later, the cell with 20× 24 CNTs is sufficiently large.

Figure 1. Geometry of the computational cell with I × J nanotubes (I = J = 2 in this case, while I = 20,
J = 24 in simulations). Each zigzag CNT is represented by 30 carbon atoms that move on the (x, y)
plane. Each atom stands for a row of atoms oriented normal to the (x, y) plane, which moves as a rigid
body. Geometry parameters are as follows: a is the distance between carbon atoms in the CNT wall,
d is the distance between the walls of neighboring CNTs, D is CNT diameter and A = D + d is the
distance between centers of neighboring CNTs. The computational cell in the form of a parallelogram
has the sides I × A and J × A. The computational cell is subject to the periodic boundary conditions.
Indices p, q, s, f , and f ′ are used to describe the interatomic interactions.

Each atom has two degrees of freedom, the components of the displacement vector in the (x, y)
plane, with the total number of degrees of freedom equal to 2N = 28800. Periodic boundary conditions
are used in both directions.

Numerical values of the geometry parameters are as follows. The equilibrium interatomic distance
in graphene is ρ = 1.418 Å. The equilibrium distance between rigid atomic rows oriented along the
z-axis is a = ρ

√
3/2 = 1.228 Å, CNT diameter is D = a/ sin(π/30) = 11.75 Å, the equilibrium

distance between CNT walls under zero pressure is d = 3.088 Å, and the distance between centers of
neighboring CNTs is A = D + d = 14.838 Å. Note that CNT diameter is relatively small in our study
and separate CNT in the absence of external forces can have only circular stable configuration.

In our simulations the units of time, energy and distance are picoseconds, eV, and angstrom,
respectively. In these units the mass of carbon atom is M = 12× 1.0364× 10−4.

The CNT bundle is described by the Hamiltonian (total energy) [69,70]

H = K + UB + UA + UvdW, (1)

where the four terms in the right-hand side give the kinetic energy, the energy of valence bonds, valence
angles, and van der Waals non-valence interactions, respectively. These energies are fully described
in [70]. Here we reproduce the expressions for the energies for the sake of the reader. In Figure 1,
indices p, q, and s number nearest atoms in the wall of a CNT and f is the atom belonging to a different
CNT, while f ′ belongs to the same CNT as the atom q and the distance between q and f ′ is not less
than 3a. Then the energies in the right-hand side of Equation (1) are specified as follows.
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Kinetic energy is

K =
M
2

N

∑
q=1
|ṙq|2, (2)

where rq is the radius-vector of q-th atom, overdot means differentiation with respect to time,
and summation is over all atoms in the computational cell. We note that the kinetic energy term
is not taken into account in this work, since only the relaxational dynamics of atoms is considered,
but we present it for completeness of the description of the model.

The energy of valence bonds is defined by the harmonic potential

UB =
N

∑
q=1

k
2
(|rq − rs| − a)2, (3)

which is summation over the bonds connecting nearest atoms (see Figure 1) and the number of such
bonds is equal to the number of atoms. The longitudinal stiffness of graphene is well reproduced when
k = 405 N/m [69].

The energy of valence angles is given by the anharmonic potential

UA =
N

∑
q=1

ε[1 + cos(θpqs)], where cos(θpqs) =
(rq − rp, rs − rq)

|rq − rp||rs − rq|
, (4)

which is summation over the valence angles formed by the atoms p, q, and s (see Figure 1) and
the number of such angles is equal to the number of atoms. Bending stiffness of graphene is well
reproduced when ε = 3.50 eV [69].

The energy of van der Waals non-valence interactions is given by the (5,11) Lennard-Jones potential

UvdW =
1
2

N

∑
q, f=1; q 6= f

ε

6

[
5
( σ

|rq − r f |

)11
− 11

( σ

|rq − r f |

)5]
, (5)

with the parameters ε = 0.00166 eV and σ = 3.61 Å [69]. Here summation is over all interatomic
bonds connecting atoms q and f within the cut-off radius of 6 Å, and for atoms belonging to the
same CNT (denoted as f ′ in Figure 1), as it was already mentioned, the bonds shorter than 3a are not
taken into account. Note that the summands in Equation (5) give the interaction potentials between
pairs of rigid atomic rows oriented along the z-axis. This potential was obtained by summation of the
C-C interatomic energies described by the (6,12) Lennard–Jones potential. The net interaction energy
between two atomic rows is best fitted by the (5,11) Lennard-Jones potential [69].

In the course of fitting the model parameters, strong sensitivity of the simulation results to small
changes in the parameters was not observed.

In this study, mechanical properties of CNT bundle under lateral biaxial compression in plane
strain conditions with εxx = εyy ≤ 0 and εxy = 0 are evaluated. The strain state of the structure is
characterized by the absolute value of the volumetric strain |θ| = |εxx + εyy|. Temperature effect is
not taken into consideration and the perturbation-relaxation molecular dynamics simulations are
carried out. Equilibrium structures are found after each increment of compressive volumetric strain
|∆θ| = 0.02 at T = 0 K. The simulation algorithm is as follows. Incremental compressive strain is
applied with the step ∆εxx = ∆εyy = −0.0025. Each strain increment is followed by the perturbation of
coordinates of the atoms by adding random displacements uniformly distributed over the range from
−10−6 to 10−6 Å. After that, the potential energy of the system is minimized using the gradient method
and the equilibrium structure is obtained. It is assumed that the energy minimization is complete
when the absolute value of the maximal atomic force does not exceed 10−10 eV/Å.
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3. Results and Their Discussion

Here we report the simulation results starting from the structure analysis and then moving to the
analysis of the energy–strain and stress–strain relations.

3.1. Structure Evolution

During step-wise biaxial compression the structure of CNT bundle exhibits several qualitative
transformations (the results for the small volumetric strain can be found in [70]). In Figure 2a–d,
structures are shown for |θ| = 0.06, 0.10, 0.20 and 0.40, respectively. In (a) CNTs still preserve their
nearly circular cross sections, while in (b) one can see periodic structure of CNTs having elliptic cross
sections. In contrast to the structure in (a), the structure in (b) has translational cell with two CNTs,
which is formed as the result of second-order phase transition [70]. For the compressive volumetric
strain of |θ| = 0.20, as shown in (c), collapsed CNTs appear in the structure as the result of the
first-order phase transition. Further compression results in the increase of the collapsed CNT fraction
and at |θ| = 0.40 all CNTs are collapsed, as it can be seen in (d).

Figure 2. Structure of the CNT bundle shown for (a–d) |θ| = 0.06, 0.10, 0.20 and 0.40, respectively.

For simulation of the crystalline structures shown in Figure 2a,b a much smaller computational
cell can be used and even DFT simulations are possible for these cases. For the irregular structures
presented in Figure 2c,d, a computational cell with a few CNTs is insufficient for evaluation of the
averaged mechanical properties.

In order to quantify the structural changes, we define the ellipticity of CNT cross section

η =
b
a

, (6)
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where a and b are the largest and smallest dimensions of the cross section. We also define the orientation
angle α of the CNT cross section. These parameters are shown in the inset of Figure 3a, left panel.

Parameters η and α are calculated for each CNT and then the 20-bin histograms are constructed.
In Figure 3a–d, the histograms are shown for η at left and for α at right for |θ| = 0.06, 0.10, 0.20 and 0.40,
respectively. From this figure one can see that at |θ| = 0.06 all CNTs have η ≈ 1 and various orientation
angles. CNTs in Figure 2a, being under biaxial compression, have slightly flattened faces with the cross
section resembling hexagonal prisms. The expected long diameters of the prisms have orientations of
30, 90 and 150 degrees. However this effect is very weak and the cross section profiles are perturbed
by the discreteness of the CNT walls and we see other peaks in Figure 3a, right panel. For nearly
cylindrical CNTs the orientation angles mainly reflect the presence of the computational noise. In (b)
one can see a drastic change of the histograms. Here all CNTs have η ≈ 0.6 and orientations about 30
and 150 degrees (see Figure 2b). In (c) the histogram for η has a sharp peak at η ≈ 0.2 and a broad
hump centered at η ≈ 0.5. The sharp peak stands for the collapsed CNTs and the hump represents the
non-collapsed CNTs with various ellipticity. The orientation angle histogram in (c) does not reveal
preferable orientation angles (see Figure 2c). In (d), the broad hump disappears in the distribution of η

since all CNTs collapse (see Figure 2d). On the other hand, the histogram of orientation angles in (d)
features three distinct peaks at 0, 60 and 120 degrees.

Figure 3. 20 bin histograms showing the distribution of CNT cross section ellipticity η = b/a (at left)
and orientation angle α (at right). Parameters a, b and α are defined in the inset in (a), left panel.

3.2. Energy–Strain and Stress–Strain Curves

In Figure 4, as the functions of the volumetric compressive strain, we plot the potential energy of
the relaxed CNT bundle, U, and its three components: the energy of valence bonds UB, valence angles
UA, and van der Waals interactions UvdW, see Equation (1).

For compressive volumetric strain less then 0.09, before the collapsed CNTs appear in the system,
the potential energy U increases with strain quadratically. When structure compression takes place
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due to the increase in the fraction of compressed CNTs, U grows with strain linearly. For |θ| > 0.37,
when nearly all CNTs are collapsed, potential energy starts to increase with strain faster than linearly.

It can be seen from Figure 4 that dominant contribution to the potential energy U comes from
the energy of the valence angles UA and the other two components are much smaller. In the range of
volumetric strain 0.09 < |θ| < 0.37 a reduction of the energy of van der Waals interactions UvdW is
observed. This is explained by the formation of new van der Waals bonds when CNTs collapse and
their walls start to interact. Smallness of the energy of the valence bonds UB means that CNT walls in
the considered type of loading can be assumed as inextensible.

Figure 4. Potential energy of the relaxed CNT bandle and its three components as the functions of
volumetric compressive strain. Total energy U is given by the thick black line, the energy of the valence
bonds UB by the thin red line, the energy of valence angles UA by the green dashed line and the energy
of van der Waals interactions UvdW by the blue dotted line.

It is also instructive to analyze the stress–strain curves which are presented in Figure 5. This curves
reflect the two phase transitions in the CNT bundle subject to biaxial compression. The second-order
phase transition takes place at |θ| ≈ 0.07, when CNTs obtain elliptic form, the translational cell doubles,
and the long-range order is still preserved. Stress components do not show discontinuity at this
transition point but the slope of the stress–strain curves changes. The first-order phase transition
occurs at |θ| ≈ 0.12 when sudden drop of the normal stress components is observed due to appearance
of the collapsed CNTs. In the regime of compression with increasing fraction of collapsed CNTs normal
stress components are almost constant and they start to grow when collapsed CNTs percolate.

We also note that during the whole studied range of compressive strain the equality of normal
stress components nearly holds, σxx ≈ σyy, and shear stress remains nearly zero, σxy ≈ 0, as it should
be for biaxial compression. This means that the considered computational cell size is sufficiently large.
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Figure 5. Stress components as the functions of the volumetric compressive strain.

4. Conclusions

Relaxational dynamics simulations were performed in the frame of the chain model developed in
Refs. [69,70] to analyze the mechanical response of CNT bundle to biaxial compression. It was found
that the CNT bundle undergoes two phase transitions. At the value of the compressive volumetric
strain of |θ| ≈ 0.07 the second-order phase transition was observed. As a result of this transition
period doubling took place while crystallinity of the structure was preserved. Cross section of CNTs
at the transition point changed from nearly circular (Figure 2a) to elliptic (Figure 2b). At |θ| ≈ 0.12
the first-order phase transition took place when collapsed CNTs appeared in the system (Figure 2c).
Further compression was observed at nearly constant values of normal stress due to the increase in the
portion of collapsed CNTs. At |θ| ≈ 0.4 all CNTs were found collapsed (Figure 2d).

It was found that the deformation mechanism of CNT bundle was bending of CNT walls with
very little tensile deformation of the walls and the main contribution to the potential energy of the
system comes from the energy of valence angles, UA, (see Figure 4). Van der Waals energy, UvdW,
slightly decreased in the regime of growing portion of collapsed CNTs due to formation of new bonds.

The chain model used in the present study assumes that the atomic rows along the armchair
direction are rigid. All structures analyzed here correspond to this assumption and, therefore, can be
obtained in case of refusal of plane strain conditions. In the case of full atomic modeling CNTs can
collapse in another fashion, by initiation of the local collapsed region and its propagation along the
tube. If this scenario is energetically favorable, then the first-order phase transition should happen
somewhat earlier than in the case of plane strain conditions. Another limitation of the chain model
is related to the simulations at finite temperature. Phonon waves propagating along the CNTs are
completely suppressed by the plane strain conditions. All these effects should be addressed in frame
of a full atomic model. In the present study full atomic simulations were not conducted, but in the
previous works with smaller number of degrees of freedom it was shown that in many cases the chain
model gives physically meaningful results close to those obtained in full atomic simulations [69–75].

Modification of the chain model to the case of the armchair CNT bundle is straightforward but
the model parameters will be somewhat different from that for the zigzag CNTs.

Overall, our results contribute to understanding of the mechanisms of deformation and
mechanical response of CNT bundle to lateral compression.

Future research directions include consideration of bundles composed of CNTs of different
diameter or multi-walled CNTs. It is possible to modify the chain model used here for modelling other
graphene-analogous 2D nanomaterials [76]. Nonlinear dynamics and spatially localized excitations
such as discrete breathers and rotobreathers [77] will also be analyzed in CNT bundles.
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