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Abstract: Quantum–chemical calculations of the electronic characteristics of carbon and boron-doped
silicon polyprismanes were carried out, and the atomic hydrogen adsorption on these structures
was analyzed. It was established that silicon polyprismanes doped with boron and carbon retained
their metallicity predicted earlier. It was shown that the doping of polyprismanes made them more
thermodynamically stable. For the silicon prismanes doped with boron or carbon, hydrogen adsorption
was found to be energetically favorable. In the case of boron-doped prismanes, adsorption on the
boron impurity was much more advantageous than on the neighboring silicon nodes. For the carbon
doping, the adsorption energy of polyprismane with a small diameter weakly depended on the
position of the hydrogen atom near the impurity center. However, for the C-doped polyprismanes
with a larger diameter, the hydrogen adsorption on the silicon atom belonging to the ring with
impurity is more energetically favorable than the adsorption on the silicon atom from the adjacent ring.

Keywords: silicon polyprismanes; metallicity; doping; hydrogen adsorption; density functional
theory

1. Introduction

Based on the prismane systems, a special type of strained frame compound, including carbon or
silicon, with a non-classical bonding can be obtained [1]. Such compounds are called polyprismanes
or [n,m] prismanes, and they can be considered as the folded layers of dehydrogenated carbon
(or silicon) rings, where m is the number of vertices of the closed ring and n is the number of layers [2].
Polyprismane can also be considered a special type of single-walled nanotube with a cross-section in
the shape of a regular polygon.

In [3,4], by means of density functional theory, structural, energetic, and electronic properties of
carbon and silicon polyprismanes based on the regular five, six, seven, and eight-membered rings were
calculated. In the case of silicon polyprismanes, regardless of the ring diameter, the results obtained
(band structure, the density of electronic states, and electronic transmission coefficients) indicate the
manifestation of metallic properties atypical of previously known tetra-coordinated silicon structures.
For the carbon polyprismanes, their electronic properties depend on the effective diameter. There is a
critical diameter: below this value, carbon polyprismanes are semiconductors, and above the critical
diameter, they become metals.

Currently, both carbon and silicon polyprismanes are mainly studied using the various
computer-modeling approaches, and the problem of their large-scale synthesis is still open. A number
of studies reported the synthesis of elementary prismanes [5–10], but there were also some experimental
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results indicating the existence of rather long unsubstituted carbon nanotubes based on the stacks of
the carbon six-membered rings [11], which was confirmed by further numerical calculations [12].

The unusual metallic properties of silicon polyprismanes, demonstrated for the first time in [3],
can be applied in the development of measuring equipment elements; for example, tips of a scanning
tunneling microscope [13]. Moreover, the chemical reactivity of such silicon needle is reduced due to
the lack of free covalent bonds, and therefore, its insensitivity to environmental pollutants. This allows
one to achieve atomic resolution in a microscope.

However, a natural question about the stability of the metallic state of silicon polyprismanes under
the influences of various factors arises. The analysis presented in [3] confirmed that the metallicity of
polyprismanes was retained with the 10% mechanical deformations. Therefore, the primary purpose of
the presented study was to analyze the stability of the metallic state of silicon polyprismanes when the
impurities were introduced into their framework, and to determine the adsorption capacity of doped
polyprismanes, since the doping often leads to an increase in adsorption capacity [14–17]. It is known
that the presence of impurities and defects affects the different properties of low-dimensional structures.
Thus, we also tried to provide a comprehensive analysis of the doping effect on the structural, energetic,
and electronic characteristics of silicon polyprismanes.

2. Materials and Methods

The supercells of silicon polyprismanes Si5 and Si6 are considered. These supercells contain
four elementary cells and are based on the regular pentagon and hexagon, respectively. A boron or
carbon atom can replace one of the silicon atoms in such a supercell (see Figure 1). Along the Z-axis of
polyprismane, the structure is periodic, and in the XY-plane, the cell sizes are chosen large enough
(14 Å) so that there is no interaction with the corresponding periodic images.
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silicon, carbon, boron, and hydrogen atoms [20] with a cutoff energy of 60 Ry are used. A 
Monkhorst-Pack [21] k-point grid of 1 × 1 × 20 is implemented, and the first-order Methfessel-Paxton 
scheme [22] with a smearing of 0.01 Ry is used. Structural optimization is carried out until all forces 
become less than 10-4 eV/Å. After the doping of silicon polyprismane with boron or carbon atom, we 
applied variable cell optimization, i.e., the cell size along the z-axis changed with simultaneous 
relaxation of atomic positions, until a minimum energy configuration was obtained. Note that the 
parameters are chosen in such a way that an increase in cutoff energy and a number of k-points does 
not lead to significant changes in the structural parameters, total energy, and electronic properties of 
the considered systems. For example, increasing the cutoff energy value to 100 Ry and using a more 

Figure 1. Supercells of silicon polyprismanes (a) Si5 (b) and Si6 containing four elementary cells. l‖ and
l⊥ denote interlayer and intralayer bond lengths, respectively.

The calculations are carried out by means of density functional theory using the generalized
gradient approximation (GGA) [18] with the PBE functional for the exchange-correlation terms and the
basis of plane waves in the Quantum Espresso 6.3 program [19]. Ultrasoft pseudopotentials for silicon,
carbon, boron, and hydrogen atoms [20] with a cutoff energy of 60 Ry are used. A Monkhorst-Pack [21]
k-point grid of 1 × 1 × 20 is implemented, and the first-order Methfessel-Paxton scheme [22] with a
smearing of 0.01 Ry is used. Structural optimization is carried out until all forces become less than
10-4 eV/Å. After the doping of silicon polyprismane with boron or carbon atom, we applied variable
cell optimization, i.e., the cell size along the z-axis changed with simultaneous relaxation of atomic
positions, until a minimum energy configuration was obtained. Note that the parameters are chosen
in such a way that an increase in cutoff energy and a number of k-points does not lead to significant
changes in the structural parameters, total energy, and electronic properties of the considered systems.
For example, increasing the cutoff energy value to 100 Ry and using a more dense 1 × 1 × 40 k-point
grid, will not result in a change in the total energy of the system of more than the 7 × 10−4 Ry.
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The hydrogen adsorption energy Eads was calculated as follows

Eads = E(PP + H) − E(PP) − E(H), (1)

where E(PP) is the total energy of the silicon polyprismane supercell doped with boron or carbon atom,
E(PP + H) is the total energy of the system with the adsorbed hydrogen, and E(H) is the energy of the
isolated hydrogen atom. Negative values of Eads indicate a decrease in the total energy of the system
because of adsorption. The binding energy per atom was calculated using the following formula.

Eb =
1

Nat

(
E
(
SixByCz

)
− xE(Si) − yE(B) − zE(C)

)
, (2)

where x, y, and z are the corresponding numbers of silicon, boron, and carbon atoms (y and z can
be 0 or 1 depending on the doping type); Nat = x + y + z is the total number of atoms in the system,
E
(
SixByCz

)
is the total energy of the system; E(Si), E(B), and E(C) are the energies of the isolated silicon,

boron, and carbon atoms, respectively.

3. Results and Discussion

As already noted, the structure of the considered silicon polyprismanes provided them metallic
characteristics. First, we calculated the density of electronic states of B-doped and C-doped Si5 and Si6
polyprismanes. The data are presented in Figure 2, which demonstrates a comparison of the density
of electronic states for the doped and unsubstituted Si5 and Si6 polyprismane. It is shown that the
metallicity of Si5-polyprismane is retained in the both cases: boron and carbon doping. In the case
of boron doping, the density of electronic states near the Fermi level decreases in comparison with
the case of unsubstituted polyprismane. At the same time, when doped with carbon, the density of
electronic states at the Fermi level remains unchanged. Similar results are obtained for the doped
Si6 polyprismane.
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Figure 2. Density of electronic states for (a) B-doped (b) and C-doped Si5-polyprismane; (c) B-doped
(d) and C-doped Si6-polyprismane (red line). The gray filled area corresponds to the unsubstituted Si5
and Si6-polyprismanes.
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Binding energies per atom Eb for the pure Si5 and Si6 prismanes as well as for the C and B-doped
systems are presented in Table 1. One can see that doping of the silicon polyprismane with boron
or carbon atoms leads to a slight increase in the binding energy. In addition, the carbon doping
increases Eb more strongly than the doping with boron. Carbon doping of Si5 and Si6 polyprismanes
decreases their binding energy in comparison with the case of unsubstituted prismanes by 0.171 and
0.139 eV, respectively.

Table 1. The binding energy values for the pure Si5 and Si6 silicon prismanes and their carbon and
boron-doped analogs.

Structure Si5
Prismane C-doped Si5 B-doped Si5

Si6
Prismane C-doped Si6 B-doped Si6

Eb, eV/atom −4.622 −4.793 −4.673 −4.605 −4.744 −4.645

For the unsubstituted polyprismanes interlayer (l‖) and intralayer (l⊥), Si–Si bonds slightly
differ from each other: for Si5-polyprismane l⊥ = 2.402 Å and l‖ = 2.421 Å, for Si6-polyprismane
l⊥ = 2.393 Å and l‖ = 2.42 Å. The valence angles in the plane of the silicon ring are equal to 108◦ for the
Si5-polyprismane, and 120◦ for the Si6-polyprismane; valence angles between the silicon rings for both
systems are equal to 90◦. From these data, one can conclude that such systems are rather “strained,”
since the “strain-free” silicon systems (such as silicon cubic structure) are characterized by the valence
angles between neighboring atoms equal to 109.5◦.

The prismane doping strongly distorts its structure, and a large scatter in the values of the bond
lengths and angles between atoms appears. For the C-doped Si5-polyprismane, the Si-Si bond length
l⊥ lies in the range 2.333–2.494 Å and l‖ lies in the range 2.401–2.963 Å; Si-C bond length l⊥ = 1.945 Å
and l‖ = 1.873 Å; and the valence angles between atoms lie in the range 68–132◦. For the B-doped
Si5-polyprismane, the Si-Si bond length l⊥ lies in the range 2.343–2.51 Å and l‖ lies in the range
2.362–2.557 Å; the Si-B bond length l⊥ = 2.09 Å and l‖ = 1.937 Å; and the valence angles between atoms
lie in the range 68–122◦. For the C-doped Si6-polyprismane Si-Si bond length l⊥ = 2.38–2.51 Å and
l‖ = 2.361–2.693 Å; Si-C bond length l⊥ = 1.899 Å and l‖ = 1.922 Å; the valence angles between atoms
lie in the range 70–135◦. For the B-doped Si6-polyprismane the Si-Si bond length l⊥ = 2.35–2.449 Å
and l‖ = 2.343–2.542 Å; the Si-C bond length l⊥ = 2.049 Å and l‖ = 1.935 Å; the valence angles between
atoms lie in the range 69–133◦.

Due to the presence of such a spread in the bond lengths and angles between the atoms of the
doped prismanes, it is difficult to conclude definitely from this data that the structure is more or
less “strained” compared with the unsubstituted polyprismanes. Therefore, we calculated the strain
energies for these systems, according to [23–25]; i.e., the assessment of the corresponding strain energies
was carried out on the basis of the hypothetical homodesmic reactions that required the conversion of
each deformed bond or angle into its “stain-free” counterpart.

As the strain-free structures, we chose unit cells of bulk silicon with diamond-like cubic structure,
bulk SiC with diamond-like cubic structure, and Si2B2 crystal. The calculated results of the strain energy
(SE) are presented in Table 2. The C-doped prismanes have the highest strain energies. The strain energy
of C-doped Si5-prismane is higher than the corresponding value of the unsubstituted Si5-prismane by
0.80 eV, and the strain energy of the C-doped Si6-prismane is higher than the corresponding value
of the unsubstituted one by 0.88 eV. Note that the most “strained” structures possess rather high
thermodynamic stability (see Table 1).

Next, we studied the adsorption of the hydrogen atom on the B and C-doped silicon polyprismanes.
Adsorption on the impurity, and adsorption on the nearest nonequivalent silicon atoms, was considered
(see Figure 3). The calculation results are presented in Table 3.
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Table 2. Strain energies (SE) calculated from the homodesmic reactions for the pure and doped Si5 and
Si6 polyprismanes.

Structure Homodesmic Reaction SE, eV

Si5-prismane Si5-prismane→ 10·Si2-diamond 13.849
C-doped Si5-prismane C-doped Si5-prismane→ 9·Si2-diamond + SiC 14.649
B-doped Si5-prismane 2·(B-doped Si5-prismane)→ 18·Si2-diamond + Si2B2 13.373
Si6-prismane Si6-prismane→ 12·Si2-diamond 17.015
C-doped Si6-prismane C-doped Si6-prismane→ 11·Si2-diamond + SiC 17.899
B-doped Si6-prismane 2·(B-doped Si6-prismane)→ 22·Si2-diamond + Si2B2 16.616
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example of doped Si5 (a) and Si6 (b) polyprismanes: 1—impurity atom (C or B), 2 and 3 nonequivalent
positions of the silicon atoms (marked in a different color for clarity). Depicted configurations
correspond to the optimized B-doped Si5 and Si6-polyprismanes unit cells.

Table 3. Adsorption energies (Eads) of the hydrogen atom on the C and B-doped silicon polyprismanes
Si5 and Si6 depending on the adsorption site (see Figure 3).

Structure C-doped Si5 B-doped Si5

Hydrogen position 1 2 3 1 2 3
Eads, eV −3.931 −3.998 −3.9 −4.121 −3.658 −3.395

Structure C-doped Si6 B-doped Si6
Hydrogen position 1 2 3 1 2 3

Eads, eV −4.252 −4.131 −4.774 −3.721 −3.688 −3.457

From the results presented in Table 3, one can see that the adsorption of the hydrogen atom
on the silicon polyprismanes doped with carbon and boron reduces the total energy of the system.
For B-doped Si5 and Si6-polyprismanes, the adsorption of hydrogen to the boron impurity is more
energetically favorable than the adsorption on the silicon atom near the dopant. The adsorption energy
gain for the Si5 (Si6)-polyprismane is approximately equal to 0.73 eV (0.26 eV) or 0.46 eV (0.03 eV)
when hydrogen is bonded to the silicon atom belonging to the ring with impurity or to the adjacent
all-silicon ring, respectively. In the case of the C-doped Si5-prismane, the adsorption energy weakly
depends on the position of the adsorbed hydrogen atom. Nevertheless, hydrogen adsorption on the
silicon atom adjacent to carbon from the neighboring ring is energetically favorable. For the C-doped
Si6-prismane, the adsorption of hydrogen on the silicon atom near the impurity that belongs to the
same ring is more energetically favorable than on the silicon node from the adjacent hexagon.

4. Conclusions

By means of density functional theory, we studied the effects of B and C-doping on the electronic
and energy properties of Si5 and Si6-polyprismanes. The hydrogen adsorption on the doped silicon
polyprismanes was analyzed as well. It was found that neither B nor C doping led to a fundamental
change in the electronic properties of these polyprismanes; i.e., the metallic nature of such systems
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was resistant to the presence of considered impurities. Boron and carbon doping decreased the
binding energy of polyprismanes. Moreover, C-doped prismanes possessed the lowest binding energy,
while their strain energy was rather high.

We analyzed various adsorption types of the hydrogen atom on the polyprismane. Among them
were adsorption on the impurity and on the neighboring nonequivalent silicon atoms. It was shown
that hydrogen adsorption on doped polyprismanes reduced the total energy of the system. In the case
of B-doped polyprismanes, hydrogen adsorption on the impurity was more energetically favorable
than on the silicon atom both for Si5 and Si6 nanostructures. For the C-doping in Si5-polyprismanes,
the adsorption energy weakly depends on the position of the adsorbed hydrogen atom. At the
same time, for the C-doped Si6-polyprismanes, the adsorption energy depends on the position of
the hydrogen atom. In this sense, hydrogen adsorption on the silicon atom belonging to the same
ring as the carbon atom bonded with it (position 3 in Figure 3) is the most energetically favorable
process. Note that in the case of the C-doped Si5 and Si6-polyprismanes, adsorption of hydrogen on a
crystal lattice atom (i.e., on a silicon atom) is more energetically favorable (by approximately 0.34 and
1.09 eV for Si5 and Si6-polyprismanes, respectively) than adsorption on a silicon atom in the case of
B-doped polyprismanes.
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