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Abstract: We briefly present some of the most modern and outstanding non-conventional
density-functional theory (DFT) methods, which have largely broadened the field of applications
with respect to more traditional calculations. The results of these ongoing efforts reveal that a
DFT-inspired solution always exists even for pathological cases. Among the set of emerging methods,
we specifically mention FT-DFT, OO-DFT, RSX-DFT, MC-PDFT, and FLOSIC-DFT, complementing the
last generation of existing density functionals, such as local hybrid and double-hybrid expressions.
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1. Introduction

In 1964, P. Hohenberg and W. Kohn (Walter Kohn received—shared with John A. Pople—the Nobel
prize in Chemistry in 1998 for his work on DFT) published a pair of celebrated theorems forming the
core for density-functional theory (DFT) [1]. Only one year later, the development of the Kohn–Sham
(KS) scheme made DFT a practical theory for all kind of electronic structure calculations, as it is
often implemented today (KS-DFT) [2]. These authors showed a one-to-one relation (correspondence)
between the energy and the electron density of a system always exists, i.e., it is in principle possible
to obtain directly the exact energy from this density through a universal functional. However, the
mathematical formulation that delivers this energy is still unknown. This approach completely
circumvented the paths that classically formed the core of quantum chemistry: the wavefunction is no
longer needed and the associated Schrödinger equation does not need to be solved respectively.

The key to this longstanding success was to model or mimic the subtle effects dominating matter
at the quantum scale by means of a functional of the electronic density only. The specific functional
machinery should accurately include electron–electron exchange and correlation effects, in order to
address the structure and bonding of molecules, and it should be more advantageous than ab initio
methods, either by reducing the computational cost associated with any molecular or solid-state
calculation or by introducing theoretical models that can rationalize chemical reactivity or physical
concepts. It was not until the 1980s that modern and accurate approximations of that universal
functional were proposed [3,4] beyond those initially used in solid-state physics. That meant having
expressions that can calculate the stabilizing effects of matter for any system arising from a purely
quantum-mechanical (non-classical) origin, after inserting the electronic density into that chosen
mathematical form (i.e., the exchange-correlation functional). The development of these expressions is
normally a laborious work, needing extensive calibrations and applications before its wide adoption
by the community. Apart from the local density approximation (LDA), the extensions are known
as generalized gradient approximation (GGA) and meta-GGA are currently available in most codes
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for computational simulations of any type. It should also be noted that the dispersion effects (i.e.,
weak intra- and inter-molecular interactions induced by dispersion forces) have been successfully
incorporated into routine DFT calculations, leading to a significant increase in the accuracy of DFT
methods [5].

Therefore, DFT has probably become the preferred electronic structure theory for molecular and
extended systems, due to an initially favorable scaling with respect to the system size N, i.e., O(N3) for
these non-hybrid methods, compared with other traditional ab initio methods including correlation
effects. This success is largely due to the existing flavors for the exchange-correlation functional,
thanks to intense and ongoing research in recent decades to develop expressions capturing many-body
interelectronic effects through electronic density. The hierarchy of available expressions (LDA, GGA,
meta-GGA) also consists of orbital-dependent hybrid and double-hybrid functionals, also allowing the
step-by-step application of these forms, and then to bracket the expected errors and/or confirm the
results obtained at a lower level by those at a higher level; however, at the expense of an increasing
computational cost going from O(N3) (semi-local functionals) to O(N4) (hybrid functionals) or O(N5)
(double-hybrid functionals). Fortunately, this formal scaling can be reduced in practice, thanks to
integral decomposition techniques such as the resolution of identity (RI) or density fitting scheme [6],
which expands the product of two Gaussian functions in the basis of an auxiliary Gaussian basis
set. Finally, some approximate DFT-based methods have also appeared recently, like composite (and
low-cost) DFT-3c expressions (e.g., B97-3c [7]) and the GFN1 [8] and GFNn-xTB [9] variants of the
density functional tight-binding theory.

On the other hand, in recent years, we have also seen a revival of first-principle methods with a
considerably reduced scaling with respect to their canonical variants, e.g., coupled-cluster with single,
double, and perturbatively added triple excitations, or CCSD(T), keeping cost scaling as O(N7), and
thus prohibitive for large systems. The approximated versions have become competitive with DFT
and highlight the constantly needed trade-off between accuracy and computational cost. A prominent
and promising example of the latter advances are local correlation methods, e.g., domain-based local
pair natural orbitals (DLPNO), making it possible to perform highly accurate but initially very costly
ab initio calculations like (DLPNO-)CCSD(T) [10] or (DLPNO-)NEVPT2 [11] on large systems such as
small proteins. In this context, it is thus a good time to briefly present some of the most recent DFT
advances paving the way towards the study of complex molecular systems, in the search of universal
methods able to provide the right answer for the right reason, taking into account some lessons learnt
from the past for systems for which standard DFT applications are historically known to fail [12,13].

2. Beyond a Hybrid Functional in DFT

The great success of hybrid functionals combining an exchange energy functional with a
fixed fraction of EXact eXchange (EXX) has prompted the development of more sophisticated
approaches. Instead of relying on a constant value for EXX, local hybrid functionals replace it
by a real-space-dependent one, mediated by a local mixing function [14]. Note that the gauge problem
for the corresponding exchange energy densities has also been solved recently [15], fostering definitively
the application of these methods to ground- and excited-state systems.

Another possibility to go beyond the valuable answer provided by a global hybrid functional,
with its pros and cons facing some relevant challenges, is provided by merging not only an exchange
functional with its EXX counterpart, but also a correlation functional with some ab initio counterpart.
If that is achieved by second-order Perturbation Theory (PT2), the resulting expression is known as
double-hybrid functional [16] and seems to lead to a systematic improvement with respect to hybrid
methods for ground- and excited-state properties [17].

3. Summary of Some Emerging DFT Methods

The improvements summarized in the following share some common features: They can be
applied to any particular exchange-correlation functional of choice, and start to be available in some of
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the most globally employed computational codes (ORCA [18], Q-Chem [19], OpenMolcas [20], etc.)
These methods still allow for accurate and conclusive results, providing new insights for all kinds of
closed- and open-shell systems (including orbital degeneracy) and/or are less prone to the self-interaction
error (SIE) affecting largely the DFT results for challenging systems [21]. Among the variety of existing
methods, we (non-exhaustively) selected a sample of those which have been thoroughly and robustly
benchmarked in the past, and are now available in a few distributed codes, thus, making it possible to
anticipate their consolidation in the coming years among the theoretical community:

• Finite-Temperature DFT (FT-DFT)
• Orbital-Optimized DFT (OO-DFT)
• Range-Separated eXchange DFT (RSX-DFT)
• Multiconfigurational Pair-DFT (MC-PDFT)
• Fermi-Löwdin Orbital Self-Interaction Corrected DFT (FLOSIC-DFT)

Finite-Temperature DFT, also called thermally assisted-occupation DFT [22], is a useful tool for
systems with a complicated electronic structure [23,24]. Besides its utility to select active orbitals prone
to partial occupation, as the first step for more sophisticated multiconfigurational or complete active
space self-consistent field (MCSCF/CASSCF) treatments, it has been recently applied to a large set
of radical and radicaloid systems [25–29]. It is also conceived as a low-cost tool to explore energy
landscapes with varying biradical character, as it may happen in organic chemical reactions, and to
discard pathological cases in datasets more effectively than using traditional descriptors [30].

Orbital-optimized DFT methods have been pioneeringly applied in recent years coupled with
modern non-empirical double-hybrid functionals [31,32]. Since this family of functionals includes
by default a correlation energy fraction arising from second-order perturbation theory, which often
dominates the accuracy of the whole model due to long-range correlation effects, this term benefits from
its own optimized orbitals analogous to the original MP2 method in its OO-MP2 form [33]. However,
in standard applications of double-hybrid functionals, the KS optimized orbitals are used to also feed
that energy term. If the MP2-optimized orbitals are used instead, one improves the results with respect
to standard models, notably for electronically open-shell complicated systems, and through first-order
properties obtained as derivatives of the energy.

Range-Separated eXchange DFT has become increasingly popularized, in recent years, thanks to,
e.g., the CAM-B3LYP [34] andωB97XD [35] expressions. For Ŵ = Σi<j υ(ri,rj), a two-body operator, it
is possible to use an alternative based on the interelectronic distance rij and an arbitrary parameter
ω such as υ(ri,rj) = erf(ωrij)/rij. That parameter (to be fitted against some training datasets) makes it
possible to split the electron–electron interaction to a short-range and a long-range contribution, with
the former treated by a conventional density functional. Recently, how to obtain a value ofω free of
any empiricism was also determine, beyond the reproduction of the exact energy of the H atom [36],
independently of the density functional (i.e., GGA, meta-GGA, and hybrid or double-hybrid) chosen.

Multiconfigurational Pair-DFT (MC-PDFT) [37] combines the advantages of wave function theory
and DFT, translating any available functional depending on spin densities and their gradients (ρσ, ∇ρσ,
σ = α,β) into a functional depending not only on the one-body electronic density, ρ(r), but also on the
two-body on-top pair density ρ2(r). Since the latter magnitude is built from a multi-determinantal wave
function, it includes by definition all many-body effects qualitatively. The selection of the active space is
done automatically [38] and analytical gradients are also available [39], thus, perfectly complementing
historical attempts to merge wave function and DFT methods for strongly correlated systems [40–42].

The Fermi-Löwdin Orbital Self-Interaction Corrected DFT (FLOSIC-DFT) is viewed as a further
step in developing methods for more universal treatment of unphysical SIE in DFT [43]. The main
difference with respect to former SIE-corrected versions relies on how energy-minimizing orbitals
are variably obtained, towards SIE-free properties, with the present variant offering computational
advantages and with analytical gradients also available [44].
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Common to all these methods is the underlying interplay between various first-principle theories.
For instance, FT-DFT relies on fractional orbital occupations produced by the Fermi-Dirac distribution,
induced by a fictitious electronic temperature, a technique used extensively in condensed matter
physics. On the other hand, OO-DFT borrows the orbital optimization technique primarily developed
for the traditional MP2 method, while RSX-DFT makes use of the interelectronic dependence of
two-electron integral historically used to switch from a non-interacting to an interacting particle
system. Note also that RSX-DFT and FLOSIC-DFT are expected to yield to more accurate results than
standard DFT calculations for properties dominated by the self-interaction-error of common functionals:
charge-transfer excited-states, potential energy curves, and dissociation energies of charged systems,
delocalized vs. localized electronic structures, etc.

We also mention here some other non-standard DFT-based methods, such as the
adiabatic-connection fluctuation-dissipation (ACFD) towards the exact Kohn-Sham correlation
energy [45], the spin-restricted ensemble-referenced Kohn–Sham (REKS) method [46], the reduced
density matrix functional theory (RDMFT) [47], the density matrix renormalization group pair-density
functional theory (DMRG-PDFT) [48], the combined DFT/MRCI method [49], the use of spin-flip (SF)
techniques to tackle excited-state energies [50,51], or the localized orbital scaling correction (LOSC) [52].
The use of machine learning techniques is also a strongly raising field, not only in terms of new
functionals forms but also for the accurate prediction of chemical properties [53]. Moreover, it has been
also shown how localizing electronic density errors in real-space can contribute to further chemical
insights [54].

4. Some Illustrative Cases

In the following, we will focus on some particularly challenging applications to a pair of diradicals
taken as examples, with energetically close low- and high-spin solutions arising from orbital degeneracy,
often dubbed as strongly correlated systems. All the calculations presented here are done with the
ORCA 4.0.1.2. package, employing ultrafine integration grids (keywords: NoFinalGrid/Grid7) in
all cases.

We will start by revisiting the automerization reaction of cyclobutadiene (Figure 1) between the
rectangular (D2h) and square (D4h) forms. The rectangular structure (a well-behaved closed-shell
molecule) is the minimum of the potential energy surface. The square structure is more problematic, in
the sense that the highest occupied molecular orbital is a pair of two degenerate π(eg) orbitals φ2 and
φ3 filled with two electrons. Thus, a two-determinant wavefunction, |φcoreφ1

2φ2
2> and |φcoreφ1

2φ3
2>,

is at least needed to qualitatively describe this structure, with highly sophisticated multi-reference
coupled-cluster method providing an energy difference (i.e., a barrier height) between both forms of
6.0-7.0 kcal/mol [55,56].
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PBE-QIDH gives a value of 23.1 kcal/mol, showing the intrinsic difficulties in dealing with 
degeneracy effects. However, those methods depending on ρ(r) and ρ2(r) are able to provide a barrier 
(with the cc-pVTZ basis set) between 6–9 kcal/mol, once a correlation energy functional is 
reformulated in such a way that it depends on the density mentioned above and also on the pair 
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Figure 1. Automerization reaction of cyclobutadiene.

Standard DFT is, on the other hand, unable to provide a quantitative answer, with all methods tested
here giving a highly overestimated barrier height around 23–25 kcal/mol since the energy gain due to the
orbital degeneracy (static correlation energy) is missed in traditional KS-DFT, e.g., PBE0/cc-pVTZ gives
an energy barrier of 25.1 kcal/mol and PBE-QIDH/cc-pVTZ a value of 23.8 kcal/mol. OO-PBE-QIDH
gives a value of 23.1 kcal/mol, showing the intrinsic difficulties in dealing with degeneracy effects.
However, those methods depending on ρ(r) and ρ2(r) are able to provide a barrier (with the cc-pVTZ
basis set) between 6–9 kcal/mol, once a correlation energy functional is reformulated in such a way that
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it depends on the density mentioned above and also on the pair density [57], in perfect agreement with
those ab initio calculations indicated previously. On the other hand, FT-PBE0/cc-pVTZ also provides a
value between 3–6 kcal/mol if an electronic (fictitious) temperature is fixed around 8000–9000 K.

Another recent example of a traditionally challenging molecule is the triangulene diradical
system, see Figure 2, which has been recently synthesized for the first time after many attempts [58],
since it constitutes the smallest polycyclic aromatic hydrocarbon that possesses a triplet ground-state.
Ovchinnikov’s rule [59] already predicts this high-spin ground-state due to the sublattice invariance,
but DFT applications for radical(-like) systems are known to suffer from spin-contamination and other
issues, with very costly high-level ab initio calculations being the alternative choice.
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The energy difference between the triplet and (closed-shell) singlet amounts to 0.6–0.7 eV at the
MR-CISD+Q/6-31G(d) level [60], with standard DFT applications leading to a broad range of results
although always correctly yielding the triplet as the ground-state [61]. For instance, PBE0/6-31G(d)
calculations predict a singlet-triplet energy difference of 1.2 eV, with spin-flip techniques reducing
the value to 0.39 eV at the SF-PBE0/6-31G(d) level (0.34 eV after the corresponding Yamaguchi spin
correction [62]). Going now from hybrid to double-hybrid methods, PBE-QIDH/6-31G(d) reduces the
value to 0.68 eV. On the other hand, the application of FT-PBE/6-31G(d) (at 9000 K) produces an energy
difference of 0.7 eV, also close to ab initio predictions.

5. Final Remarks

These examples illustrate the necessary and complex interrelationship between adjacent theoretical
fields, used smartly in last years to form a virtuous cycle for chemistry and physics, and some of
the large worldwide efforts to provide more accurate DFT-based methods. The shortcoming and
limitations of semi-local (LDA, GGA, meta-GGA) and hybrid functionals are recognized for a long
time, but a set of new methods have entered into the (specialized) DFT community to remedy this
situation mostly in the last decade. There is hope that this trend will continue in the coming years,
with developments and benchmarking of methods constituting a creative and fast-growing field
interpenetrating cutting-edge applications.
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