Dejan Brkić and Pavel Praks: Colebrook's flow friction explicit approximations based on fixedpoint iterative cycles and symbolic regression. Computation

Eq. 3: An explicit approximation with one internal iterative cycle and with a fixed starting point MS Excel:

$\frac{1}{\sqrt{f}}$:	C10 = C154+0.8686*(C176*(C176+4)-5)/(4*C176+2)
<i>a</i> :	C176 = C132/(($176/3.71$)+(2.51*C154/C175)) where <i>Re</i> : C175 and ε : A176
<i>b</i> :	C154 = -2*LOG10(C132)
<i>C</i> :	C132: 16.9/C131+\$A132/3.71 where <i>Re</i> : C131 and ε: A132

```
Matlab code:

x=16.9/2.51;

y0=2.51*x./R+K./3.71;

x1 = -2*log10(y0);

z = y0./((K/3.71)+(2.51*x1./R));

ln11 = @(z) (z.*(z+4)-5)./(4*z+2);

x = x1+0.8686*ln11(z);

f=1./x.^2;
```

In the Matlab codes, the Reynolds number Re is noted as R, while the relative roughness of inner pipe surface ε as K.

Eq. 4: An explicit approximation with one internal iterative cycle and with a rational starting point given by Eq. 2

\mathbf{N}	IS E	xcel:
± ¥.		ACCI.

$\frac{1}{\sqrt{f}}$:	C10 = C154+0.8686*(C176*(C176+4)-5)/(4*C176+2)
\sqrt{f}	
<i>a</i> :	C176 = C132/(($A176/3.71$)+(2.51*C154/C175)) where <i>Re</i> : C175 and ε : A176
<i>b</i> :	C154 = -2*LOG10(C132)
с:	C132: C199/C131+\$A132/3.71 where <i>Re</i> : C131 and ε: A132
p_0 :	C199: 2.51*((2600*C198)/(657.7*C198 + 214600*C198*\$A199 + 12970000) - 13.58*\$A199 +
	(0.0001165*C198)/(0.00002536*C198 +C198 *\$A199 + 105.5) + 4.227)
	where <i>Re</i> : C198 and <i>ε</i> : A199

Matlab code:

Note: for the rational starting point, *x* is given by Eq.2, i.e.

 $x=(2600^{*}R)./(657.7^{*}R + 214600^{*}R.^{*}K + 12970000) - 13.58^{*}K + (0.0001165^{*}R)./(0.00002536^{*}R + R.^{*}K + 105.5) + 4.227;$

The rest of the Matlab code is unchanged.

Eq. 5: An explicit approximation with two internal iterative cycles and with a fixed starting point MS Excel:

$\frac{1}{\sqrt{f}}$:	C10: C154+0.8686*(C221*(C221+4)-5)/(4*C221+2)
a:	C176 = C132/((\$A176/3.71)+(2.51*C154/C175)) where $Re:$ C175 and $\varepsilon:$ A176
<i>b</i> :	C154 = -2*LOG10(C132)
<i>c</i> :	C132 = 18.15/C131+\$A132/3.71 where <i>Re</i> : C131 and ε: A132
d:	C221 = C132/(\$A221/3.71+2.51*C198/C220)
	where <i>Re</i> : C220, ε: A221 and C198: C154+0.8686*(C176*(C176+4)-5)/(4*C176+2)

Dejan Brkić and Pavel Praks: Colebrook's flow friction explicit approximations based on fixedpoint iterative cycles and symbolic regression. Computation

```
Matlab code:

x=16.9/2.51;

y0=2.51*x./R+K./3.71;

x1 = -2*log10(y0);

z = y0./((K/3.71)+(2.51*x1./R));

ln11 = @(z) (z.*(z+4)-5)./(4*z+2);

x = x1+0.8686*ln11(z);

z = y0./((K/3.71)+(2.51*x./R));

x = x1+0.8686*ln11(z);

f=1./x.^2;
```

Eq. 6: An explicit approximation with two internal iterative cycles and with a rational starting point given by Eq. 2

MS Excel:

$\frac{1}{\sqrt{f}}$:	C10: C154+0.8686·(C221*(C221+4)-5)/(4*C221+2)
a:	C176 = C132/(($A176/3.71$)+(2.51*C154/C175)) where <i>Re</i> : C175 and ε : A176
<i>b</i> :	C154 = -2*LOG10(C132)
<i>c</i> :	C132 = C244/C131+\$A132/3.71 where <i>Re</i> : C131 and ε: A132
<i>d</i> :	C221 = C132/(\$A221/3.71+2.51*C198/C220)
	where <i>Re</i> : C220, ε: A221 and C198: C154+0.8686·(C176*(C176+4)-5)/(4*C176+2)
p_0 :	C244: 2.51*((2600*C243)/(657.7*C243+214600*C243*\$A244+12970000)-13.58*\$A244+129700000)-13.58*\$A244+1297000000000000000000000000000000000000
	(0.0001165*C243)/(0.00002536*C243 +C243 *\$A244 + 105.5) + 4.227)
	where <i>Re</i> : C243 and <i>ε</i> : A244

Matlab code:

Note: for the rational starting point, *x* is given by Eq. (2). The rest of the Matlab code is unchanged.