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Abstract: At the cost of added complexity and time, hyperspectral imaging provides a more accurate
measure of the scene’s irradiance compared to an RGB camera. Several camera designs with more than
three channels have been proposed to improve the accuracy. The accuracy is often evaluated based on the
estimation quality of the spectral data. Currently, such evaluations are carried out with either simulated
data or color charts to relax the spatial registration requirement between the images. To overcome this
limitation, this article presents an accurately registered image database of six icon paintings captured
with five cameras with different number of channels, ranging from three (RGB) to more than a hundred
(hyperspectral camera). Icons are challenging topics because they have complex surfaces that reflect light
specularly with a high dynamic range. Two contributions are proposed to tackle this challenge. First,
an imaging configuration is carefully arranged to control the specular reflection, confine the dynamic
range, and provide a consistent signal-to-noise ratio for all the camera channels. Second, a multi-camera,
feature-based registration method is proposed with an iterative outlier removal phase that improves the
convergence and the accuracy of the process. The method was tested against three other approaches with
different features or registration models.

Keywords: hyperspectral; multispectral; multi-modal; image registration; cultural heritage; spectral
estimation; high dynamic range; signal to noise ratio; illumination setup; imaging setup

1. Introduction

A typical RGB camera estimates the incoming irradiance as three average measures that are often
transformed into colorimetric values. A hyperspectral camera, on the other hand, gauges the irradiance
with hundreds of narrowband channels, preserving the wavelength-dependent information, also known
as the spectral information. This information can further translate to accurate colorimetric readings or
to the object’s reflectance. The extracted quantities from the spectral data have proved to be valuable in
cultural heritage analysis [1–3], among other applications.

Several snapshot devices are proposed in the literature [4] to increase the number of channels and thus
the accuracy of the camera systems. Some devices benefit from optimized filter designs [5,6]. Some designs
are simply extensions of RGB cameras with additional sensors, color filter arrays (CFA), filter wheels,
or beam-splitters [7,8]. The increase in the number of channels is expected to improve the camera’s capacity
to preserve the spectral information [9,10]. Many studies have tested this hypothesis by comparing the
spectral estimation error of the cameras [11–14]. They carry out these tests with either color checker
charts or simulated data to avoid the cumbersome process of multi-modal image registration. However,
some camera factors that affect the image quality such as noise, distortions, and demosaicing cannot be
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thoroughly tested with simulations [15,16]. To understand these dynamics, one needs to collect image
datasets of detailed natural scenes and register them between the target and the reference cameras.
Currently, such datasets are lacking.

In this work, a registered multi-camera image dataset of icon paintings is issued. The database contains
images of six icon paintings, captured with five devices: an RGB camera, a seven-band multi-spectral
beam-splitter camera, two liquid crystal tunable filter cameras in visible and near infra-red regions,
and a line-scanning hyperspectral camera. The selected icons are valuable instances of cultural heritage.
They depict exquisite details on complex surfaces that are curved, gilded, and varnished. These properties
trigger the specular reflection and increase the dynamic range of the scene, making the icons challenging
to image.The challenges are approached in two steps with the following contributions.

First, an imaging setup is presented and carefully calibrated to restrain the specular reflection and
contain the scene’s dynamic range within that of the camera. The setup configuration includes the
followings: the relative positioning and orienting of the light source towards the icon and the camera;
choosing the camera parameters; flat-field correction; and processing of the images. The imaging setup
is outlined based on a noise model [17,18] in order to achieve an acceptable SNR for all the channels.
Second, the article presents a feature-based registration method with an iterative outlier-removal phase to
align all the images from all camera modalities. Registering the database images makes a pixel-to-pixel
comparison realizable.

Several feature-based and intensity-based registration techniques for spectral images have been
proposed [19–24] in the literature. Two source of misalignment exist in spectral image cubes: (1) the
geometrical distortion due to the difference in the optical path of the channels (e.g., in multi-sensor design)
or the non-coplanar placement of filters (e.g., in filter wheel design); and (2) the chromatic aberration due to
the dependence of lens magnification and refraction index on wavelength. These misalignments are treated
with geometrical calibration [25] and focusing techniques [26], respectively. Similar misalignments exist
between the images that are captured with different cameras and need to be registered. The registration
method in this article is based on a third-order polynomial transformation model and the SIFT features to
deal with both of the misalignments above. Instead of SIFT features, the method can readily use other
features such as SS-SIFT [27], GA-ORB [28], KAZE [29], Vector-SIFT [30], modified SIFT [31] or other
feature detector-descriptor methods that can provide a reliable set of control points.

Accurate colorimetric and spectral imaging consists of light source configuration, imaging
arrangement, camera setup, and data processing steps. Although various general guidelines exist for
performing these steps [32], the lack of a standard protocol is recognized by the community. Capturing
the spectral images of icons with several cameras was studied by the authors of [33–35] in an imaging
campaign with a round robin format among ten European institutes. MacDonald et al. [33] compared
multi- and hyperspectral measurements from manually-selected points. They reported high variations
in the image quality and poor spectral estimation performance due to specular reflections from the
glossy and metallic areas. They also mentioned that the configurations that are used for measuring the
matte surfaces are inadequate when used for capturing more demanding materials. Specifically, they
pointed out the necessity of accurate control of the illumination geometry to address the above problems.
Shrestha et al. [34] also acknowledged the challenges of controlling the specular reflection, the high
dynamic range, and the wide gamut of the icons. Pillay et al. [35] concluded the findings of the imaging
campaign in a configuration workflow.

The proposed imaging and illumination configuration in this article successfully addresses the
problems with the specular reflection and the dynamic range. Moreover, the noise analysis clarifies that
the signal-to-noise ratio depends on the exposure level. A detailed discussion of the possible practices
for achieving a balanced signal-to-noise ratio in all image channels and pixels is provided based on
this analysis.
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2. Theory

2.1. The Challenge of Imaging the Icons

The collection in this study contains six Russian Orthodox icons from the late nineteenth to the early
twentieth century, which are shown in Figure 1. An icon is a painting of a religious figure or item on a
flat wooden panel that serves as a visual prayer [36]. Icon painting follows a strict color symbolism that
is best manifested in the holy figures’ garments [37]. Traditionally, the primary icon painting medium is
tempera [38]. Tempera is a mixture of color pigments with a binder such as egg yolk. Although oil paint
has replaced tempera in other types of paintings, artists still use tempera to paint icons. Tempera is long
lasting and dries more quickly than oil paint, but it easily cracks. To fix the paint on the canvas, a wooden
panel made of several jointed pieces, serves as a support structure [39]. Usually, the drying process twists
the panel outward and forms a semi-cylindrical structure. The center of the panel is lowered by 2–5 mm
with a rectangular frame left around it (see Figure 1). A linen fabric smeared with gesso and glued on the
panel adheres the tempera to the wooden panel. Nevertheless, over a long period of time, a lattice of paint
craquelure appears on icons’ surfaces [40].

Figure 1. The icon paintings and their relative physical dimensions. The first icon from left is an oil painting,
while the rest are tempera. The largest icon is 42 × 32 cm2.

Tempera’s color-saturation is inferior compared to oil paint because it forms only thin, matte layers
of paint. Varnishing the surface improves the saturation by making the color layers more transparent,
revealing the lower layers. Varnish also protects the surface from impacts, moisture, and other deteriorating
agents. However, the varnish layer absorbs the soot from the candles that are often burnt in the icon’s
vicinity and darkens the colors over time. Besides the colored and varnished areas, thin gold leaves are
usually used to cover the halos and the background.

Capturing an icon’s image is to measure its color signal at each point. For non-metallic materials,
diffused reflection conveys the color information by modulating the incident light with the spectral
reflectance signature of the surface. On the contrary, the specular reflection hardly modifies the spectral
power distribution (SPD) of the incident light. This type of reflection replicates the color spectrum of
the light source. Furthermore, the directional profile of the specular reflection increases the scene’s
dynamic range, which hinders an accurate color measurement using a camera with a limited dynamic
range. Therefore, the specular reflection is avoided in color measurement and imaging. Since the specular
reflection follows a mirror-like rule, the most straightforward method to avoid it is to position the light
source outside of the bright-field, or inside the dark-field of the camera [41]. The bright-field or the so-called
family-of-angles is the angular space that the camera could capture if the object’s surface functioned as
a mirror.
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Three mechanisms boost the specular reflection component of the icons’ surfaces. First, the gilded
areas reflect specularly because they are metallic. Second, the icon has a byzantine three-dimensional
profile, including a cylindrical curvature, a low relief center, and a fine network of craquelure. This profile
widens the bright-field’s angular spread, leaving little room for placing the light source so that it is hidden
from the camera. Third, the varnish layer smoothens the surface, intensifying the mirror-like specular
reflection. On the other hand, as explained above, the varnish layer causes the paint to darken over
time. The large contrast between the bright and the dark colors increases the scene’s dynamic range.
These factors combine to render icons’ surfaces exceptionally complex for imaging.

As an example, Figure 2a shows an icon in its customary exhibition site. Without a studied lighting
strategy, there is no viewing direction free of the mirror-like reflections. Figure 2b shows the icon image,
measured with a line-scanning camera similar to the setup in [42]. The camera scans the icon’s large
surface in three successive columns, using a halogen light source installed at 45-degree angle. Although the
45-degree lighting is a common setup in colorimetry, it fails to deliver a consistent lighting from one
column to the next due to the icon’s curvature. Specular reflection is visible on the halo and the varnish
layer of the dark brown garment. Registration of the three columns is difficult because of the large intensity
differences on the column borders.

(a) (b) (c)

Figure 2. (a) An icon at its customary exhibition site. The icon surface is curved, lowered at center, gilded,
varnished, and textured with craquelure. These factors make an icon a complex surface that reflects
specularly with a high dynamic range. (b) The icon image, captured with a line-scanning camera in three
successive columns, using a 45-degree lighting. (c) The icon image, captured with the proposed imaging
setup in this article.

The study in [43] captured the image of the same icons in this article with two camera/light source
combinations: an RGB camera plus a laptop display illumination and a line-scanning camera in [42] plus
a halogen lamp. The close-range light from the large laptop display formed a soft light that triggered
specular reflection. The halogen lamp in the second setup had a huge intensity gap between the short and
the long wavelengths. This disparity in the intensity saturated the long wavelength pixels, whereas the
short wavelength pixels were under-exposed and provided poor SNR. Registration of the RGB images to
the spectral cubes and stitching of the columns of the line-scanned images were not optimum because of
the above problems. This can be seen in the error maps where the error due to registration is comparable
with the spectral estimation error. Similar issues were observed in other studies where images of a similar
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icon were captured [33,34]. Figure 2c shows the icon’s image without specular reflections, captured with
the imaging setup that is proposed in this article.

2.2. Signal-To-Noise Ratio and Dynamic Range

In an imaging system, the input signal is the light that reaches the sensor (also called the exposure),
and the output is the pixel value. An ideal output deterministically depends on the input; however,
in practice, it is affected by noise along the imaging pipeline [9]. Noise is often expressed relative to the
signal level with Signal-to-Noise Ratio (SNR) as

SNRdB = 10× log10(µ/σ), (1)

where µ and σ are the signal’s mean and standard deviation. The signal is distributed around its mean
value µ with a variance σ2 which is the noise. To optimize the SNR, we need to estimate this variation
using a noise model for sensor.

The sensor’s noise model consists of both signal-dependent and signal-independent terms [17,18].
The signal-dependent term includes two sources of variation. First, the input light itself incorporates a
noise intrinsic to the light’s nature, called the shot noise. Shot noise manifests itself as the uncertainty
in the sensor’s photon count per unit of time, and follows a Poisson distribution. Second, the incident
light photons produce an electric charge on the sensor. For a fixed level of input light, the generated
charge varies at each sensel, due to a small difference in their manufacturing. This Photo-Response
Non-Uniformity (PRNU) initiates a noise that is modeled as a multiplicative term with a Gaussian
distribution. The signal-independent sources of noise are modeled as additive terms. The dark current noise
is due to the charge that is thermally generated in the absence of input light. The electron generation also
follows a Poisson process and has a fixed-pattern non-uniformity. Finally, the readout noise is a Gaussian
additive term due to the physical imperfections and voltage fluctuations of the amplifier circuitry.

As an example, let us simulate the output for a sensor with N = 640× 480 pixels. This sensor size
is simply chosen to smoothen the fluctuations of the SNR plot due to randomness. The conclusions are
independent of the sensor’s pixel-count. The noisy output ei

n at pixel i ∈ {1, . . . , N} is:

ei
n = ei

P × (1 + ui) + di × (1 + vi) + ri, (2)

where ei
P ∼ P(ei) is the noise-less output for the photons arriving at pixel i (ei

P follows a Poisson
distribution with rate e ∈ N due to the photon shot-noise), ui ∼ N (0, σ1) is the signal PRNU, di ∼ P(d) is
the dark current at pixel i (dark current follows a Poisson distribution with a fixed rate d), vi ∼ N (0, σ2) is
the dark current PRNU, and ri ∼ N (0, σ3) is the readout noise at pixel i. Let us consider these example
values for the parameters σ1 = 0.019, d = 32 electrons, σ2 = 0.019, and σ3 = 5. The sensor’s noisy output
image is simulated by sampling en in Equation (2) N times, once for each pixel. The overall image SNR
is estimated using Equation (1) with µ and σ of the N samples. Figure 3 shows the simulated SNR as e,
or equivalently the input exposure, increases.

It is clear from Figure 3 that the SNR depends on the exposure level, and, at each exposure level,
a dominant source of noise decides the maximum achievable SNR. In the order of increasing exposure,
the dominant sources are the dark current, the shot noise, and the PRNU noise, respectively. The maximum
SNR is achieved at the high end of the exposure level. Thus, the best practice is to increase the exposure
until the histogram of the image shifts to the high end of the raw values, just before the saturation starts.
In photography, this technique is called exposing-to-the-right (ETTR) principle.
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Figure 3. Simulating the SNR as a function of exposure by sampling Equation (2). At high exposure levels,
the PRNU noise puts an upper limit to the achievable SNR. In the mid range exposure, the photon shot noise
is prominent. At low exposure levels, the dark current and the read-noise govern the discernible signal.

Increasing the exposure time increases the exposure. However, the motion blur limits the maximum
exposure time for moving objects. Dilating the aperture also boosts the input exposure; however, it reduces
the depth of field. After setting the exposure time and the aperture size for the highest possible exposure,
if the histogram can be further moved to the right, the ISO amplification should be increased to fulfill the
ETTR principle. Increasing the ISO gain in this case mitigates the effect of the readout noise because some
part of this noise corrupts the signal only after the amplifier circuitry. Thus, increasing the gain improves
the signal to noise ratio in this scenario.

Although random, some types of noise are not spatially white. The PRNU, part of the dark current,
and part of the readout noise have fixed patterns. Fixed pattern noise is estimated and moderated with
a template image. For additive noise, the template image is subtracted from the actual image, whereas,
for the multiplicative noise, it is normalized. The readout-noise template is called black frame, and it is the
average of several images taken in the absence of light, with the minimum selectable exposure time and
the same ISO amplification as the actual image. For very long exposure times, if one wishes to include
the fixed-pattern dark current noise, the template image is taken with the same exposure time as that of
the actual image. In this case, the black-frame template is called the dark frame. Finally, the PRNU noise is
moderated using a template that is prepared by averaging the images of a uniformly-lit white reference
surface that is exposed-to-the-right.

In summary, the practice is called flat-field correction, which is to subtract the dark frame from both
the actual image and the white reference template, and then divide the former by the latter. Flat-fielding
also reduces the effect of vignetting, dust particles on the camera objective, and the non-uniformity of the
scene’s lighting. For hyperspectral images, normalizing (dividing) the image with the white reference
template cancels out the light source spectrum and provides the spectral reflectance of the surface. Similarly,
in RGB cameras, the devision improves the white balance of the image.

Noise decides the minimum measurable light, while the maximum is decided by the full-well capacity.
Full-well capacity is the highest amount of charge that a sensel can hold before it saturates. The ratio of
these two extremums, that is, the maximum to the minimum detectable signal determines the sensor’s
dynamic range. For example, a sensor with a read noise of 32 electrons and a full-well capacity of 45k
electrons has a dynamic range of 20× log10(45k/32) = 63dBs or log2(45k/32) = 10.5stops, requiring a
12-bit analog to digital converter. Similar to the camera, the scene also has a dynamic range, which is the
ratio of the brightest to the dimmest points in the scene. A reliable measurement of the light at all pixels
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requires that the dynamic range of the camera be larger than that of the scene. In laboratory imaging
with a controlled environment, an educated placement of the light source towards the scene can limit and
control the scene’s dynamic range.

3. Methods

3.1. The Imaging Setup

To capture the icon images, the following requirements are desired: complying with the lighting
regulations for icons as instances of cultural heritage, avoiding the specular component of the reflected light,
restricting the scene’s dynamic range to fit that of the camera, and compatibility of the setup with all the
camera modalities that are involved in the imaging campaign. Concerning the light source configuration,
restricting the scene’s dynamic range boils down to the light’s spatial, spectral, and temporal uniformity.

The spectral uniformity of the light source refers to the smoothness and flatness of its SPD. For the
majority of cameras, such as the RGB camera and each of the CCDs in the MSBS camera, the exposure
time cannot be selected independently for each channel. For such cameras, the exposure time has to be set
according to the channel that saturates first while other channels do not get exposed to their full dynamic
range. Light’s spectral uniformity ensures that all channels achieve an acceptable SNR before one gets
saturated. Temporal uniformity certifies a stable signal power throughout the exposure time. This criterion
is critical when the light source is an alternating current (AC) device and the camera’s exposure time is
short compared to the period of the AC wave. The light’s spatial uniformity removes the unnecessary part
of the scene’s dynamic range that is due to the difference in the incident light intensity at any two locations.
Although flat-fielding numerically corrects the light’s non-uniformity, it decreases the bit-resolution at
dark areas.

Unlike the spatial, angular uniformity is not desired for imaging the icon paintings. For example,
integrating spheres scatter the light highly uniformly in both spatial and angular forms; however, they
are not applicable in imaging icons for a few reasons. Integrating spheres that can accommodate an item
as large as an icon are extremely costly. The light’s angular uniformity flattens the fine texture of the
painting’s surface that carries relevant information about the art piece. Lastly, controlling the specular
reflection is infeasible when the surface is illuminated uniformly from all directions. Softening the light,
i.e., positioning a large light source close to the object, increases the spatial uniformity as well. However,
for complex, radiant surfaces such as icons, this method does not provide adequate control over the
specular reflection either. Semi-parallel beams of a point light source in a far distance (i.e., hard light)
provide the maximum control over the specular reflection. Nevertheless, the spatial uniformity of such
light source is poor. Before discussing how to overcome this shortcoming, let us explain another setup that
is sometimes used for controlling the specular reflection based on light’s polarization.

The specular reflection can be blocked using a polarizing filter in front of the lens because the object’s
surface linearly polarizes the specular component of the reflected light, whereas the diffused component
remains unpolarized. However, the polarization by reflection is only partial, it is angle-dependent. and it
does not hold for metallic surfaces. A more robust setup that can also remove metallic reflection is the
cross-polarizers setup [44] where an extra polarizer filter rests in front of the light source. The two polarizers
are oriented perpendicularly, also called in cross position. The polarizer setup, however, comes with a
few disadvantages: (1) it flattens the fine texture of the craquelure; (2) the imperfect filter transmittance
decreases the exposure; (3) the sheet polarizer might shift the colors, as it partially transmits unpolarized
light in short wavelengths; (4) it adds to the setup’s complexity and raises safety concerns (a filament
light source might melt the sheet filter); and (5) some optical devices do not operate as expected with a
certain polarization direction. For example, the LCTF camera also has a polarizer, which is difficult to
align properly with the other two filters and further decrease the exposure.
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Figure 4 shows examples of close-up images with three imaging setups: the 45-degree light source,
which is a typically used configuration in colorimetric measurements; the cross-polarizer setup; and the
setup that is proposed in the following. It is visible from the images that the cross-polarizer setup is
capable of blocking the specular reflection (the halos in Figure 4a,d and the varnish in Figure 4b); however,
it also flattens and spoils the desired texture of the garment in Figure 4c, as well as the hatched area and
details of the embellishments in Figure 4d.

(a) (b) (c) (d)

Figure 4. Comparing three lighting setups: the 45-degree (first row), the cross-polarizer (second row),
and the proposed setup in this article (third row). The specular reflections from the gilded halo area in
(a) and the varnished area in (b), whih are visible with the 45-degree setup, are eliminated by the cross
polarizer and the proposed setups. However, the cross polarizer removes the fine texture of the garment in
(c) and the hatched areas in (d). The proposed setup offers a suitable compromise between the other two.

Instead of using polarizers, we can constrain the specular reflection by optimizing the light source
positioning towards the icon and the camera. As discussed above, for imaging the icons, an illumination
setup is required which is: (1) spatially uniform, so that no extra dynamic range is added to the scene except
for that of the icon itself; and (2) controllably directional, so that the specular reflection can be controlled
and the fine texture (such as the brushstroke and the craquelure) is preserved. In Section 2.1, the basics of
avoiding the specular reflection by placing the light source in the dark-field space are mentioned. However,
using the mirror-like reflection rule to estimate the spread of the bright-field, as it is tinted with a beige hint
in Figure 5b, does not yield an acceptable result. The icon’s surfaces comprises many microfacets with a
surface-normal that is distributed around the macroscopic one [45]. This distribution spreads the specular
reflection into the adjacent dark-field space. In addition, the icon’s curvature widens the bright-field’s
angular spread in the direction of the curvature. Thus, it is important to maximize the angular distance
between the light source and the bright-field to create a safe margin for avoiding the specular reflections.
However, lowering the light source angle towards the icon plane, i.e., very low-angle or the grazing light,
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exceedingly emphasizes the surface texture; a property that is useful for the inspection of defects, but not
necessarily for documenting artworks.

(a)

Icon

Camera

Light
source

Light
source

200cm

73cm
70

Blockage for
Lens Flare

D50
Filter

213cm

Dark
Field

Bright
Field

(b)

Figure 5. (a) The physical layout; and (b) the diagram of the proposed illumination configuration and the
imaging setup that is used in this article. The symmetrical low-angle lighting and the horizontal placement
of the curved icons reduce the specular reflection that reaches the camera.

Figure 5 shows the proposed lighting setup in this article which addresses the above concerns.
The icon is placed horizontally on a stand so that the light sources are in-line with the icon’s length.
With this orientation, the light sources rest on the icon’s straight axis, where the dark-field is wider.
The camera’s optical axis points perpendicularly to the center of the icon to minimize the perspective
distortions. The light sources are placed at a 70-degree angle from the surface-normal. This angle was
manually selected by moving the light source inside a rather narrow angular range. Outside this range,
from one end, the effects of grazing light starts to manifest itself, and from the other end, the specular
reflection exceeds the tolerated levels. The 70-degree angle provided a middle-ground solution that
minimizes the specular reflection and avoids an exaggerated texture.

Two identical light sources, one on each side, illuminate the scene, as shown in Figure 5. A minimum
of two light sources plus the feathering technique is necessary to realize the light’s spatial uniformity.
Feathering refers to the positioning of the light sources so that the main axis of each light source points to
the icon’s edge that is further away from it. This method preserves the light’s directionality, softens the
light, and compensates the intensity loss due to inverse-square law. The result is a field that is lit uniformly,
as shown in Figure 6b with a contour map. The light intensity inside the highlighted green area, where
the icons are placed, drops by only 10%. The more intense light of the central axis of each light source
illuminates the side that is away from it, whereas the superposition of the flanks of the two light sources
illuminate the center.



Computation 2019, 7, 47 10 of 23

400 450 500 550 600 650 700 750

wavelength (nm)

0

0.2

0.4

0.6

0.8

1

n
o

rm
a
li
z
e
d

 S
P

D

Halogen ligth source

Filtered Halogen

Illuminant A

Illuminant D50

(a)

8
08

0

8
0

86

86

86
86

90 90

90

90

90

90

92
92

92

92

92

92

94
94

94

94

94

94

96

96

96

96
96

96

96

98

98

9
8

98

98

98

99

99

9
9

99

99

9
9

9
9
.5

9
9
.5

99.59
9
.5

9
9
.5

97

98

99

100

9
0

9
3

9
6

1
0
0

(b)

Figure 6. (a) The normalized spectral power density of the halogen lamp, before and after D50-simulator
filter. The plot also shows the CIE standard illuminants for comparison. All SPDs are measured with a
Konica Minolta spectro-radiometer and normalized to their maximum values. (b) The spatial uniformity
of the light at the imaging sight, shown as a contour map. The symmetrical placement of the two light
sources in a feathered configuration spread the light uniformly so that its intensity inside the highlighted area
drops only 10%. The profiles of the light’s intensity at the two red lines are shown in the figure. The black
rectangular border shows the area where the icons were positioned.

The light source on each side is a 400-watt halogen lamp with a 118-mm tungsten filament in a
reflective aluminum-casted body. The halogen lamp emits a continuous smooth spectrum that rises in
level as the wavelength increases. A D50 simulator filter is installed in front of each halogen lamp to
flatten the SPD and to block the infrared component that produces heat. Figure 6a shows the light source
spectrum before and after the D50 filter. At 210 cm away from the icon, the light source satisfies the safety
requirements and provides enough exposure power to illuminate the scene. The halogen lamp operates
with alternating current (AC). However, the flickering is negligible [46] because the filament’s cooling is a
slow process compared to the 50 Hz cycle.

For comparison purposes, some of the icons were also captured with a few imaging setups other than
the primary setup explained above. These additional measurements were also registered and included
in the database. The extra setups were: the cross-polarizer setup, the 45-degree angle light source setup,
the close-range (1 m) soft-light setup, and the CIE-D65 filtered light source setup.

3.2. The Camera Systems

Four camera systems were used to capture the images: an RGB Nikon D80 camera, a multi-spectral
beam-splitter (MSBS) FD-1665-MS7 FluxData video camera, two Liquid Crystal Tunable Filter (LCTF)
spectral cameras in visible (VIS) and near-infrared (NIR) wavelength regions from Cambridge Research &
Instrumentation Inc. (CRi). In addition, a set of previously-shot images, using a hyperspectral Specim
IMSpector-V10 line-scanning camera, was registered to the current measurements. The V10 camera
measurements were obtained using an overhead CIE-D65 light at a 45-degree angle. The images were shot
in wavelength range 400–1000 nm with 5 nm intervals. Before registration, a noise removal process was
applied on the V10 images using HYSIME subspace method [47].

The LCTF cameras were used with an AF Micro-Nikkor 60 mm 1:2.8 lens. Both cameras had 12-bit,
2/3 inch charge-coupled device (CCD) sensors with 1392× 1040 pixels. The LCTF-VIS camera collected
the light in 400–720 nm with 10 nm sampling interval (31 channels). The LCTF-NIR camera operated
in the 450–950 nm range with 10 nm interval (51 channels). Figure 7a shows the sensitivities of the
LCTF-NIR filters.
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Figure 7. Sensor sensitivity: (a) the LCTF-NIR camera (measured until 905 nm); (b) the RGB camera;
and (c) the multi-spectral beam-splitter camera. The camera has one monochrome and two Bayer-format
CCDs. Band-pass filters F1, F2, and F3 form the seven channels. The ratios of the channels’ sensitivity are
R1:G1:B1:R2:G2:B2:IR = 1.6:2.4:1.2:2.6:1.3:1.0:1.5. Sensitivities are measured with a monochromator and an
integrating sphere. Values were normalized before plotting.

The D80 camera had an AF-S DX NIKKOR 18–135 mm 1:3.5–5.6 lens. The sensor was a 12-bit,
DX-format CCD with a Bayer CFA overlay and 3900× 2611 pixels. Figure 7b shows the sensitivity of
each channel. The MSBS video camera had a three-way beam-splitter, two CCDs with Bayer CFAs,
three band-pass filters, and a monochrome CCD sensor to provide seven channels whose sensitivities are
shown in Figure 7c. Filters F1 and F2 modulate the sensitivities so that each channel collects light in only
one-half of its original sensitive region. Filter F3 applied to the monochrome CCD, blocking wavelengths
shorter than 730 nm. All three CCDs were 12-bit 2/3 inch CCDs with 1392× 1040 pixels. The camera’s
lens was Carl Zeiss Planar 1.4/50 ZF-IR.

3.3. The Camera Setup

The image framing is such that the icon covers the entire image except for a narrow border, where
the vignetting and the lens distortion effects are dominant. This practice ensures the highest spatial
sampling resolution of the icon’s surface (sample per millimeter squared). To achieve an equal sampling
rate, the frame was set according to the largest icon (the fifth one in Figure 1) and was kept fixed for all the
other targets. Settling the frame for a camera with a prime lens (e.g., the MSBS and the LCTF cameras)
resolves its working distance, i.e., the distance between the camera and the icon. The working distances
were 190 cm, 220 cm, and 185 cm for the RGB, MSBS, and LCTF cameras, respectively.

In the next step, the f-number was set. F-number is the ratio of the focal length to the aperture size.
Setting the aperture size, and thus the f-number, is a compromise between the amount of exposure and the
depth of field. The larger the size of the aperture the more is the exposure and the smaller is the depth of
field (and vice versa). Smaller aperture also decreases the chromatic aberrations. In this study, the f-number
of f/8 provided acceptable image sharpness and level of exposure to achieve an adequate SNR.

Next, the exposure time was set for each camera. This was done according to exposing-to-the-right
principal for the white reference at the minimum ISO amplification. Then, the same exposure time was
used to capture the icons and the color charts. For example, for the D80 camera at ISO 100, one second
exposure time was required so that the histogram’s peak approaches 85% of the maximum digital units
(about 3500 out of 4095 levels of a 12-bit sensor). The ISO setting of the MSBS device was fixed to 400 by
the camera’s firmware to achieve the required frame-rate as a video camera. At this ISO, an exposure time
of 350 ms, 250 ms, and 300 ms was needed for each CCD to capture the white reference. The exposure
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time LCTF filter can be set independently. For example, at 710 nm, 2.1 s was required to capture the
white reference.

Except for the D80 camera that has an auto-focus mechanism, the other cameras were manually
focused according to their mid-range channel (550 nm for the LCTF cameras and the G2 channel for
the MSBS camera). The cameras were tethered to a laptop and controlled remotely to avoid shaking.
All devices were on at least 1 h before the imaging starts so that the stable thermal state is reached.

3.4. Data Collection and Processing

Three sets of images were captured with each camera: the fixed-pattern noise templates (dark frame
and white reference), the color charts (the Macbeth and the Digital SG ColorCheckers), and the icons.
The color charts were captured to calculate the SNRs and for other calibration purposes. The RGB and the
MSBS images of the icons are averages of five shots for higher SNR. The template images were averaged
from 50 shots.

The RGB images were taken in raw mode. The D80 camera applies a non-revocable lossy compression
whose lookup table is embedded in the image file. The compression scheme codes the original 12-bit data
(4095 units) with 683 units, equal to log 2(683) = 9.4 bits of data. The scheme follows the SNR model,
i.e., it starts with no compression for the lower 215 units, followed by a linear, and then, a quadratic
compression for higher units. The quality loss due to the compression is minuscule, because the coarse
quantization step in higher digital units is finer than the shot noise in that exposure level [18].

The missing values in images that are shot with color filter array sensors should be interpolated or
demosaiced. The RGB sensor was demosaiced using a gradient-corrected interpolation [48]. The two MSBS
CCDs with Bayer CFA were interpolated linearly. The method in [48] is a bilinear interpolation plus a
corrective term proportional to the derivatives to perform better on the edges. However, the weights
are optimized using a training set and the Wiener method for one-CCD case. The demosaicing in MSBS
camera is for two CCDs (six channels) and requires the re-optimization of the weights. Using the method
in [48] with existing coefficients produced jagged patterns and overflows in some pixels. Simple bilinear
interpolation generated smoother results.

The three CCDs of the MSBS camera were not perfectly aligned in manufacturing. Therefore,
the images were registered with an affine transform (rotation and translation) that was measured during
the characterization of the camera. Finally, all the images from all cameras were flat-field corrected and
automatically cropped with a bounding-box frame to remove the background for the registration process
in the next step.

3.5. Multi-Camera Registration

Experiments that evaluate an error term between two images on a pixel-wise level relies on an accurate
spatial correspondence between the two images. Evaluating the estimation error of spectral images from
low-dimensional camera measurements is one example of such experiments. The aligning process that
maps the target image space to the reference image space by finding a geometric transformation between the
two spaces is called registration. The type of the geometrical distortions in the image imposes the required
transformation model. Two types of distortions exist in icon painting images, projective, and radial.
Projective distortions are due to the residual camera-scene misalignment, and include translation, rotation,
scale, and affine transformation. Radial distortions stem from the dissimilarities of the cameras’ optical
paths, including the lens. To account for these two misalignments, a third-order polynomial transformation
model was used.

Figure 8 shows the registration process in this article. In feature-based registration, the transformation
parameters are decided by least-squares minimizing the mapping error of a set of control points. Control
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points are a set of paired pixel locations, one in the reference and one in the target image, each pair
indicating a single location in the scene. The mapping error is the sum of distances between the reference
and the target points after the mapping, which is by definition equal to zero for an ideal registration.
The least square solution finds the transform that minimizes this error. Manual selection of control
points is excessively laborious. Control points can be automatically identified and paired using feature
extraction methods.
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Figure 8. The block diagram of the registration process. The user manually sets the desired orientation,
image size, and the ROI frame of the final reference image cube in the diagram’s upper path. The lower
path automatically registers each target image cube to the reference cube. The local features (SIFT in this
article) are extracted from the grayscale reference and target images. The pink blocks are manual operation,
whereas the white blocks are automatic.

In this work, the Scale-Invariant Feature Transform (SIFT) is used to find the control points because it
has partial invariance to illumination change and affine transformation. SIFT algorithm accumulates the
control pairs in three steps. First, it identifies the edge-based key points in the reference and target images.
Then, it assigns an orientation and a 128-dimensional feature vector to each point. Finally, it matches the
points based on the Euclidean distance between the feature vectors. SIFT algorithm extracts the key points
from grayscale images. Here, the average of all the image channels is used as the grayscale image for each
camera. In this article, the VLfeat MATLAB implementation of the SIFT algorithm was used [49].

Matching the points based on the feature vector distance as a measure of similarity is prone to
generating false matches. These outliers are spatially non-corresponding points that have similar feature
vectors. For example, the border areas with uniform color around the icons (see Figure 1) was likely to
create outlier matches. The least square solution is highly sensitive to outliers, even if they are few in
numbers. Here, an iterative method is proposed to remove the outliers. In each iteration, the transformation
is solved using all the existing control points, and it is used to map the target points to the reference space.
The distance between each reference point and its mapped target point is assigned to the pair as its error
term. This error should approach zero for true matches. Therefore, the method removes the pair with the
highest error in each iteration and repeats the process. The iteration stops when a desired maximum error
threshold (T2) is met.
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The iterative procedure is based on the assumption that the transformation error that the outliers
induce is minuscule. This assumption demands that the transformation always be close to the final
answer and the true pairs’ error distances be significantly lower than the outliers’ errors, even in the
initial iterations. For some images, this assumption failed in practice. In these images, the outliers were
sufficiently numerous to alter the transformation to the extent that the errors of the true matches were
equally high. Consequently, they were nominated for removal, and, thus, the method failed to converge.
An initial one-step removal phase before the iterative process solves the problem of extreme cases. Instead
of finding the least-square solution using the control points, we initiate the transformation with a scale-only
matrix. After mapping the points with this scale transformation, all the pairs with an error higher than a
rejection-threshold (T1) are removed. Then, the iterative process starts with the remaining control pairs.

The initial removal phase is based on the assumption that the final registration transformation
is, for the most part, a scaling transformation that matches the target image size to the reference.
This assumption is valid in this study because the scene is manually aligned to have the least displacement
between different cameras. Thus, except for a scale factor, the final solution is close to an identity matrix
plus a small projective term (including translation, rotation, and affine). With a scale-only transformation,
the true matches yield a systematic error (due to the unattended projective mismatch), however, it is far
less than the outliers’ errors. This guarantees that the outliers, and not the true matches, are removed in
the initial step, and the iterative process starts in a stable state that converges to a fine-tuned registration
transformation eventually.

Figure 9 illustrates the course of finding the registration transformation. Images are presented by
their frames rather than their contents in order to avoid clutter. Figure 10 shows the maximum error of the
control pairs in each iteration as they are removed and the transformation is refined.

(a) (b) (c) (d)

Figure 9. Finding the registration transformation process. All figures here are plotted in the reference
coordinate space. In each figure, the black rectangle indicates the borders of the reference image. Both the
red and the magenta rectangles outline the target image frame after it is mapped into the reference space
by the transformation. The red rectangle uses the scale-only transform, and the magenta rectangle is the
result of the least-square solution. The control points are shown in red (reference points) and blue (target
points), with gray lines connecting the matching pairs, indicating the error values. (a) The starting situation.
Launching the iterative process using the least-square solution (the magenta frame) likely fails to converge.
Thus, the scale-only transform is used instead, and all the outlier pairs with an error above the threshold T1
are removed at once. (b,c) The iterative process. Now, the least-square solution is used. In each iteration,
the pair with the highest error is removed, and the transform is updated with the remaining pairs. (d) The
final stage. The iterative fine-tuning terminates as the highest error is less than the stopping-threshold T2.
A final ROI-cropping (the cyan frame) is applied to the registered image.
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Figure 10. The plot of the maximum error-distance during the registration process. First, all pairs whose
error is larger than threshold T1 (equal to 108 pixels in this example) are removed. Next, the iterative phase
starts. The least-square solution is calculated and refined until the stopping-threshold T2 (equal to 1 pixel
in this example) is reached (194 iterations in this example).

Prior to registration, the upright orientation, the size, and the ROI frame of the reference image can
be set as desired by applying optional rotation, scaling, and cropping transformations to the reference
modality (see Figure 8). The rotation and the scaling will automatically be applied to the target modality
by the registration transformation, whereas the ROI-crop should be applied on the transformed cube to
obtain the final registered cube.

4. Results

The registered, multi-camera image database of the icon paintings described in this article can be
downloaded here [50]. Figure 11 shows the downloadable version of the icons’ RGB images. All images are
registered to the images from the LCTF-VIS camera (reference). The fine-tuning rotation, scale, and crop
operations (see Figure 8) are applied to the reference modality so that all images have 640× 480 pixels
and the border areas are cropped (compare to Figure 1). At this size, the physical sampling resolution is
about 4 samples/mm2. The images are provided in multi-layered Tagged Image File Format (TIFF) [51].
With this file structure, the spectral image cubes can be effortlessly previewed or opened with typical RGB
image viewers. Figure 12 shows a representative CIELab gamut of the icon database.

Figure 11. Cont.
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Figure 11. The icons’ RGB images after registration to the LCTF-VIS camera. The proposed imaging
setup has successfully addressed the challenges of capturing icon paintings. Specular reflections and
registration problems of the measurements in Figure 2b and in the other similar studies [33,34,43] are
handled. The database can be accessed from here [50].
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Figure 12. The CIELab gamut of the icon database: (a) a*b* view; (b) La* view; and (c) Lb* view. The gamut
is formed by sampling the CIELab values of all the pixels in all the six LCTF-VIS icon images with a uniform
random grid (roughly 300k samples with average grid size 1∆E). The black dots represent the gamut of the
Munsell book of colors, plotted here for comparison.

The registration quality was assessed using three methods. First, for each icon, the simulated RGB
images of the reference cube (LCTF-VIS) and the target cube (each of the other four cameras) were
overlapped and flickered. Figure 13 shows the representative RGB images of the first icon from each
of the cameras. Despite the clear dissimilarities in colors and intensity levels, the flickering method is
very effective in spotting the smallest misalignments between the images. Visual inspection with this
method showed no visible deviations for any of the icons/cameras combinations. Next, for quantitative
evaluation of the registration, 135 control points were manually selected from the D80 and the MSBS target
images of the first icon. After applying the registration transformation, the average error distance between
the two sets of points was calculated. The average error was roughly 1 pixel for the manually selected
control points. However, the manual point selection was painfully time consuming. Thus, the rest of the
icons/cameras were not tested with this evaluation method.
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(a) (b) (c) (d) (e)

Figure 13. The first icon’s representative RGB images from each registered cube, used for evaluating the
registration quality: (a) Nikon D80 ;(b) MSBS (pseudo RGB by adding the first two CCDs); (c) LCTF-VIS;
(d) LCTF-NIR; and (e) V10. Images in (c–e) are simulated RGB images under CIE-D65 light source.

Lastly, the proposed registration method was quantitatively evaluated and compared to other
registration methods using the structural similarity index (SSIM) [52]. Three opponent methods/models
were tested: the projective model with SURF features (implemented with MATLAB’s registration estimator
tool), the Generalized Dual Bootstrap-ICP method [53] with quadratic model, and the GDB-ICP method
with homography plus radial lens distortion model. The GDB-ICP method was used with SIFT features.
The results are shown in Figure 14. For all icons and all cameras, the proposed method achieved a
higher score (except for the RGB-Icon1 and RGB-Icon4 where the GBD-ICP-3 performed slightly better).
The LCTF-NIR images on average had the best results because this camera is very similar to the reference
camera (LCTF-VIS). Thus, the control pairs are matched reliably. The RGB images have the worst average
result because of the huge difference in the image size between the reference and the target images.
The GDB-ICP-3 method failed to register Icons 4 and 5 of the MSBS camera (missing values on the plot).

(a)

(b) (c) (d) (e)

Figure 14. Evaluation and comparison of four registration methods: projective model with SURF features,
GDB-ICP-2 quadratic model, GDB-ICP-3 homography with radial lens distortion model, and the proposed
method with SIFT features. (a) The structural similarity index (SSIM) between the reference and the target
images. (b–e) The SSIM maps of the cases that are indicated with red dots in (a).
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In Section 2.2, the SNR as a function of exposure was simulated using the presented noise model.
This function is empirically estimated here using the images of the gray patches in the Macbeth color
checker. The estimate is calculated from Equation (1) by averaging over the patch area. The estimation is
from the processed image (demosaiced, flat-fielded, and averaged) and not from the raw sensor values.
Figure 15 shows the SNR estimations for three of the cameras. The Perceptual brightness of the gray patches
increment linearly from N2.0 to N9.5 in Munsell notation. However, in physical units, the Munsell notation
is roughly equivalent to a logarithmic scale. Thus, the scale of the horizontal axis is logarithmic in both
Figures 3 and 15, and the plots should follow a similar ogive curve. Figure 15 shows that this is indeed
the case.
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Figure 15. The estimated SNRs of the gray patches in the Macbeth color chart, plotted for each channel
of: (a) Nikon D80 camera; (b) FluxData MSBS camera; and (c) LCTF-VIS camera. The values in (c) are
reordered and plotted for each patch in (d).

In Figure 15b, the SNR of the MSBS infrared channel at the darkest two patches is higher than
the model prediction. This deviation is due to the fact that these patches are not perfectly dark
(i.e., non-reflective) in infrared wavelengths. The reflectance function, recorded by the LCTF-NIR cameras,
showed 30% reflectivity in the infrared region for these patches.

The MSBS camera’s SNR curve has a higher slope than that of the RGB camera. Considering the SNR
curve in Figure 3, the higher slope suggests that the MSBS camera is operating on the lower exposure end
of the curve. Both cameras were exposed-to-the-right, whereas the MSBS camera was set to a higher ISO
gain. The SNR does not depend on the gain, but on the number of photons entering the camera. Increasing
the gain is equivalent to stretching the SNR curve in Figure 3 towards the higher raw values. Thus, with a
higher gain, by the time that the saturation occurs, a lower SNR level can be achieved.

Finally, the short wavelength channels (B1 and B2) of the MSBS camera in Figure 15b have notably
lower SNR than the other channels. Considering the relatively low sensitivity of these channels
(see Figure 7c), the reduced SNR is expected. The low sensitivity is the overall result of the original
sensor’s sensitivity and the band-pass filter transmittance.
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Figure 15c indicates that the SNR of the LCTF camera is highest for the green channels. This is not
in accordance with the predictions of the simulated SNR. In Figure 15d, these values are re-arranged
according to the wavelength instead of the exposure to better visualize the underlying trend. The plots
show an uncharacteristic elevated SNR level at shorter wavelengths (<510 nm). Visual investigation of the
images revealed that the camera applies a blurring filter (spatial averaging) on these channels to gain SNR
at the cost of losing spatial resolution. The red plot in Figure 15d shows an extrapolated hypothetical SNR
curve, in the case it was not artificially increased by the blurring filter.

5. Discussion

This article released an image dataset of the icon paintings, captured with multiple cameras.
The dataset contains a rich gamut of tempera colors, particularly in the positive quadrant of the CIELab
color space (yellow, red, and orange colors) and in the low-lightness regions.

A registration method was presented to establish the grounds for a pixel-wise comparison of the
images from different cameras. The contribution of the registration method was in the outlier removal
process only. This means that any transformation model and any local feature detector/descriptor method
can replace the ones used in this article. The proposed module for outlier removal simply adds a reliable
method to identify and remove the mismatch pairs while preventing the elimination of true matches.
The two threshold levels combined with the visual interface of the iterative process (an interface similar
to Figure 9) grant the user the required flexibility to set the initial and final error levels according to the
quality and the quantity of the matched control points. In fact, a visual interface as in Figure 9 can provides
a full-fledge tracking tool to inspect the registration process and identify and debug the procedure when it
starts to diverge from the correct path. Such a tool can provide editing tools for removing individual pairs
in the case the method fails to handle a difficult case automatically.

The icon paintings are more challenging items compared to the flat paintings with matte paints.
This fact is reflected in the required imaging configuration for documenting these artworks [33]. A great
deal of effort was dedicated to configuration of an illumination setup so that the specular reflection
is minimized.

It was shown with both simulations and real measurements that the SNR increases with exposure.
This fact led us to the exposing-to-the-right technique for deciding the exposure time. In this study,
the exposure time was set based on the histogram of the white reference, and the same exposure time was
used to capture the icon’s image. However, some icons are considerably darker than the white reference,
manifesting a wide gap on the histogram between the two. In such cases, a better solution is to take each
image with its own proper exposure time and normalize them reciprocally. This solution, nevertheless,
assumes that the sensor is linear.

A more costly solution for capturing a high dynamic range scene is the multi-shot technique [26,54,55].
In this technique, the scene is captured several times with different exposure times. The final image is the
weighted average of the shots. At each exposure level, the shot with the highest SNR contributes the most
to the result. The number of shots, the exposure times, and the weights are decided based on the scene’s
histogram, the noise model, or both.

This study emphasized the argument that there are two aspects to the image SNR of a camera:
the exposure-dependent aspect and the wavelength-dependent (spectral) aspect. In reporting the SNR,
the spectral dimension is often reduced to one or three scalar values for monochrome or RGB sensors.
This simplification may be inconsequential in some applications, but it cannot be ignored in an accurate
spectral measurement. The spectral dependency of the SNR emerges from the fact that the exposure is
resolved by the combination of the light source SPD, the sensor’s sensitivity, and the exposure time.
The first two factors are functions of wavelength, and thus the exposure. In single-shot imaging,
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the exposure time cannot be selected independently for each channel. Therefore, to ensure a consistent SNR
at all the channels, a balanced combination of the other two factors should be verified at all wavelengths.
Adjusting these two factors is not always a feasible option because the device-availability dictates them.
An alternative solution is to equalize the persisting spectral disparity by using a regulating filter in front of
the lens [35].

For example, in this study, as Figure 15b indicates, the SNRs of the B1 and B2 channels of the MSBS
camera were not on par with others. Figures 6a and 7c show that these channels receive far less exposure
than the others. The exposure time cannot compensate for this difference because it is dictated by those
channels that receive the highest exposure.

The MSBS camera in this study was the result of combining two RGB and one monochrome sensor
in a single camera body with one lens, in order to have more channels (higher spectral resolution) in a
single-shot camera. The higher spectral resolution, however, was achieved at the cost of a decreased image
SNR. The beam-splitter and the band-pass filters reduced the light exposure to the sensor. The camera’s
sensitivity gain (ISO) was increased to comply with the required frame rate as a video camera. As discussed
in explanations of Figure 15, increasing the gain in order to reduce the exposure time also results in a
decreased exposure, and thus, a drop in SNR. On the other hand, sensor alignment and demosaicing in
multi-sensor cameras are notoriously hard tasks that if not treated, they affect the image quality [15,56].
Studying the impact of these spatial factors is not possible with color patches or simulated images.
A registered dataset such as the one proposed in this study, enables us to investigate the spatial features of
the cameras and demonstrate the distribution of the errors locally.

6. Conclusions

An image database of icon paintings from five various cameras was gathered. An imaging setup and
a registration method was developed to address the challenges of the task.

Based on a model-based noise analysis, the decision criteria for the illumination setup, the camera
settings, and the data processing were derived. It was shown that a spectrally balanced combination of the
light source intensity and the sensor’s sensitivity is the key to the consistency of the signal-to-noise ratio as
a function of exposure and wavelength. Compared to other similar images of icon paintings, the proposed
imaging setup was successful in handling the specular reflection and capping the dynamic range.

The dataset was further registered using a feature-based registration method with a third-degree
polynomial transform to account for all the existing distortions. An iterative outlier removal technique
based on a two-step thresholding mechanism was presented. The technique provided reliability,
transparency, and flexibility to the outlier removal phase. Thus, higher order transformation models could
be deployed without instability in the convergence. As a result, the method outperformed the opponent
methods in terms of SSIM index and provided impeccable alignment when inspected visually.

A medium-sized version of the registered database was released online. A registered image
dataset is necessary for comparing different spectral cameras in terms of their spatio-spectral dynamics.
These dynamics exhibit themselves in the details that reside in real images of natural scenes. As a future
application, the database is aimed for conducting experiments on quality assessment of spectral estimation
from the RGB and the multi-sensor cameras.
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