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Abstract: This article presents the applications of continuous symmetry groups to the computational
fluid dynamics simulation of gas flow in porous media. The family of equations for one-phase flow
in porous media, such as equations of gas flow with the Klinkenberg effect, is considered. This
consideration has been made in terms of difference scheme constructions with the preservation of
continuous symmetries, which are presented in original parabolic differential equations. A new
method of numerical solution generation using continuous symmetry groups has been developed
for the equation of gas flow in porous media. Four classes of invariant difference schemes have
been found by using known group classifications of parabolic differential equations with partial
derivatives. Invariance of necessary conditions for stability has been shown for the difference schemes
from the presented classes. Comparison with the classical approach for seeking numerical solutions
for a particular case from the presented classes has shown that the calculation speed is greater by
several orders than for the classical approach. Analysis of the accuracy for the presented method
of numerical solution generation on the basis of continuous symmetries shows that the accuracy of
generated numerical solutions depends on the accuracy of initial solutions for generations.

Keywords: computational fluid dynamics; Lie groups of transformations; continuous symmetries;
equation of gas flow in porous media; Klinkenberg effect; difference schemes; numerical
solution generation

1. Introduction

Modern problems in modeling of natural oil and gas reservoirs require the use of complex coupled
equations for physically different unsteady processes such as multiphase seepage, geomechanics,
and multicomponent thermodynamical processes for three spatial dimensions. It would seem that
simple models are not very useful nowadays. However, consideration of all processes straightly
and completely at the same moment is extremely difficult, for example [1]. That is why one of the
most popular topics in mathematical modeling of processes related to natural oil and gas reservoirs
is how to simplify a model to a stage where it is still interesting and can be numerically solved with
acceptable results [2]. All these approaches require reliable benchmark models, such as the mentioned
simple equations, and a basis for their construction and numerical solving, for example, for a more
effective choice of initial iterations. Moreover, methods with simple models can help in understanding
how to use them in more complicated situations. Another application of simple models is for fast
calculations in the field of petroleum engineering, where time is more important than model complexity
in some cases.
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Most real-life problems in modeling cannot be solved analytically and have to be replaced by
some numerical algorithms from computational fluid dynamics. However, a particular numerical
method should be reliable and fast enough to conduct many similar calculations when such algorithms
are frequently used for different problems. Thus, they must be analyzed using different analytical
methods, which can be originally created only for theoretical models. This analysis can help to speed
up numerical calculations and increase their reliability.

A good example of the mentioned analytical methods is using Lie groups of transformations for
difference schemes [3] as considered in this study. This theory was initially applied for differential
equations [4] and proved to be a powerful instrument in analysis. It provides an opportunity to look at
solving of equations systematically and classify similar equations in a sense of their symmetries. It
means looking at different methods of solving differential equation from one point of view, namely,
from theory of Lie symmetry groups. During the last century, Lie’s theory was improved, and many
results for different types of partial differential equations appeared [5,6].

This approach is used for other types of equations; for example, there are a number of results
about group analysis of difference equations [3,7], differential-difference equations [8], and discrete
dynamical systems [9], but there are no precise answers in a sense of numerical benefits from using
invariant different schemes. Moreover, this question is almost avoided because of its complexity. Thus,
the main purpose of this study is to find and underline useful properties of the Lie point symmetry
preservation for difference schemes in terms of computational fluid dynamics simulation.

2. Continuous Symmetries of Parabolic Equations of Flow in Porous Media

2.1. Lie Point Symmetries

Local Lie groups of transformations in a multidimensional Euclidian space are used in this article.
These families of transformations depend on some continuous parameter and all together form a group
in the meaning of abstract algebra. However, they fulfill group properties only locally, which means
that some small open neighborhood of a continuous parameter exists for every value of a parameter
where a family of transformations is a group.

Let us consider an r-parameter Lie group of transformations [5], i.e., a family of transformations
with local group properties that depends on r essential parameters a = (a1, a2, . . . , ar) ∈ Rr and is
defined as x′ = f (x, a), where x′, x ∈ D ⊆ Rr. For group analysis using this type of groups, another
very important concept is an infinitesimal operator [6], which is defined as a differential operator

X =
n∑

i=1

∂ f i(x, a)
∂a

∣∣∣∣∣∣∣
a=0

∂

∂xi =
n∑

i=1

ξi(x)
∂

∂xi ,

where x′ = f (x, a) is a one-parameter Lie group. This operator is the tangent space
ξ(x) = (ξ1(x), ξ2(x), . . . , ξn(x)) of a continuous group of transformations.

Invariants of defined groups of transformations play an important role in group analysis of
equations. They are functions F(x), x ∈ Rn, which remain the same under the action of their
transformation groups. A concept of an infinitesimal operator gives an opportunity to use the
infinitesimal criterion [6] of invariance, which can be written as (1):

XF(x) =
n∑

i=1

ξi ∂F
∂xi = 0. (1)

An invariant manifold for a Lie group of transformations is a manifold whose points are
transformed into points of this manifold under the action of this symmetry group. The infinitesimal
criterion for manifolds is almost the same apart from the necessity to cancel variables, which can be
expressed explicitly via the definition of a manifold.
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The approach of Lie groups of continuous symmetries allows to work with different types of
equations as manifolds in a correspondent space. Thus, continuous or finite-difference derivatives
are considered as other independent variables. The concept of Lie groups’ action prolongation helps
to define new additional variables (for a transformation group), which are presented in an equation
apart from the variables of a group. These new variables are considered with initial variables in the
same way. One says that this group is a continuous symmetry group for this equation or this equation
admits this continuous group if an equation is an invariant for the prolonged continuous group. In this
concept within this article, different additional variables can be derivatives for differential equations or
finite-difference derivatives for difference equations.

The presence of a continuous symmetry for an equation defines a structure of connections between
its solutions. Solutions can be transformed into each other by applying the group of transformations.
This property gives an opportunity to generate families of solutions via one non-invariant solution
and one symmetry group. It is demonstrated below for numerical solutions of constructed invariant
different schemes.

This section is intended to provide basic ideas of theory of Lie groups for differential and difference
equations. One can find more information about group analysis of differential equations in [5,6]. The
results referring to the discrete case can be found in [3].

2.2. Group Classification Results for Parabolic Type Equations

One type of partial differential equations is considered in this article—the equations of gas flow in
one-dimensional porous media [10]. The equations are as follows:

d(ρ(P)ϕ(P))
dP

∂P
∂t
−
∂
∂x

(
K(P)ρ(P)
µ(P)

∂P
∂x

)
= 0. (2)

These equations represent an example of simple models for problems of gas flow in porous media,
which are mentioned in the introduction. They can be written in the following form:

dα
dP
∂P
∂t
−
∂
∂x

(
β(P)

∂P
∂x

)
= 0, (3)

what gives clear understanding that they are similar to the corresponding heat transfer equations.
Different types of heat transfer equations are well researched in terms of group analysis by using Lie
groups of point transformations [11]. Coefficients α and β are used further for group classifications
of these differential equations and their corresponding finite-difference representations. The group
analysis is performed for this family of Equations (3) and can be found in [12] for the differential case.
The group analysis results are partly presented in the section below for constructing of difference
schemes with the preservation of continuous symmetries.

2.3. Gas Flow Equation with Klinkenberg Effect

Let us consider a particular example of Equations (2) with the equation of state for ideal gas with
constant temperature ρ = χP and with the Klinkenberg relationship for permeability [10,13], which is
given by (4) as follows:

K(P) = K1(1 + K2/P), (4)

where ϕ = const and µ = const. The equation for these coefficients can be written as

∂P
∂t
− γ

∂
∂x

(
(P + K2)

∂P
∂x

)
= 0, γ =

K1

µϕ
. (5)
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This equation has four one-parameter groups of continuous symmetries with the infinitesimal
operators [11,12]:

X1 =
∂
∂t

, X2 =
∂
∂x

, X3 = 2t
∂
∂t

+ x
∂
∂x

, X4 = −t
∂
∂t

+ (P + K2)
∂
∂P

. (6)

Continuous symmetries for differential equations may contain crucial properties of equations
because these symmetries define connections between solutions. It is a very important property of
symmetry groups as mentioned above, namely, the approach for solution generations using these
transformation groups. For considered particular Equation (5), symmetries with X1 and X2 stand for
translations of time and spatial variable, respectively. Thus, Equation (5) does not explicitly present
time and spatial variables. The operator X3 is responsible for the dilation symmetry of (5) or, to be
more precise, for the parabolic differential structure of the equation. The symmetry with the operator
X4 is due to the particular form of the coefficient β from (3).

3. Construction of Invariant Difference Schemes

3.1. Difference Scheme Construction with Preservation of Symmetries

Difference scheme construction with the preservation of continuous symmetries for an original
differential equation has been previously presented in [3]. This method is used in this study to
obtain all possible invariant difference schemes without restrictions to certain forms of finite-difference
derivatives or neighboring points for the current point of a mesh.

Let us consider some differential equation

Fi(x, y, y
1
, y

2
, . . . , y

p
) = 0, i = 1 . . . q, x ∈ Rn, y ∈ Rm, (7)

where y
j

is a set of j order derivatives for the function y(x) and p is the order of (7). Let Equation (7)

has an r-parameter symmetry group of transformations, which is a Lie group

xi = f i(x, y, a), y j = g j(x, y, a),
a ∈ Rr, x ∈ Rn, y ∈ Rm, i = 1 . . . n, j = 1 . . .m

(8)

with r infinitesimal operators

X j =
n∑

i=1

ξi
j(x, y)

∂

∂xi +
m∑

i=1

ηi
j(x, y)

∂

∂yi . (9)

Equation (7) can be written via differential invariants I j [5,6] of the symmetry group (8), which
can be found from Equation (1) and written as

Φi(I1, I2, . . . , Is) = 0, i = 1 . . . q, I j = I j(x, y, y
1
, y

2
, . . . , y

p
), j = 1 . . . s. (10)

this set of functions I j is not unique because any smooth enough function of invariants is an invariant.
Let us consider some difference scheme in the following form [14]:

Ei(xk0 , yk0 , xk1 , yk1 , . . . , xkl
, ykl

) = 0, i = 1 . . . q, k0, k1, . . . , kl ∈ K ⊂ Zn,
M j(xk0 , yk0 , xk1 , yk1 , . . . , xkl

, ykl
) = 0, j = 1 . . . n, x ∈ Rn, y ∈ Rm,

(11)

where Ei stands for a difference equation; M j stands for a mesh; l is the order of the difference
scheme (11); k0, k1, . . . , kl ∈ K are n-tuples, which are responsible for positions on a mesh M from an
n-dimensional space. One says that this group of transformations is a symmetry group for Equation (11)
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if this equation defines an invariant manifold for the group of transformations (8), which is rewritten
for all indices k from (11) as follows:

xi
k = f i(xk, yk, a), y j

k = g j(xk, yk, a), i = 1 . . . n, j = 1 . . .m, k ∈ K. (12)

One says that (11) is an invariant difference scheme for differential Equation (7), or in (11), all
symmetries of (7) are preserved if the difference scheme (11) in the limit tends to (7). Tending to the
limit in this definition means that quantity hmax → 0 where

hmax = max
|ki−k j |≤n, ki,k j∈K

∣∣∣∣xki − xk j

∣∣∣∣,
which means that neighboring points of a mesh tend to be closer. Difference invariants for the
continuous group (12) should be determined to find an invariant difference scheme. Difference
invariants can be found from the following system of equations:

X j
K

Q(xk0 , yk0 , xk1 , yk1 , . . . , xkl
, ykl

) = 0, j = 1 . . . r,

X j
K

=
∑

k∈K

(
n∑

i=1
ξi

j(xk, yk)
∂
∂xi

k
+

m∑
i=1

ηi
j(xk, yk)

∂
∂yi

k

)
,

(13)

where X j
K

are prolongations of operators Xj for variables xk0 , yk0 , xk1 , yk1 , . . . , xkl
, ykl

, which are values

for independent and dependent variables in points of a mesh with the set of indices K for every point.
Let functions J j(xk0 , yk0 , xk1 , yk1 , . . . , xkl

, ykl
) = const, j = 1 . . . s be the difference invariants, which

are found from the system of Equations (13). The approximation of differential invariants (10) via
difference invariance (13) is the next step for constructing invariant difference schemes, which can be
written as

I j(x, y, y
1
, y

2
, . . . , y

p
) = Φ j(J1, J2, . . . , Js) + O(h

n j
max), j = 1 . . . s, (14)

where hmax → 0 , n j is the order of approximation. Invariant difference schemes for a differential
equation are constructed by the following steps:

• Identify continuous symmetries for a differential equation of the form (7);
• Express a differential equation in terms of differential invariants as it is shown in Equation (10);
• Construct difference invariants for a symmetry group of the form (12);
• Approximate differential invariants (10) via difference invariants from (13);
• Notate Equation (10) via approximations (14) of differential invariants;
• Seek functions M j for a definition of a mesh, i.e., obtain expressions for independent variables.

The aforementioned definition is not rigorous and is intended to outline the concept. However,
in the further usage of this definition, every arbitrary function, such as Fi, Ei, and Mi, are sufficient
to define corresponding types of equations or other objects, for example, a continuous group of
transformations. Of course, there can be a situation for this definition with just an invariant system of
equations of type (11) and without a limit of type (7), but this approach allows all possible invariant
schemes, including one with or without a limit.

Invariant difference schemes have essentially the same continuous symmetries, which, as it is
shown below for (5), may contain important information about an equation. The main question of
this article what are numerical benefits of using this type of difference schemes and it arises from
several studies (for example [3]), which have complete theory of group analysis of difference schemes
using theory of Lie groups but almost without analysis of stability, approximation, convergence, and
applications in practical problems for invariant difference schemes.
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3.2. Numerical Solution Generation Using Continuous Symmetries

It is pointed out above that a particular solution can be transformed into another solution
(providing that the first solution is not invariant) if a group of continuous symmetry is known.
Therefore, one can obtain a family of solutions depending on a parameter of a group. This approach
has been applied widely for differential equations and can be applied for difference schemes as well [3].
It provides an opportunity for calculating a numerical solution once and obtaining others by using a
continuous group of symmetries but for some types of boundary and initial conditions, which must be
transformed one into another by using the continuous group of symmetries. This problem is known
and discussed in, for example, [15].

Let us consider a particular numerical solution, which is a set of points
{
(xk, yk)

}
, where k is an

index on a mesh, xk is a vector of independent variables, and yk is a vector of dependent variables. It is
an “ideal” numerical solution that is calculated using an “ideal” computer, which can avoid errors
of truncations. Let us consider errors of truncations ε1

k and ε2
k ; thus, a “real” solution can be written

as a set of points
{
(xk + ε1

k , yk + ε2
k)

}
. The errors are transformed when a transformation from some

symmetry group is used for a correspondent difference scheme (which has the mentioned numerical
solution) and new errors can be written as

x = f (x, a), y = g(y, a),
ε1

k = f (xk + ε1
k , a) − f (xk, a) + ε3

k(xk, ε1
k , a),

ε2
k = g(yk + ε2

k , a) − g(yk, a) + ε4
k(yk, ε2

k , a),

where ε1
k and ε2

k are errors for a generated solution using a continuous group of symmetry, ε3
k and ε4

k
are errors for calculations of functions f and g using a “real” computer. Errors ε1

k and ε2
k tend to zero if

ε1
k , ε2

k , ε3
k , and ε4

k tend to zero. It is assumed that functions f and g are continuous and some converging
algorithm is used to calculate them. Therefore, errors for solutions can be controlled and decreased
when solutions are generated by symmetry groups. The nature of a used particular solution is not
discussed in this section, so it can be, for example, unstable. However, it is not important in the case of
this section.

3.3. Example of Invariant Difference Scheme Construction for Gas Flow Equation

Let us return to example (5) and conduct all the steps from the definition above. First of all, it is
suggested to change the dependent variable P using the following substitution:

P =

P∫
0

γ(x + K2)dx.

Thus, Equation (5) can be rewritten as

∂P
∂t
−

√
2γP + (γK2)

2 ∂
2P
∂x2 = 0, (15)

where the bar above for the new variable P is omitted in this section for the sake of convenience. This
change of variables is made only for the following stability analysis. The symmetry group operators
are the same (operators (6)) apart from the last for the new equation:

X1, X2, X3, X4 = −t
∂
∂t

+ (2P + γK2
2)
∂
∂P

. (16)
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For the symmetry group on the basis of (16), a differential invariant for an invariant notation of
the form (10) can be chosen as follows:

I1 =
Pxx

√
2γP + (γK2)

2

Pt
.

the continuous group from (16) has three other differential invariants, but they are omitted because the
invariant notation for Equation (15) is I1 = 1. Difference invariants for (16) can be written as follows

J1 =
(xk+p1

−xk+p2
)2

(tn+p3−tn+p4 )

√
2γP

n+p6
k+p5

+(γK2)
2
, J2 =

2P
n+p8
k+p7

+γK2
2

2P
n+p10
k+p9

+γK2
2

,

J3 =
xk+p11

−xk+p12
xk+p13

−xk+p14
, pi ∈ Z

(17)

and can be obtained from the system of first-order partial differential equations of the form (13) with
prolonged operators for (16). The numbers of invariants depend on the number (four in this case) of
independent operators (in a sense of functional independence in the space of all discrete variables) and
on the number of all discrete variables. The number of discrete variables can be chosen for this case
as 17 for time (two time layers), spatial, and pressure variables in five nods of a mesh: central, top,
bottom, left, and right nods. The number of invariants is greater than three, but there are only three
different forms (17) of these invariants. The constants pi ∈ Z are needed for expressing of all invariants
and wider sets of invariant difference schemes, for example, for using different numbers of neighbor
points for approximations of differential derivatives. These translations (constants pi) are possible
because of the specific form of operators (16), which can be shown as

X j =
n∑

i=1

ξi
j(x

i)
∂

∂xi +
m∑

i=1

ηi
j(yi)

∂

∂yi .

The invariant J1 allows to define the next time step according to the spatial variable steps and
the current values of pressure Pn

k . The invariant J3 defines possible spatial meshes including uniform
meshes and J2 comes from the operator X4, which allows to scale pressure according to time.

Let us consider two invariant difference schemes for deeper understanding of the difference
invariant J1: explicit

Pn+1
k − Pn

k

tn+1 − tn −

√
2γPn

k + (γK2)
2(Pn

k+1 − 2Pn
k + Pn

k−1)

(xk+1 − xk)(xk − xk−1)
= 0 (18)

and implicit

Pn+1
k − Pn

k

tn+1 − tn −

√
2γPn

k + (γK2)
2(Pn+1

k+1 − 2Pn+1
k + Pn+1

k−1 )

(xk+1 − xk)(xk − xk−1)
= 0 (19)

difference schemes. These difference schemes can be obtained via difference invariants (17). One can
obtain necessary conditions for stability of the difference schemes (18) and (19) using the method of
frozen coefficients [16]:

2(tn+1
− tn)max

k

√
2γPn

k + (γK2)
2

(xk+1 − xk)(xk − xk−1)
< 1,

2(tn+1
− tn)max

k

√
2γPn

k + (γK2)
2

(xk+1 − xk)(xk − xk−1)
> 0. (20)
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The invariant J1 can be rewritten as

J1 =
(xk+1 − xk)

2

(tn+1 − tn)max
k

√
2γPn

k + (γK2)
2
= C = const.

It indicates that necessary conditions (20) for (18) and (19) are invariants but for different sets
of values for the constant C. This fact gives an example of the continuous symmetry preservation
importance for difference schemes. Of course, there are examples of difference schemes that can
have more fruitful properties for numerical calculations and cannot be invariant. However, the
described above approach allows us to have a very wide choice of difference schemes, which can be
potentially better.

3.4. Families of Invariant Difference Schemes

The example from the last section shows very close connections between symmetries and properties
of equations. It is applicable for both differential and difference cases. Differential equations of the type
(3), which represents different problems for gas flow in porous media, are well researched by using
theory of Lie groups. As it is mentioned above, this type of equations has group classifications, which
can be found in [11,12]. These results and results from the last sections are used in the current section
to obtain the families of invariant difference schemes for differential equations of the type (3), which
stand for the physical problem (2). The aim of this section is to present only differential equations and
their invariant difference schemes with coefficients, which can be chosen from real physical problems
of gas flow in porous media. Thus, the results in Table 1 are not intended to cover all equations from
the known classifications.

Table 1. Invariant difference schemes for gas flow equations.

No. α β Operators Difference Invariants

1 α = c1P + c2 β = c3eP X1, X2, X3,
X4 = x ∂

∂x + 2 ∂
∂P

J1 =
(xk+p1−xk+p2 )(xk+p3−xk+p4 )

(tn+p5−tn+p6 )e
P

n+p7
k+p8

,

J2 = Pn+p9

k+p10
− Pn+p11

k+p12
,

J3 = tn+p13−tn+p14

tn+p15−tn+p16

2 α = c1P + c2
β = c3Pc4 ,
c4 , 0,− 4

3

X1, X2, X3,
X4 = c4

2 x ∂
∂x + P ∂

∂P

J1 =
(xk+p1−xk+p2 )(xk+p3−xk+p4 )

(tn+p5−tn+p6 )(Pn+p7
k+p8

)
c4 ,

J2 = Pn+p9

k+p10
/Pn+p11

k+p12
,

J3 = tn+p13−tn+p14

tn+p15−tn+p16

3 α = c1P + c2 β = c3P−4/3
X1, X2, X3,

X4 = − 2
3 x ∂

∂x + P ∂
∂P ,

X5 = −x2 ∂
∂x + 3xP ∂

∂P ,

J1 =
Pn+p1

k+p2
(xk+p2−xk+p3 )

3/2

(xk+p3−xk+p4 )
3/2 ×

×
(xk+p2−xk+p4 )

3/2

(tn+p5−tn+p6 )3/4 ,

J2 = tn+p7−tn+p8

tn+p9−tn+p10
,

J3 =
(xk+p11−xk+p12 )(xk+p13−xk+p14 )

(xk+p12−xk+p14 )(xk+p11−xk+p13 )

4
dα
dP = c3e−P

×

× (c1 − e−P)
c2 β = c4e−P

X1, X2,
X3 = c2t ∂∂t+

+(c1eP
− 1) ∂∂P ,

J1 =
(tn+p1−tn+p2 )e

c2P
n+p3
k+p4

(c1e
P

n+p3
k+p4 −1)

c2 ,

J2 =
(c1e

P
n+p5
k+p6 −1)

(c1e
P

n+p7
k+p8 −1)

ePn+p7
k+p8
−Pn+p5

k+p6 ,

J3 = xk+p5 − xk+p6 .

In Table 1, pi ∈ Z and c j ∈ R are arbitral constants, and operators X1, X2, and X3 are from (6). The
results from Table 1 match results from [17] for cases 1–3 and certain constants pi. The example (5) and
all results for (15) belong to case 2 in Table 1 (with changing of variables P = P + K2) with coefficients
dα
dP = P and β = P.
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The one-dimensional case is considered for simplicity, and all results of this article can be
generalized for the multidimensional case. All cases from Table 1 can have certain coefficients with
certain physical meanings, and difference invariants can be used for constructing a wide set of
invariant difference schemes. Another reason of class choices from known group classifications of
differential equations of the parabolic type is the possibility of finding explicit forms for difference
invariants and transformations from continuous symmetry groups, which can both be found from
their corresponding equations.

Equation (2) and its classes from Table 1 can represent wide spectrums of problems for flow in
porous media on different scales: microscale of pores, macroscale of fields, and other intermediate
scales. For example, problems of CO2 geological storage [18] or, in particular, problems of CO2 injection
on macroscales of porous media [19] can be studied using the results obtained from this study. There
are several results for microscales that can be studied using results of this article for some specific
cases of initial and boundary conditions, forms of pore network models and methods for calculating
conductivities: suggested models for gas flow in [20], one-phase flow in [21], multiphase flow in [22],
and modeling of films in gas–liquid–capillary systems in [23].

4. Numerical Results and Discussion

4.1. Choice of Time Step in Accordance with Difference Invariants

Example (5) is used for further results in this section. The explicit difference equation

Pn+1
k − Pn

k
τn −

γ

h2

(
(Pn

k+1 − Pn
k )(P

n
k + K2) − (Pn

k − Pn
k−1)(P

n
k−1 + K2)

)
= 0, (21)

the implicit difference equation

Pn+1
k − Pn

k
τn −

γ

h2

(
(Pn+1

k+1 − Pn+1
k )(Pn

k + K2) − (Pn+1
k − Pn+1

k−1 )(P
n
k−1 + K2)

)
= 0, (22)

and the difference mesh

h = xk+1 − xk = const, τn = tn+1
− tn =

Ah2

(P
n
+ K2)

, (23)

are used for numerical calculations, where A is a coefficient that depends on the maximum time value
and Table 2 gives parameters for numerical calculations. The explicit difference scheme (21) and (23)
were chosen for the sake of application demonstrations of the obtained invariant necessary conditions
for stability. Figure 1 shows a comparison of numerical solutions for the difference scheme (21) and (23)
and the difference scheme (22) and (23) (with the constant time step and with the time step choosing)
and the exact solution, which is from [24]. The exact solution can be written as

P(t, x) = −
(x + C1)

2

6γ(t + C2)
+

C3

|t + C2|
1
3

−K2,

where constants C1 and C3 depend on initial pressures (on the left and right boundaries) and constant
C2 is for the initial time value. Initial and boundary conditions for the difference scheme are chosen
in accordance with the aforementioned solution. The comparison (Figure 1) of implicit difference
schemes with (the time step choosing) and without (the constant time step) continuous symmetry
groups from Table 1 shows almost no difference in numerical solutions. The comparison of explicit
difference schemes shows that the time step choice (the case with continuous symmetries) from (23)
helps to stabilize the explicit difference scheme (21) with the same number of constant time steps (the
case without continuous symmetries). Tables A3 and A4 show errors for different methods and meshes.
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Table 2. Parameters for numerical calculations.

Parameter Value

Ple f t 100,000 Pa
Pright 10,000 Pa

T 700,000 s
L 500 m

Nt 157
Nx 10
ϕ 0.20
µ 10-6 Pa·s

K1 10-12 m2

K2 10 Pa
C2 150,000 s
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Figure 1. Comparisons between numerical solutions: Plot (a,b) show the comparison (time profiles for
x = L/2) between the exact solution and numerical solutions for (21) and (22) with the time step choice
(23) and with the constant time step; plot (c) shows relative errors for numerical solutions of (21) and
(22); plot (d) represents the comparison between time steps.

The comparison in Figure 1 shows the advantages for calculations with the time step choice from
(23). This approach for time steps is well-known (see for example [16]), but it arises from analysis
using continuous symmetries. According to the method used for constructing the invariant difference
schemes, this condition for stability does not have to appear at first sight. The parameters from Table 2
are chosen to provide graphical examples for the obtained numerical results and their plots.
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4.2. Generation of Numerical Solutions

This section is intended to present results of generations of numerical solutions for the difference
scheme (22) and (23) of differential Equation (5) of gas flow in porous media. There are results of
numerical solution generations [25] for the Rapoport–Leas equation [26], which is a generalization of the
Buckley–Leverett problem. For symmetry groups with operators X1 and X2 from (6), transformations
for solutions mean translations for time and spatial variables, respectively. It means only moving of the
meshes without changes for the difference equations. It would be more interesting for the generation
to consider operators X3 and X4 from (6). The groups of transformations are

t = e2at, x = eax, P = P,
t = e−at, x = x, P = (P + K2)ea

−K2
(24)

for X3 and X4, respectively. In Figure 2, actions of (24) for the numerical solution from Figure 1 (the
implicit scheme (22) and (23) with the continuous symmetry groups (24)) are used to show the concept
of the solution generation method.
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Figure 2. Numerical solution generations for the solution (Figure 1) obtained using the implicit
scheme with the time step choice. Plots (a,b) show generations using dilations for time and spatial
variables (infinitesimal operator X3) with certain values of the group parameter a; plots (c,d) show the
applications of X4, which defines dilations of time and the combination of dilations and translations for
pressure (the set initial left boundary pressures define group parameters for generations, where k is the
factor for Ple f t ).

The used initial and boundary conditions were chosen for the sake of testing. Classes of initial
and boundary conditions are not restricted to those from exact solutions. For example, classes of initial
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and boundary conditions can be constructed on the basis of two smooth enough functions, which
provide sensible numerical solutions for difference schemes with continuous symmetries. Classes of
conditions are constructed by applying transformations from these continuous symmetry groups to
these two functions.

The use of the generation algorithm via continuous symmetries is faster by several orders than
the use of difference schemes as it has been obtained during numerical calculations of this section
and in [25]. Tables A1 and A2 present demanded memory and calculation time, respectively, for
different methods and meshes. This advantage allows faster and more effective solutions of many
problems, which demand a considerable number of multivariate calculations: uncertainty analysis,
history matching and upscaling. Moreover, the proposed approach of numerical solution generation
can be accelerated by parallelization of three steps of the method:

• The first step of obtaining initial numerical solutions can be paralleled by using some known
parallel algorithms for solving arising systems of linear algebraic equations [27];

• The second step of group parameters seeking for transformations can be paralleled using some
known parallel algorithms for solving arising systems of nonlinear (in the general case) algebraic
equations [28] but there is no need for that in our case because group parameters can be analytically
expressed via functions of initial and boundary conditions;

• The last step of numerical solution generation using continuous groups of symmetries can
be paralleled because every mesh point and pressure value of a new generated solution are
calculated independently.

The obtained results encourage further attempts to understand connections of stability and
continuous symmetries for difference schemes in general cases, for example, two- and three-dimensional
cases of multiphase flow equations in porous media. Moreover, the question of conservation laws [29,30]
is close to continuous symmetries and not discussed in this article. It can help in a wider understanding
of problems, which are considered in the article.

The following are the main disadvantages of the presented method:

• It is difficult to find continuous symmetry groups for all known and widely used differential
equations and difference schemes;

• One must know explicit forms of transformations from symmetry groups;
• Initial and boundary conditions must be from an invariant family of conditions.

A future goal of this study is to partly reduce the effect of these factors.

5. Conclusions

It is very important to have an opportunity for fast and reliable calculations for the practical usage
of numerical algorithms in many fields. The presence of continuous symmetries gives a method of
solution generations using only these continuous groups. One must calculate one numerical solution
for an invariant difference scheme, which must not be trivial or invariant. Thereafter, a family of
numerical solutions can be obtained using a continuous group of transformations.

Constructing difference schemes with the preservation of continuous Lie point symmetries is
considered using the examples of the equations of gas flow in porous media. The examples and
results of numerical calculations show very close connections between symmetries and properties of
difference schemes such as invariant necessary conditions and the opportunity for numerical solution
generations. Calculated difference invariants and given classifications for the considered family of
differential equations can be used for checking frequently used difference schemes and for constructing
new schemes. The described method of numerical solution generation can be applied for increasing
accuracy and speed of computational fluid dynamics simulation of gas flow in porous media.
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Nomenclature

Symbol Description
a Group parameter
ξ Component of infinitesimal operator
X Infinitesimal operator
I Differential invariant
J Difference invariant
E Function describing difference equation
M Function describing difference mesh
t Time variable
x Spatial variable
y Dependent variable
P Pressure
ϕ Porosity
µ Viscosity of gas
ρ Density of gas
χ Proportionality factor of gas density and pressure
γ Piezoconductivity coefficient
K Permeability for gas
K1 Permeability for liquid
K2 Slope for K(P) versus 1/P
α, β Coefficients of gas flow equation in general form
ci Constants of infinitesimal operators from classification
Ci Constants of exact solution
tn Value of time in current point of mesh
xk Value of spatial variable in current point of mesh
Pn

k Value of pressure in current point of mesh
τ Time step
h Spatial step
Ple f t Left initial pressure
Pright Right initial pressure
P

n
Average pressure for step number n

T Length of time variable interval
L Length of spatial variable interval
Nt Number of time steps
Nx Number of spatial steps
pi Constants of difference invariants from classification
εi Errors of different types

Appendix A. Numerical Calculation Tests for Different Meshes

The tables below (Tables A1–A4) have values in every cell for the following cases (from top to bottom):

• The explicit difference scheme (21) with the time step choice (23);
• The explicit difference scheme (21) with the constant time step;
• The implicit difference scheme (22) with the time step choice (23);
• The implicit difference scheme (22) with the constant time step;
• The method of numerical solution generations using the symmetry group for the operator X4, the parameter

a = 0.4, and numerical solutions of the implicit difference scheme (22) with the time step choice (23).
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The cases from Section 4.1 are highlighted in bold. The numbers of time steps in the tables are average time
steps, which depends on the time step choice (23), for different numbers of spatial steps.

Table A1 shows the lack of significant differences between the demanded memory for numerical calculations
using four presented difference schemes (Figure 1) and the method of numerical solution generations. The
demanded memory mostly depends on the sizes of arrays for mesh points and values of pressure in all five cases.
Table A2 shows comparisons of calculation time. The calculation time for the difference schemes with the constant
time step is less than the calculation time for the schemes with the time step choice because of calculations of
new time steps for every time layer. Calculations for the explicit difference schemes are several times faster than
calculations for implicit difference schemes because systems of linear equations are solved for every time step
in the implicit cases. The calculation time for numerical solution generations is by several orders less than time
of calculations for the used difference schemes because almost all time is spent for calculations of functions for
transformations of time, spatial variable, and pressure values of the used initial numerical solution. The analysis
of relative errors in Tables A3 and A4 shows the advantage of the time step choice for the explicit difference
scheme. The numerical solutions become stable for several used combinations of numbers of time and spatial
steps when the time step choice is used. The implicit cases show almost no difference between relative errors for
used schemes. Relative errors for the implicit scheme after numerical solution generations stay almost the same as
it is shown in Section 3.2 for the general case. Moreover, relative errors for the implicit difference schemes don’t
depend on a mesh critically.

Table A1. Comparisons of demanded memory (bytes) for used difference schemes and the
generation method.

Nt
Nx

5 10 15 20 25 30

91

11,280 - - - - -
11,240 - - - - -
11,456 22,736 34,536 46,736 59,336 72,336
11,416 22,696 34,496 46,696 59,296 72,296
11,200 22,000 32,920 43,840 54,760 65,680

157

19,320 37,920 - - - -
19,280 37,880 - - - -
19,496 38,576 58,296 78,416 98,936 119,856
19,456 38,536 58,256 78,376 98,896 119,816
19,240 37,840 56,680 75,520 94,360 113,200

393

47,880 94,560 141,720 - - -
47,840 94,520 - - - -
48,056 95,216 143,256 191,216 239,936 289,056
48,016 95,176 143,216 191,176 239,896 289,016
47,800 94,480 141,640 188,320 235,360 282,400

778

94,560 186,960 279,600 372,240 - -
94,520 186,920 279,560 - - -
94,736 187,616 281,136 375,056 469,736 564,816
94,696 187,576 281,096 375,016 469,696 564,776
94,480 186,880 279,520 372,160 465,160 558,160

1327

161,160 318,720 476,880 635,280 793,440 -
161,120 318,680 476,840 635,240 793,400 -
161,336 319,376 478,416 638,096 797,936 958,656
161,296 319,336 478,376 638,056 797,896 958,616
161,080 318,640 476,800 635,200 793,360 952,000

1830

222,120 439,680 657,960 876,240 1,094,640 1,312,800
222,080 439,640 657,920 876,200 1,094,600 -
222,296 440,336 659,496 879,056 1,099,136 1,319,376
222,256 440,296 659,456 879,016 1,099,096 1,319,336
222,040 439,600 657,880 876,160 1,094,560 1,312,720
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Table A2. Comparisons of the calculation time (seconds) for used difference schemes and the
generation method.

Nt
Nx

5 10 15 20 25 30

91

0.00005 - - - - -
0.00004 - - - - -

0.000453 0.000531 0.000723 0.000915 0.00096 0.001142
0.000522 0.000493 0.00064 0.000889 0.000905 0.001037
0.000007 0.00001 0.000008 0.00001 0.000009 0.000012

157

0.000074 0.000087 - - - -
0.000064 0.000074 - - - -
0.000695 0.000879 0.001104 0.001379 0.001637 0.001803
0.000626 0.000801 0.001042 0.001235 0.001469 0.00169
0.000007 0.000007 0.000011 0.000011 0.000012 0.000013

393

0.000169 0.000189 0.000217 - - -
0.000154 0.000171 - - - -
0.001765 0.002007 0.002667 0.003127 0.003826 0.00441
0.001499 0.001889 0.002482 0.00302 0.003691 0.004244
0.000007 0.000012 0.000016 0.000019 0.000057 0.00004

778

0.000325 0.000606 0.000649 0.00047 - -
0.000301 0.000466 0.000519 - - -
0.003149 0.006344 0.008676 0.006607 0.007358 0.009251
0.002967 0.006046 0.008522 0.005953 0.007102 0.008982
0.000012 0.00002 0.000056 0.000047 0.000058 0.00006

1327

0.000546 0.000627 0.000704 0.000777 0.000877 -
0.000507 0.000577 0.000652 0.000699 0.000777 -
0.005217 0.006465 0.008528 0.010208 0.01245 0.015874
0.004937 0.006182 0.008253 0.009838 0.012067 0.01505
0.000015 0.00004 0.00005 0.000079 0.00009 0.000095

1830

0.000754 0.000855 0.000988 0.001091 0.001233 0.001353
0.000696 0.000786 0.000884 0.000979 0.001093 -
0.007129 0.008863 0.011792 0.014185 0.017199 0.021577
0.006866 0.00908 0.011447 0.013763 0.016761 0.020993
0.000035 0.000058 0.000078 0.000095 0.0001 0.000127



Computation 2019, 7, 45 16 of 18

Table A3. Comparisons of average absolute values of relative errors (in comparison with the exact
solution) for used difference schemes and the generation method.

Nt
Nx

5 10 15 20 25 30

91

0.006037 >1 >1 >1 >1 >1
0.005821 >1 >1 >1 >1 >1
0.005652 0.003276 0.002113 0.001473 0.001072 0.000797
0.005424 0.003106 0.001989 0.001375 0.000989 0.000724
0.005652 0.003276 0.002113 0.001473 0.001072 0.000797

157

0.006038 0.003699 >1 >1 >1 >1
0.005842 0.006621 >1 >1 >1 >1
0.005813 0.003498 0.002353 0.001722 0.001325 0.001054
0.005611 0.003344 0.002242 0.001635 0.001253 0.000992
0.005813 0.003498 0.002353 0.001722 0.001325 0.001054

393

0.006058 0.003767 0.002629 >1 >1 >1
0.005859 0.003625 >1 >1 >1 >1
0.005968 0.003686 0.002555 0.001934 0.001541 0.001272
0.005766 0.003541 0.002453 0.001851 0.001473 0.001214
0.005968 0.003686 0.002555 0.001934 0.001541 0.001272

778

0.006057 0.003787 0.002662 0.002039 >1 >1
0.005864 0.003649 0.002561 >1 >1 >1
0.006011 0.003745 0.002624 0.002003 0.001612 0.001343
0.005817 0.003607 0.002522 0.001922 0.001546 0.001288
0.006011 0.003745 0.002624 0.002003 0.001612 0.001343

1327

0.006058 0.003797 0.002675 0.002053 0.001662 >1
0.005866 0.003659 0.002574 0.001975 0.01036 >1
0.006031 0.003772 0.002652 0.002032 0.001642 0.001374
0.005839 0.003634 0.002551 0.001953 0.001576 0.001319
0.006031 0.003772 0.002652 0.002032 0.001642 0.001374

1830

0.00606 0.003799 0.002679 0.002058 0.001668 0.001498
0.005867 0.003663 0.002579 0.00198 0.001604 >1
0.006041 0.003782 0.002663 0.002043 0.001653 0.001386
0.005847 0.003645 0.002563 0.001964 0.001588 0.001331
0.006041 0.003782 0.002663 0.002043 0.001653 0.001386
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Table A4. Comparisons of maximum absolute values of relative errors (in comparison with the exact
solution) for used difference schemes and the generation method.

Nt
Nx

5 10 15 20 25 30

91

0.028301 >1 >1 >1 >1 >1
0.02818 >1 >1 >1 >1 >1
0.027267 0.013512 0.008603 0.00599 0.004361 0.003294
0.02706 0.013277 0.008376 0.005749 0.004129 0.003056
0.027267 0.013512 0.008603 0.00599 0.004361 0.003294

157

0.028784 0.014194 >1 >1 >1 >1
0.028729 0.062449 >1 >1 >1 >1
0.028171 0.01446 0.009529 0.006937 0.005313 0.004233
0.02806 0.014325 0.009397 0.006799 0.005176 0.004097
0.028171 0.01446 0.009529 0.006937 0.005313 0.004233

393

0.029195 0.015153 0.009979 >1 >1 >1
0.029169 0.015088 >1 >1 >1 >1
0.028944 0.015264 0.010311 0.007739 0.006125 0.00503
0.028895 0.01521 0.010258 0.007683 0.006068 0.004972
0.028944 0.015264 0.010311 0.007739 0.006125 0.00503

778

0.029329 0.015475 0.010363 0.007758 >1 >1
0.029316 0.015443 0.010322 >1 >1 >1
0.029201 0.015531 0.010571 0.008006 0.006395 0.005301
0.029177 0.015504 0.010544 0.007977 0.006366 0.005272
0.029201 0.015531 0.010571 0.008006 0.006395 0.005301

1327

0.029385 0.015612 0.01054 0.007973 0.006361 >1
0.029378 0.015593 0.01051 0.007941 0.57243 >1
0.02931 0.015645 0.010682 0.008119 0.00651 0.005416
0.029296 0.015629 0.010666 0.008102 0.006493 0.005399
0.02931 0.015645 0.010682 0.008119 0.00651 0.005416

1830

0.029407 0.015666 0.010622 0.008057 0.006446 0.020468
0.029402 0.015652 0.0106 0.008034 0.006423 >1
0.029353 0.015689 0.010725 0.008163 0.006554 0.005461
0.029343 0.015678 0.010714 0.008151 0.006542 0.005449
0.029353 0.015689 0.010725 0.008163 0.006554 0.005461
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