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Abstract: This manuscript discusses a novel method to map pressure results from one 3D surface
shell mesh onto another. This method works independently of the actual pressures, and only focuses
on ensuring the surface areas consistently match. By utilizing this approach, the cumulative forces
consistently match for all input pressures. This method is demonstrated to work for pressure profiles
with precipitous changes in pressures, and with small quadrangular source elements being applied
to a mix of large quadrangular and triangular target elements, and the forces at all pressure profiles
match remarkably.
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1. Introduction

Numerical methods [1–5] are among the most important and valuable tools for engineers and
scientists today. When an engineering analysis is necessary on an object or domain, and that domain is
too complex a shape to be mathematically defined as a simple shape (e.g., a cube, cylinder, or sphere),
numerical methods serve to mesh the domain up into clearly defined elements, and the calculating
power of a computer can give a realistic answer to the engineering question. One of the most common
numerical methods for the study of stresses in a solid is Finite Element Analysis (FEA). Meshed
domains are often used in the study of Computational Fluid Dynamics (CFD), an entire field separated
from FEA of solids. Of crucial importance in practical engineering is Fluid Solid Interactions (FSI),
and, while this is a field in-and-of itself, a combination of CFD and FEA is often used in practical
engineering design.

In the studies on the stresses of pressure vessels, water twisters and dynamometers, turbines,
airfoils, and countless other applications of fluids and solids, the engineer often uses CFD to model
the fluid flow around the incompressible solid, and then uses the pressures at the boundary to study
the stresses and strains observed in the solid object. Almost always, the meshed geometry of a CFD
domain will vary from the meshed surfaces of an FEA model, and a computational approach to
properly map the CFD results onto the FEA boundary is necessary [6–19]. In practical application, it
is essential that both the pressure functions match for both meshes, and the cumulative forces in all
three dimensions all match for both meshed surfaces. This effort demonstrates a simple and robust
algorithm to convert the CFD pressure data into boundary conditions for a different FEA mesh.

There are numerous other efforts to better understand Fluid Solid Interactions (FSI), and
interactions between Computational Fluid Dynamics (CFD) and Computational Solid Dynamics
(CSD). One such study [20], when using commercial software (ANSYS), approximated a vertical
launch tube as a simplified rectangular shape; this was done to validate their novel FSI modeling
efforts. Another approach [21] uses the Arbitrary-Lagrangian-Eulerian (ALE) technique, where the
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shell mesh arbitrarily moves based on pre-determined user assumptions; the algorithm loosely couples
the two solvers by applying an arbitrarily specified interface boundary conditions at the beginning of
each time step, with specific shell cells to represent the FSI shell border. Remeshing is another approach
for unstructured FSI, but it is very computationally expensive [22]. Finally, one of the most common
approaches [23–25] to map between different shell meshes is to use regression schemes, to develop
an equation for the pressure at a given location from a source mesh, and try to match to the target
mesh; this approach is realistic, but does not necessarily match the forces perfectly unless one uses
very fine meshes.

2. Set-Up

Before a final list of the target pressure data can be produced, a transfer matrix must first be
generated. This transfer matrix is data on each target element, which source elements will impact
the target pressures, and their weighted averages. Each target element pressure can be defined as the
summation of several weighted source pressures

PT = ΣN
i=1PS,i·AS,i, (1)

where PT (Pa) is the target pressure, PS,i is the pressure of N specific sources i, where i is defined by the
transfer matrix, and AS,i is the dimensionless weight of each source element’s impact on the target. It is
absolutely possible for a source to have an impact on more than one target, although in practice the
overwhelming majority of the force from one source will go to one target. The purpose of generating
a transfer matrix that is exclusively dependent on the geometry is because, in practice, when one
conducts a CFD simulation for FSI, it is often with multiple time-steps and therefore a parametric
FEA study will be conducted using a series of pressure data for varying time-steps. With the transfer
matrix, one can make sure the cumulative forces in all three directions match consistently regardless of
the specific CFD pressure profile.

The first step in this mapping algorithm is to define the element surfaces for both the source
mesh and the target. This is comprised of matrices of nodes and elements. The node matrices, both
the source and the target, have dimensions of NN,S·3 and NN,T ·3, where NN,S and NN,T represent the
number of source and target nodes. These represent the X, Y, and Z coordinates of the nodes, and
they are in real or double precision format. There also are two element matrices, of dimensions NE,S·5
and NE,T ·5, where NE,S and NE,T represent the number of source and target elements, and they are in
integer format. Each row of these two matrices represents a unique element, which is comprised of the
number of nodes in the element (three for linear triangles or four for linear quads; this algorithm does
not process quadratic element faces), followed by the integer value for the row in the node matrix that
contains the X-Y-Z coordinate for the specific node. If there is a triangle element, the fourth node is
listed simply as 0. For example, a quad with coordinates at (1,1,0), (1,2,1), (2,1,0), and (2,2,1) would be
listed in the element matrix as

4 1 2 3 4, (2)

whereas the first four nodes of the node matrix would be

1.0 1.0 0.0 (3)

1.0 2.0 1.0

2.0 1.0 0.0

2.0 2.0 1.0.
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While each element declared will be used in the generation of the transfer matrix, there can be excess
nodes in the node matrix without any detriment, so long as all of the nodes referenced by the elements
are present.

The next step is to determine the centroid of each element, for linear tetrahedral faces (triangles)
and linear hexahedrals faces (quads); this is simply calculated by taking the X, Y, and Z coordinate
values of the three or four nodes that comprise the element. Each element row has three columns,
regardless of the shape of the element face, for the X, Y, and Z coordinates of the centroid of each
element. The centroid is necessary for applying a smoothing function in between elements, which is
directly related to the distance between centroids. A separate centroid matrix is assigned for both the
source and the target elements, with the dimensions of NE,S·3 and NE,T ·3.

The next step is to calculate the area of each element face. This is performed by taking the cross
product of the vectors between the element node and the center of the triangle. If the element is a
triangle, it is split into three mini-triangles formed with the vectors from the node to the centroid.
The steps are as follows:

• Find the centroid of the triangle element, and in the case of an element being a quad, the triangle
that forms half of the quad element surface

– If a quad, then the first three node elements are used to calculate the area. Afterwards, the
process is repeated with the first, second, and fourth node. Regardless of the node order, this
should create two triangles that form the quad.

– The centroid coordinates are found by simply averaging the X, Y, and Z locations of the three
nodes that made up the surface triangle.

• Generate the vectors from each node to the centroid.
• Find the area formed by each of the three pairs of vectors three times.

– R1×R2, R2×R3, and R1×R3, where R1, R2, and R3 represent the vector formed in between
the centroid and node 1, 2, and 3, respectively.

– The area is calculated as half of the absolute value of the cross product of the two vectors, to
form each smaller triangle

A =
1
2
·|R1×R2| (4)

=
1
2
·{(R1B·R2C − R1C·R2B)

2 + (R1A·R2C − R1C·R2A)
2 + (R1B·R2A − R1A·R2B)

2},

where R1 and R2 are vectors of components A, B, and C.

• The areas of these three small triangles is added up to determine the area of the larger triangle
(Figure 1)

• If the element surface is a quad, this process is performed twice, treating the quad as two triangles

– Different software packages use different node patterns. If the wrong pattern is used, the area
could be erroneously calculated (Figure 2),

– It is not an option to find the node the greatest distance away, as an oddly shaped element
would give an erroneous calculation (Figure 3),

– The areas of all three combinations of two possible triangles are calculated (Table 1),
– The maximum of these three possible areas is selected as the area of the quad of interest.
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Figure 1. Triangle element face divided into three parts.

Figure 2. An example of how picking the wrong nodes to divide a quad into two triangles (blue and
yellow) can cause error due to area overlap (green), utilizing nodes 1-2-3 and 1-3-4.
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Figure 3. Another example of how picking the wrong nodes to divide a quad into two triangles (blue
and yellow) can cause error due to area overlap (green), demonstrating how an assumption cannot be
made by searching for the longest vector between two nodes.

Table 1. Three different areas of two triangles; the maximum total area represents the correct area of
the quad element face.

Quad Area Node (First Triangle) Node (Second Triangle)

Area 1 Node 1, 2, 3 Node 1, 2, 4

Area 2 Node 1, 3, 2 Node 1, 3, 4

Area 3 Node 1, 4, 2 Node 1, 4, 3

The next step is to calculate the normal vector of each element. In addition to weighting the
source-to-target impact by distance between centroid, this approach also considers the angles of each
surface. If a source surface is parallel to a target surface, then the force may be fully applied; if the
elements’ surfaces are perpendicular, then there is no impact of the source on the target. The normal
vector is found by normalizing the cross product of the vectors between Node 1-2 and Node 1-3. It
would not matter if the element surface was a quad or a triangle, or what order the nodes were located;
assuming the surface is flat as would be the case for a linear element, then any combination of node
vectors should yield the unit normal.

3. Algorithm

Once it is defined what the centroid, surface area, and unit normal vector is for each source and
target element, the mapping algorithm can commence. The goal of mapping is to determine how much
of an impact each source element will have on each target element. If there is perfect overlap from
a source and an element, then all of the force from that source element will be applied to that target
element. Of course, in practice, this almost never happens, and therefore a weighting scheme is needed
to determine what proportion of each source element is applied to each target element. The impact of
a source onto a target can be defined as W, a dimensionless number from 0 to 1; a value of 0 means
there is no force from the source applied to the target, and a value of 1 means all of the force from the
source is applied to the target.

The first step is to look at the distance from centroid to centroid, and the relative impact Wr.
A magnitude function should be one where the magnitude decreases exponentially with distance, such
as the Gaussian function

Wr = exp(− r
h
), (5)

where r (m) is the linear distance from the source centroid to the target centroid, and h (m) is the
smoothing value. The value should be such that Wr is small if the distance between centroids is so
great that the source element is completely outside of the target element. It was found that good results
came from setting h to equal the mean average value of the square root of the target element areas.
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The second aspect of the impact WA between source and target elements is the angle separating
the unit normal for each element. This value can be found by taking the dot product of the unit
normal vectors:

WA = VS·VT = VS,x·VT,x + VS,y·VT,y + VS,z·VT,z, (6)

where VS and VT are the unit-normal vectors for the source and the target element. If the two elements
are perfectly parallel, then WA = 1. Even if the centroids of a target element are proximate, if they face
perpendicular to each other they ought to not have any impact with each other and WA = 0. In practical
application, if the surfaces are identical, proximate elements should be very close to parallel to each
other; only distant source elements might be significantly less parallel, and they will have a low value
of Wr so that the value of WA should be irrelevant. The importance of this step, however, is when there
are sharp edges in a 3D, model; such source elements might have dramatically different directions
and therefore should have little impact, yet be proximate to a target element. For this reason, both the
separation distance as well as the normal vectors of each source and target vectors are considered to
get a total dimensionless weighting value

W = Wr·WA, (7)

where W, a dimensionless value between 0 and 1, is the weighted impact value of a source and a target.
This approach is performed for source and target pair, and is the most computationally intensive

task of the mapper, requiring NS·NT distance calculations, where NS and NT are the number of sources
and targets. For typical models of hundreds of thousands of surface elements, an NS·NT array would
take up far more memory than most computers can handle, and therefore an optimizing approach is
necessary. The first step is categorizing the targets that each source can have a meaningful amount
of impact with; this is stored in two NS·NX arrays, where NX is an arbitrarily small, user defined
integer value (typically 5 to 10). The first array defined as a real variable array of the impact value W;
the second is defined as an integer array and represents the target the specific source impacts. For each
source element, the impact magnitude of all of the targets was found. To keep the number of contacted
targets within the value of NX, the calculated impact magnitude was only stored in the array if the
value was greater than the minimum of all NX impact magnitudes stored. If it was greater than the
minimum, the calculated value was stored in the array location of the previous minimum impact value;
the target element number was stored in the equivalent location in the integer array. This method
serves the goal of finding the top NX target elements that have the greatest impact magnitude W to a
given source.

One potential issue that can come up with mapping is the potential for target elements to have no
proximate source elements. This is especially possible from different geometries or meshes. A user
may prefer to map every target with the nearest mesh, regardless of how far it is; this will, however,
result in pressures not actually applied on the target being predicted. Another option is for the user to
set a minimum value of the impact magnitude W. This has the advantage of preventing pressures far
from a target element from impacting the final pressure calculation; there is the risk (possibly desired
by the user) that some target elements fail to get meshed by any source elements. There is another
advantage that, since the vast majority of target elements will be too far from the source element of
interest to have an impact magnitude W exceed the minimum value of W, all these calculated values
are not written to memory, significantly reducing run time for large meshes.

After this step has been completed, each of the NS source elements have NX or less target elements
with a varying impact magnitude of W ranging from 0 to 1. The calculated value of W is fairly arbitrary,
and the smoothing function can be modified by the user. What cannot be arbitrarily altered is the
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total summation of the forces; the total forces must match in the transfer matrix. With each source, the
actual impact of all NX proximate target elements are normalized WN , so that

ΣNX
i=1WN,i = 1. (8)

These normalized impacts represent the proportion that the force from one source element is
applied to a given target element. This approach enables that the total force from each source is equally
applied to NX target elements, and the cumulative forces match for both the source and the target.

The transfer matrix does not work in terms of force but of pressure; the goal of the mapper is to
find an even distribution of source pressures that combine to a given target element. To determine
the magnitude of a source pressure on a target element WP, the ratio of the element areas are applied,
and thus

WP = WN,i·
AS
AT,i

, (9)

where AS is the area of the source, AT,i is the area of the specific target, WN,i is the normalized ratio of
the force from the source that is applied to target i, and WP is the ratio of how much pressure from the
source is added to the total pressure of target i.

The last and final step is to swap the calculated values of WP from a NS·NX array to a NT ·NX2

array, where NX2 is an integer value significantly greater than NX . This is simply determined by

• Sorting through the NS·NX array of WP for each source element,
• Adding to the target number found, the location in a NT ·NX2 array,

– That source element, the source element number, and the pressure magnitude data WP.

• Incrementing the count of sources proximate to a given target

– Stored in a separate integer vector (NT ·1),
– Used to track how many source elements are proximate to the given target element,
– Can be expected to exceed NX provided the number of source elements is greater than the

number of target elements,
– Should never exceed NX2; if this happens, it is necessary to increase the value of NX2 to avoid

memory errors,

• Save the transfer matrix.

Saving the transfer matrix is the last and final step. This algorithm saves the transfer matrix as
a separate output file for the combination of two specific meshes; the actual pressure is irrelevant.
The transfer matrix by definition is the proportion of all the source pressures that make up each target
pressure, so that the cumulative forces all match. The purpose of saving this transfer matrix is so that,
in the future, a host of different pressures can be mapped onto the surface without needing to rerun
the computationally expensive mapping script. In practice, a numerical analysis will run in many
time-steps, and one might want to map a host of different pressures to the same mesh. The format of
the output transfer matrix includes:

• Number of elements NT ,

– This number is saved so a future mapping algorithm knows the number of target pressures
to generate,

• For NT times, list the specific target and the following information,

– Target number, Number of Sources Proximate, and Sum of Pressure Impacts WP
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– The reason for the sum of WP is because each individual value of WP is normalized by the
cumulative sum of WP for all proximate targets, so that the pressure of the target element is a
proportional average of these proximate source elements.

• For each target, for the number of proximate source elements,

– Sequential number, source element number, and pressure impact WP

4. Test Example

To demonstrate the robustness of this mapping algorithm, an arbitrary mapped source mesh
will be mapped onto a target, for 180 different pressures; the details of this code are described in the
Appendix A, and included in the Supplementary file. The source is a grid of 450·450 nodes, spanning
from −0.1 to 1.1 in the X, Y, and Z direction; the grid is slanted along the Z plane so that Z = Y. All
of the elements are the quads formed by the 202,500 nodes, resulting in (450− 1)2 = 201,601 source
elements. The target domain is smaller, stretching from 0 to 1 in the X, Y, and Z direction, also parallel
to the Z plane, and these nodes are an even grid of 225·225 = 50,625 nodes. Different from the source,
which uses exclusively quad surface elements, the target has a mix of quads and triangles. Moving
up in the Y and Z direction, odd numbered rows are all quads, whereas even numbered rows are all
triangles, with two triangle surface elements formed per four nodes.

An arbitrary pressure was applied to 180 time steps, all with different pressures. The pressure for
a given time step is

P(x, y) = (CX ·xx2) + (CY·yy2) + Pspot, (10)

where

xx = x + (
oo

180
·1.2), (11)

yy = y + (
oo

180
·1.2),

CX = 500 + 2·oo,

CY = 1500− 3·oo,

and oo is the time step, ranging from 1 to 180. If xx or yy ever exceeded the value of 1.1, then xx
or yy was subtracted by 1.2. This will cause a moving pressure boundary in the X and Y direction,
demonstrating the robustness for sudden pressure changes. In addition, a Gaussian pressure spike is
added at a cyclic location

Pspot = 5000·exp(−10·rr), (12)

rr =
√
(x− XC)2 + (y−YC)2,

where

XC = 0.5 + 0.25·cos(
oo·π
90

), (13)

YC = 0.5 + 0.35·sin(
oo·π
90

).

The mapping was completed, and, for all 180 time steps, the cumulative forces matched almost
exactly (Figure 4). The forces shown in Figure 4, representing the integrated pressures over area such
as in Figure 5, are of arbitrary units; this example uses pressures in Pascals, applied over a surface area
of one square meter, to give the force in Newtons. Obviously, the total forces for the source is greater,
as the surface area for the source is greater, but, by isolating all of the elements within the range of
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0 to 1 meter that will be applied to the target mesh, the target force matches nearly perfectly for all of
the pressure steps.

Figure 4. Comparison of the Total Forces in Newtons of the source versus the target, for 180 different
source pressure profiles.

When looking at the individual mapped surfaces such as in Figure 5, it is clear that sharp lines,
high peaks, and random pressure spikes are unaffected, and the mapped pressures on the target closely
match the mapped pressures on the source.

Figure 5. Comparison of the Pressures of one time step, both Source and Target, for oo = 100.
The color-bar represents the pressure (Pa).
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5. Conclusions

A robust algorithm has been demonstrated to map pressures from a source shell mesh onto a
surface target of a similar geometry but of a different mesh. This algorithm has been tested to work
with both quads and triangles, and both geometries work. After mapping two dramatically different
meshes, with different overall geometries, different structured elements, and significantly different
sizes, forces and pressure profiles have managed to consistently match. This test demonstrates the
effectiveness of using this method to robustly map pressures from one mesh onto another.

Supplementary Materials: All sample codes are available online at http://www.mdpi.com/2079-3197/7/2/29/s1.
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The following abbreviations are used in this manuscript:

ALE Arbitrary-Lagrangian-Eulerian
FSI Fluid Solid Interactions
CFD Computational Fluid Dynamics
CSD Computational Solid Dynamics
FEA Finite Element Analysis
ANSYS Analysis Systems, Inc.
NAVAIR Naval Air Systems Command

Appendix A. Sample Code

Appendix A.1. Introduction

This sample code was prepared to demonstrate the mapping test example discussed in the
manuscript, where 180 time steps of pressure data are mapped from one mesh to another, all the
while preserving the overall forces. This supplementary code enables the users within the Fortran and
the MatLab programming environment to recreate the results from start to finish. The steps are as
follows: generating the source and target mesh, as well as the input target pressures for 180 time steps;
generating the transfer matrix; mapping the input source pressures to generate output target pressures;
and post-processing to generate the images and check the total forces on the source and target surfaces.
All of these steps are run independent of each other, allowing a future user to customize it as desired.

Appendix A.2. Generating the Input Files

The first step is to generate the source and target mesh, as well as the source input pressure files.
A script to generate all of the sample mesh and pressure files was written in the Fortran programing
language as file Make_Input.f and can easily be run after compiling. If one were to run it in the Linux
operating system environment with gfortran installed, it can easily be run by typing:

gfortran -O3 -o makeinput Make_Input.f
./makeinput

in the command prompt. This assumes that the empty directory Input that is in the supplementary
folder remains. In addition, the executable filename makeinput is arbitrary, and can be substituted for
any filename the user wishes. Generating the meshes and pressure files should take approximately
five minutes on a standard personal computer.

Four files will be generated in the directory that the executable is run: the source node
Ns_dat_source.txt and element Es_dat_source.txt input file, as well as the target node Ns_dat_target.txt

http://www.mdpi.com/2079-3197/7/2/29/s1
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and element Es_dat_target.txt input file. The node files are the X, Y, Z coordinates of each node, and
the element files lists which node comprises each triangle or quadrangular element. In addition, 180
input pressures are generated as Ps_001.txt, ..., Ps_180.txt in the input directory are generated. With
these files, the mapping algorithm can be compiled and executed in order to get the transfer matrix.

Appendix A.3. Generating the Transfer Matrix

The second step is to generate the transfer matrix; this file is labeled transfer_matrix.dat. The source
input pressure files are not needed at this time; the transfer matrix is only defined by the geometries of
the two meshes. It is necessary that in the same directory as the executable file are the source node
Ns_dat_source.txt and element Es_dat_source.txt input file, as well as the target node Ns_dat_target.txt
and element Es_dat_target.txt input file. Finally, it is necessary to have the input mapper parameter file
Map_Parameters.txt in the same directory. This file enables manipulation by the user of the mapping
parameters without ever having to manipulate the source make_tm.f Fortran file.

The input mapper parameter file contains six lines of simple inputs; no variable names are shown.
The variables in terms of line numbers are as follows:

1. Nx = 5: This is the maximum number of targets that can be considered proximate to a given
source. Matrix arrays of Ns·Nx will be generated, so it must be small enough that the script does
not exceed the memory resources of the computer. Even if there is a lot of memory, unless the
target elements are smaller than the source (definitely possible but often not the case in practice),
then it should not be desirable for Nx to be greater than a few, as one would not want the source
element to be mapped onto elements a significant distance away.

2. Nx2 = 500: This is the maximum number of sources that can be considered proximate to a given
target and used in the transfer matrix. Matrix arrays of Nt·Nx will be generated, so it must be
small enough that the script does not exceed the memory resources of the computer, but also
large enough to contain every source matrix considered proximate to a given target; in practice,
having a value of Nx2 that is 100 times greater than Nx was found to work well.

3. MinW0 = 0.0000000001: This is the minimum value of W that is necessary for a target particle to
be considered proximate to a source. This value can be set to zero, but the computational time
will be dramatically increased, and there is a risk that source elements that do not in fact overlap
a target can be used for the final pressure. If a minimum value is set, then target elements that do
not have any proximate source elements will not be mapped, resulting in a consistent pressure of
zero. Different circumstances may prefer or oppose this possibility. This value of 10−10 was used
in the example in the manuscript.

4. hcoef = 1.0: This is a coefficient to calculate the weighting function between a source and target
element centroid as a function of distance apart. The smoothing length is proportional to this
arbitrary value times the square root of the average area of all of the target elements. The larger
hcoef is, the more likely a source element fully separated from a target element will influence the
pressure, and the less likely a target element will turn out to not be mapped.

5. ct1 = 1: This value is not used in the mapping, only in the generation of the final target pressure
output files. This fifth line is the number of the first of the input pressures, and should be 1 unless
modified by the user.

6. ct2 = 180: This value is not used in the mapping, only in the generation of the final target pressure
output files. This sixth line is the number of inputs, and should be 180 to capture all 180 input
pressures unless modified by the user.

To run the script in the Linux operating system environment, merely enter the following commands

gfortran -O3 -o run make_tm.f
./run

in the command line. The executable filename run is arbitrary, and can be substituted for any filename
the user wishes. On a typical personal computer, the mesh example generated will take approximately
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an hour and a half to run to completion. Progress on the run is saved in the file prompt.dat and the user
can see how many steps of searching remain, as well as the run time to date, by opening this file with
the command:

less prompt.dat.

Appendix A.4. Generating New Pressures

After the transfer matrix is generated, the next step is to map the input pressure files to new
output pressure files Pt_001.txt, ..., Pt_180.txt in the empty directory target. There is a simple and
practical reason for keeping this script to generate the output pressure files separate from the mapping
algorithm to generate the transfer matrix. Quite simply, the transfer matrix, which is computationally
expensive to generate, might be used for different analysis, and one very well may reuse a transfer
matrix for the same geometry but with different pressure inputs. By separating these steps, this script
becomes a practical tool useful in real engineering design.

In the file Map_Parameters.txt the fifth and sixth line are 1 and 180, representing the numbered
filename. The choice to use 180 pressure files in this example is arbitrary, merely representing a single
revolution (the pressure data was generated with sinusoidal functions) in two-degree increments.
There are infinite possible quantities of pressure files that a parametric numerical analysis could
generate, depending on the needs and computational resources of the user. To execute the read-map
script, merely enter the following commands in the command prompt:

gfortran -O3 -o readmap ReadMap.f
./readmap.

The executable filename readmap is arbitrary, and can be substituted for any filename the user wishes.
On a typical personal computer, this will take approximately five minutes to run to completion.

Appendix A.5. Post-Processing

At this step, the new pressures are generated for the target elements, and the forces should match
for all pressure steps. To validate and visualize this, a series of MatLab scripts were developed to
process and plot the results. The first step is to calculate the total force on the surface; this is easily
done by multiplying the pressure times each element’s area and summing these forces up:

F = ΣNe
i=1Pi·Ai. (A1)

When comparing forces, it is necessary to distinguish the force from the source over the 1·1 area of the
target, versus the elements on the edge. The next step is to generate the two manuscript figure files,
including the cumulation of the forces for all 180 pressure steps in Figure 4, as well as the source and
target 2D pressure plots (pressure file 100) in Figure 5. Finally, all of the 2D pressure plots, both source
and target are generated and saved, and an animation of the entire change in pressure clearly matches
for all time steps. This post-processing script validates the pressure data, and validates that the forces
match for all pressure functions, even with dramatic and precipitous shifts in pressure magnitude, and
demonstrates that this algorithm is a practical tool to convert pressure data from different 3D surface
meshes for numerical analysis in practical engineering design.
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