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Abstract

:

In this paper, we propose and investigate a diffusive viral infection model with distributed delays and cytotoxic T lymphocyte (CTL) immune response. Also, both routes of infection that are virus-to-cell infection and cell-to-cell transmission are modeled by two general nonlinear incidence functions. The well-posedness of the proposed model is also proved by establishing the global existence, uniqueness, nonnegativity and boundedness of solutions. Moreover, the threshold parameters and the global asymptotic stability of equilibria are obtained. Furthermore, diffusive and delayed virus dynamics models presented in many previous studies are improved and generalized.
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1. Introduction


During human infections with viruses such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), hepatitis B virus (HBV) and hepatitis C virus (HCV), cytotoxic T lymphocyte (CTL) cells play a crucial role in antiviral defence by attacking and killing infected cells. So, modeling the role of CTL immune response in viral infection has attracted the attention of many researchers. In 1996, Nowak and Bangham [1] proposed a basic mathematical model by assuming that the infection process is bilinear and follows the principle of mass action. However, as a nonlinear relationship between parasite dose and infection rate has been frequently observed in experiments in [2,3], this bilinear incidence was replaced by Beddington-DeAngelis functional response in [4] and by a more general incidence function in [5].



In the above classical models that are formulated by ordinary differential equations (ODEs), the cell infection is instantaneous and only caused by contact with the free virus. In reality, there are two routes of infection and also time delays in cell infection and virus production. Motivated by these biological reasons, Li et al. [6] proposed a mathematical model formulated by delay differential equations (DDEs) to describe the global dynamics of HIV infection with CTL immune response. This delayed model is an extension of [1] that considers Holling type-II functional response and two kinds of discrete delays, one in cell infection and the other in virus production. Also, the authors of [7] improved the model of Nowak and Bangham [1] by introducing a discrete delay in cell infection and using a Crowley-Martin type incidence function. In 2016, Wang et al. [8] introduced an infinite distributed delay in cell infection in order to improve the basic model with CTL immune response [1], and they also considered both routes of infection, virus-to-cell infection and cell-to-cell transmission. Furthermore, a recent work presented in [9] studied the dynamical behavior of a viral infection model with two types of distributed time delays, CTL immune response and saturated incidence rates for both routes of infection. In this paper, we generalize all the ODE and DDE models presented in [1,4,5,6,7,8,9] by proposing the following nonlinear system:


dTdt=λ−dT(t)−fT(t),I(t),V(t)V(t)−gT(t),I(t)I(t),dIdt=∫0∞f1(τ)e−α1τ[fT(t−τ),I(t−τ),V(t−τ)V(t−τ)+gT(t−τ),I(t−τ)I(t−τ)]dτ−aI(t)−pI(t)Z(t),dVdt=k∫0∞f2(τ)e−α2τI(t−τ)dτ−μV(t),dZdt=cI(t)Z(t)−bZ(t),



(1)




where T(t), I(t), V(t) and Z(t) denote the densities of susceptible target cells, infected target cells, free virus particles and CTL cells at time t, respectively. The susceptible target cells are produced at constant λ, die at rate d and become infected by contact with free virus at rate f(T,I,V)V and by contact with infected cells at rate g(T,I)I. The parameters a and b are the death rates of infected cells and CTL cells. The parameter p represents the rate at which infected cells are killed by CTL cells, k is the production rate of free virus by an infected cell, and μ is the clearance rate of free virus. CTL cells expand in response to viral antigens derived from infected cells at rate cIZ. Further, we assume that the virus or infected cell contacts an uninfected cell at time t−τ and the cell becomes infected at time t, where τ is a random variable taken from a probability distribution f1(τ). The term e−α1τ represents the probability of surviving from time t−τ to time t, where α1 is the death rate for infected but not yet virus-producing cells. In the same, we assume that the time necessary for the newly produced virions to become mature and infectious is a random variable with a probability distribution f2(τ). The term e−α2τ denotes the probability of the immature virions surviving the delay period, where 1α2 is the average life time of an immature virus. Therefore, the integral ∫0∞f2(τ)e−α2τI(t−τ)dτ describes the mature viral particles produced at time t. The probability distribution functions f1(τ) and f2(τ) are assumed to satisfy fi(τ)≥0 and ∫0∞fi(τ)dτ=1 for i=1,2.



As in [10,11], the incidence functions f(T,I,V) and g(T,I) for both routes of infection are continuously differentiable and satisfy the following hypotheses:




	(H0) 

	
g(0,I) = 0, for all I≥0; ∂g∂T(T,I)≥0 (or g(T,I) is a strictly monotone increasing function with respect to T when f≡0) and ∂g∂I(T,I)≤0, for all T≥0 and I≥0.




	(H1) 

	
f(0,I,V)=0, for all I≥0 and V≥0,




	(H2) 

	
f(T,I,V) is a strictly monotone increasing function with respect to T (or ∂f∂T(T,I,V)≥0 when g(T,I) is a strictly monotone increasing function with respect to T), for any fixed I≥0 and V≥0,




	(H3) 

	
f(T,I,V) is a monotone decreasing function with respect to I and V.









From a biological viewpoint, the above hypotheses are reasonable and consistent with reality. In fact, the first assumption (H0) on the function g(T,I) means that the incidence rate by direct contact with infected cells is equal to zero if there are no susceptible cells. This incidence rate is increasing when the number of infected cells is constant and the number of susceptible cells increases. Also, it is decreasing when the number of susceptible cells is constant and the number of infected cells increases. Similarly, the second assumption (H1) on the function f(T,I,V) means that the incidence rate by contact with free virus is equal to zero if there are no susceptible cells. By (H2) and (H3), this incidence rate is increasing when the numbers of infected cells and virus are constant and the number of susceptible cells increases. Also, it is decreasing when the number of susceptible is constant and the number of infected cells or free virus increases. Consequently, the more susceptible cells are, the more infectious events will occur. However, the higher the number of infected cells or the concentration of virus in the host is, the less infectious events will be [10,12,13]. In addition, the functions f(T,I,V) and g(T,I) cover several types of incidence rates existing in the literature such as the classical bilinear incidence, standard incidence, Holling type-II functional response, Beddington-DeAngelis functional response, Crowley-Martin functional response and Hattaf-Yousfi functional response.



On the other hand, system (1) assumes that cells and viruses are well mixed, and ignores their mobility. Actually, viral propagation is a localized process [14] due to the fact that the virus is inherently unstable and the infection occurs mainly in lymphoid tissues. Also, the interaction between virus and the immune response tends to be local within the body of infected hosts [15]. Further, cells are distributed in space and typically interact with the physical environment and other organisms in their spatial neighborhood [16]. Therefore, it is more reasonable to study a reaction-diffusion version of system (1). So, the organization of this paper is as follows. In the next section, we present the reaction-diffusion version of (1) and some preliminary results. Section 3 is devoted to the global dynamics of the reaction-diffusion model. An application and some numerical simulations of our main results are presented in Section 4. Finally, the paper ends with mathematical and biological conclusions in the last section.




2. Model Formulation and Preliminaries


We first present a reaction-diffusion version of system (1) by taking into account the mobility of cells and viruses. Hence, system (1) becomes


∂T∂t=dT△T+λ−dT(x,t)−fT(x,t),I(x,t),V(x,t)V(x,t)−gT(x,t),I(x,t)I(x,t),∂I∂t=dI△I+∫0∞f1(τ)e−α1τ[fT(x,t−τ),I(x,t−τ),V(x,t−τ)V(x,t−τ)+gT(x,t−τ),I(x,t−τ)I(x,t−τ)]dτ−aI(x,t)−pI(x,t)Z(x,t),∂V∂t=dV△V+k∫0∞f2(τ)e−α2τI(x,t−τ)dτ−μV(x,t),∂Z∂t=dZ△Z+cI(x,t)Z(x,t)−bZ(x,t),



(2)




where T(x,t), I(x,t), V(x,t) and Z(x,t) are the densities of susceptible target cells, infected target cells, free virus particles and CTL cells at location x and time t, respectively. Here, we assume that the motion of the above four populations follows Fickian diffusion, meaning that the fluxes of these four populations are proportional to their concentration gradient and go from regions of high concentration to regions of low concentration, with the diffusion coefficients dT, dI, dV and dZ, respectively. △ is the Laplacian operator. The other parameters have the same biological meanings as those in system (1).



It is very important to note that our model (2) formulated by partial differential equations (PDEs) extends and generalizes many virus dynamics models existing in the literature. For instance, we obtain the diffused HBV infection model proposed by Wang et al. [17] when dT=dI=dZ=0, f1(τ)=f2(τ)=δ(τ), f(T,I,V)=βTq and g(T,I)=0, where q>0, β>0 is a constant rate describing the infection process and δ(.) is the Dirac delta function. When dT=dI=dZ=0, f1(τ)=δ(τ−τ1), f2(τ)=δ(τ), f(T,I,V)=βT1+ϵ1T+ϵ2V and g(T,I)=0, where ϵ1,ϵ2≥0 are constants, we get the diffusive and delayed viral infection model with Beddington-DeAngelis functional response [18]. Also, the diffusive and delayed viral infection model with Crowley-Martin functional response [19] is a special case of (2), it suffices to take dT=dI=dZ=0, f1(τ)=δ(τ−τ1), f2(τ)=δ(τ−τ2), f(T,I,V)=βT(1+ϵ1T)(1+ϵ2V) and g(T,I)=0.



Throughout this paper, we consider system (2) with initial conditions


T(x,θ)=ϕ1(x,θ)≥0,I(x,θ)=ϕ2(x,θ)≥0,V(x,θ)=ϕ3(x,θ)≥0,Z(x,θ)=ϕ4(x,θ)≥0,(x,θ)∈Ω¯×(−∞,0],



(3)




and zero-flux boundary conditions


∂T∂ν=∂I∂ν=∂V∂ν=∂Z∂ν=0on∂Ω×(0,+∞),



(4)




where Ω is a bounded domain in IRn with smooth boundary ∂Ω, and ∂∂ν indicates the outward normal derivative on ∂Ω. From the biological point of view, these conditions mean that the uninfected cells, infected cells, free virus particles and CTL cells do not move across the boundary ∂Ω.



We now study the well posedness of the PDE model (2) by establishing the global existence, uniqueness, nonnegativity and boundedness of solutions. To this end, we need some notations. Let X=C(Ω¯,IR4) be the Banach space of continuous functions from Ω¯ into IR4, and Cα=Cα((−∞,0],X) be the Banach space of continuous functions φ from (−∞,0] into X, where φ(θ)eαθ is uniformly continuous on (−∞,0] and ∥φ∥=supθ≤0∥φ(θ)∥Xeαθ<∞ with α is a positive constant. For convenience, we identify an element φ∈Cα as a function from Ω¯×(−∞,0] into IR4 defined by φ(x,θ)=φ(θ)(x). For any continuous function ω(.) : (−∞,σ)→X for σ>0, we define ωt∈Cα by ωt(θ)=ω(t+θ), θ∈(−∞,0]. It is not hard to prove that t↦ωt is a continuous function from [0,σ) to Cα. Moreover, we need the following lemma.



Lemma 1. 

Let A, B and D be three constants with B≠0. Consider the following problem


∂u∂t−D△u≤A−Bu,x∈Ω,t>0,∂u∂ν=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω¯.



(5)




Thenu(x,t)≤maxx∈Ω¯u0(x)e−Bt+AB(1−e−Bt). Moreover, ifB>0, we have


u(x,t)≤maxAB,maxx∈Ω¯u0(x) and lim supt→+∞u(x,t)≤AB.













Proof. 

Let u˜(t) be a solution to the ordinary differential equation


du˜dt=A−Bu˜,u˜(0)=maxx∈Ω¯u0(x).











Then u˜(t)=u˜(0)e−Bt+AB(1−e−Bt). It follows from the comparison principle [20] that u(x,t)≤u˜(t). Hence,


u(x,t)≤maxx∈Ω¯u0(x)e−Bt+AB(1−e−Bt).











So, if B>0, we have u(x,t)≤maxAB,maxx∈Ω¯u0(x) and


lim supt→+∞u(x,t)≤AB.








☐





Theorem 1. 

For any given initial condition ϕ∈Cα satisfying (3), problem (2)–(4) has a unique nonnegative solution. When the cells have the same diffusion coefficient (dT=dI=dZ), this solution is defined on [0,+∞) and remains nonnegative and bounded for all t≥0.





Proof. 

Let φ=(φ1,φ2,φ3,φ4)T∈Cα and x∈Ω¯. We define F=(F1,F2,F3,F4):Cα→X by


F1(φ)(x)=λ−dφ1(x,0)−fφ1(x,0),φ2(x,0),φ3(x,0)φ3(x,0)−gφ1(x,0),φ2(x,0)φ2(x,0),F2(φ)(x)=∫0∞f1(τ)e−α1τ[fφ1(x,−τ),φ2(x,−τ),φ3(x,−τ)φ3(x,−τ)+gφ1(x,−τ),φ2(x,−τ)φ2(x,−τ)]dτ−aφ2(x,0)−pφ2(x,0)φ4(x,0),F3(φ)(x)=k∫0∞f2(τ)e−α2τφ2(x,−τ)dτ−μφ3(x,0),F4(φ)(x)=cφ2(x,0)φ4(x,0)−cφ4(x,0).











Then problem (2)–(4) can be rewritten as the following abstract functional differential equation


ω′(t)=Aω+F(ωt),t>0,ω(0)=ϕ∈Cα,



(6)




where ω=(T,I,V,Z)T, ϕ=(ϕ1,ϕ2,ϕ3,ϕ4)T and Aω=(dT△T,dI△I,dV△V,dZ△Z)T. It is obvious that F is locally Lipschitz in Cα. According to [21,22,23,24,25], we deduce that system (6) admits a unique local solution on its maximal interval of existence [0,tmax).



Since 0=(0,0,0,0) is a lower-solution of the problem (2)–(4), we have T(x,t)≥0, I(x,t)≥0, V(x,t)≥0 and Z(x,t)≥0.



From the first equation of (2), we get


∂T∂t−dT△T≤λ−dT,∂T∂ν=0,T(x,0)=ϕ1(x,0)≥0.



(7)







By Lemma 1, we get


T(x,t)≤maxλd,maxx∈Ω¯ϕ1(x,0),∀(x,t)∈Ω¯×[0,tmax).











This implies that T is bounded. Let


G(x,t)=I(x,t)+pcZ(x,t)+∫0∞f1(τ)e−α1τT(x,t−τ)dτ.











The integral in G(x,t) is well-defined and differentiable with respect to t, due to T being bounded. Thus,


∂G∂t=dT∫0∞f1(τ)e−α1τ△T(x,t−τ)dτ+dI△I(x,t)+pcdZ△Z(x,t)+λ∫0∞f1(τ)e−α1τdτ−d∫0∞f1(τ)e−α1τT(x,t−τ)dτ−aI(x,t)−pbcZ(x,t)≤dT∫0∞f1(τ)e−α1τ△T(x,t−τ)dτ+dI△I(x,t)+pcdZ△Z(x,t)+λη1−δG(x,t),








where δ=min{a,b,d} and


ηi=∫0∞fi(τ)e−αiτdτ,i=1,2.



(8)







When dT=dI=dZ=D, we have


∂G∂t−D△G≤λη1−δG,∂G∂ν=0,G(x,0)=ϕ2(x,0)+pcϕ4(x,0)+∫0∞f1(τ)e−α1τϕ1(0,−τ)dτ.



(9)







From Lemma 1, we have


G(x,t)≤maxλη1δ,maxx∈Ω¯G(x,0),∀(x,t)∈Ω¯×[0,tmax).











Thus, I and Z are bounded. It remains to prove that V is bounded. From the boundedness of I and (2)–(4), we deduce that V satisfies the following system


∂V∂t−dV△V≤kMη2−μV,∂V∂ν=0,V(x,0)=ϕ3(x,0)≥0,



(10)




where M=maxλη1δ,maxx∈Ω¯G(x,0). According to Lemma 1, we deduce that


V(x,t)≤maxkMη2μ,maxx∈Ω¯ϕ3(x,0),∀(x,t)∈Ω¯×[0,tmax).











This implies that V is bounded. From the above, we have proved that T(x,t), I(x,t), V(x,t) and Z(x,t) are bounded on Ω¯×[0,tmax). By the standard theory for semilinear parabolic systems [26], we deduce that tmax=+∞. This completes the proof. ☐





Clearly, system (2) has always one infection-free equilibrium E0(T0,0,0,0), where T0=λd, which represents the healthy state. Hence, we define the basic reproduction number for our PDE model as follows


R0=kη1η2f(λd,0,0)+μη1g(λd,0)aμ.



(11)







Biologically and as in [11,27], R0 can be divided into parts as R0=R01+R02, where R01=kη1η2f(λd,0,0)aμ is the basic reproduction number corresponding to virus-to-cell infection mode, and R02=η1g(λd,0)a is the basic reproduction number corresponding to cell-to-cell transmission mode.



The other spatially uniform steady states of (2) satisfy the following system


λ−dT−f(T,I,V)V−g(T,I)I=0,η1f(T,I,V)V+g(T,I)I−aI−pIZ=0,kη2I−μV=0,cIZ−bZ=0.



(12)







The last equation of (12) implies that Z=0 or I=bc. Hence, we discuss two cases.



For the case when Z=0, we get


kη1η2fT,η1(λ−dT)a,kη1η2(λ−dT)aμ+μη1gT,η1(λ−dT)a=aμ.



(13)







Since I=η1(λ−dT)a≥0, we have T≤λd. Then there is no biological equilibrium whenever T>λd. Let us define the function ψ1 on the interval [0,λd] by


ψ1(T)=kη1η2fT,η1(λ−dT)a,kη1η2(λ−dT)aμ+μη1gT,η1(λ−dT)a−aμ.











It follows from (H0)–(H3) that ψ1(0)=−aμ<0, ψ1(λd)=aμ(R0−1) and


ψ1′(T)=kη1η2∂f∂T−dη1a∂f∂I−kdη1η2aμ∂f∂V+μη1∂g∂T−dη1a∂g∂I>0,








which implies that there exists a unique T1∈(0,λd) such as ψ1(T1)=0 provided that R0>1. Thus, E1(T1,I1,V1,0) is a unique infection equilibrium of (2) with I1=η1(λ−dT1)a and V1=kη1η2(λ−dT1)aμ.



For the case when Z≠0, we have I=bc, V=kbη2cμ and


kη2fT,bc,kbη2cμ+μgT,bc=cμb(λ−dT).



(14)







Since Z=cη1(λ−dT)−abpb≥0, we have T≤λd−abdcη1. Then there is no positive equilibrium when T>λd−abdcη1 or λd−abdcη1≤0. Define the function ψ2 on the interval [0,λd−abdcη1] by


ψ2(T)=kη2fT,bc,kbη2cμ+μgT,bc−cμb(λ−dT).











If CTL immune response has not been established, we have cI1−b≤0. So, we define the reproduction number for cellular immunity as follows


R1Z=cI1b,



(15)




where 1b denotes the average life expectancy of CTL cells and I1 is the number of infected cells at E1. Hence, R1Z represents the average number of the CTL immune cells activated by infected cells.



If R1Z<1, then I1<cb, T1>λd−abdcη1 and


ψ2(λd−abdcη1)=1η1ψ1(λd−abdcη1)<1η1ψ1(T1)=0.











So, there is no equilibrium when R1Z<1.



If R1Z>1, then I1>cb, T1<λd−abdcη1 and ψ2(λd−abdcη1)>0. Hence, if R1Z>1, system (2) has a CTL-activated infection equilibrium E2(T2,I2,V2,Z2), where T2∈(0,λd−abdcη1), I2=bc, V2=kbη2μc and Z2=cη1(λ−dT2)−abpb.



Recapitulating the above discussions in the following theorem.



Theorem 2. 






	(i) 

	
IfR0≤1, then system (2) has a unique infection-free equilibriumE0(T0,0,0,0), whereT0=λd.




	(ii) 

	
IfR0>1, then system (2) has a unique infection equilibrium without cellular immunityE1(T1,I1,V1,0)besidesE0, whereT1∈(0,λd), I1=η1(λ−dT1)aandV1=kη1η2(λ−dT1)aμ.




	(iii) 

	
IfR1Z>1, then system (2) has a unique infection equilibrium with cellular immunityE2(T2,I2,V2,Z2)besidesE0andE1, whereT2∈(0,λd−abdcη1), I2=bc, V2=kbη2μcandZ2=cη1(λ−dT2)−abpb.












3. Global Stability


Regarding the global stability of the infection-free equilibrium E0, we have the following theorem.



Theorem 3. 

The infection-free equilibriumE0of system (2) is globally asymptotically stable whenR0≤1.





Proof. 

Based on the method proposed in [28], we construct the Lyapunov functional for system (2) at E0 as follows


L0=∫Ω{1η1I(x,t)+f(T0,0,0)μV(x,t)+pcη1Z(x,t)+1η1∫0∞f1(τ)e−α1τ∫t−τt[fT(x,s),I(x,s),V(x,s)V(x,s)+gT(x,s),I(x,s)I(x,s)]dsdτ+kf(T0,0,0)μ∫0∞h2(τ)e−α2τ∫t−τtI(x,s)dsdτ}dx.











For convenience, we let φ=φ(x,t) and φτ=φ(x,t−τ) for any φ∈{u,w,v,z}. The time derivative of L0 along the solution of system (2) satisfies


dL0dt=∫Ω{f(T,I,V)−f(T0,0,0)V+aη1Ikη1η2f(T0,0,0)+μη1g(T,I)aμ−1−pbcη1Z}dx.











From (7) and by applying Lemma 1, we get lim supt→∞T(x,t)≤T0. This implies that all omega limit points satisfy T(x,t)≤T0. Hence, it is sufficient to consider solutions for which T(x,t)≤T0. From the explicit formula of R0 given in (11) and (H0)-(H3), we get


dL0dt≤∫Ωf(T,I,V)−f(T0,0,0)V+aη1R0−1I−pbcη1Zdx≤∫Ωaη1R0−1I−pbcη1Zdx.











Hence, R0≤1 ensures dL0dt≤0. In addition, it can be shown that the largest compact invariant set in {(T,I,V,Z)|dL0dt=0} is the singleton {E0}. Therefore, it follows from LaSalle’s invariance principle [29] that E0 is globally asymptotically stable when R0≤1. ☐





For the global stability of the two infection steady states Ei of system (2), we suppose that R0>1 and the incidence functions f and g satisfy for each infection equilibrium Ei the following further hypothesis


1−f(T,I,V)f(T,Ii,Vi)f(T,Ii,Vi)f(T,I,V)−VVi≤0,1−f(Ti,Ii,Vi)g(T,I)f(T,Ii,Vi)g(Ti,Ii)f(T,Ii,Vi)g(Ti,Ii)f(Ti,Ii,Vi)g(T,I)−IIi≤0.



(H4) 







Therefore, we have the following result.



Theorem 4. 

AssumeR0>1and (H4) holds for eachEi.




	(i) 

	
The infection equilibrium without cellular immunityE1of system (2) is globally asymptotically stable ifR1z≤1.




	(ii) 

	
The infection equilibrium with cellular immunityE2of system (2) is globally asymptotically stable ifR1z>1.











Proof. 

For (i), we construct the Lyapunov functional as follows


L1=∫Ω{T−T1−∫T1Tf(T1,I1,V1)f(X,I1,V1)dX+1η1I1ΦII1+f(T1,I1,V1)V1kη2I1V1ΦVV1+pcη1Z+1η1f(T1,I1,V1)V1∫0∞f1(τ)e−α1τ∫t−τtΦfT(x,s),I(x,s),V(x,s)V(x,s)f(T1,I1,V1)V1dsdτ+1η1g(T1,I1)I1∫0∞f1(τ)e−α1τ∫t−τtΦgT(x,s),I(x,s)I(x,s)g(T1,I1)I1dsdτ+1η2f(T1,I1,V1)V1∫0∞f2(τ)e−α2τ∫t−τtΦI(x,s)I1dsdτ}dx,








where Φ(ξ)=ξ−1−lnξ, ξ>0. Clearly, Φ:(0,+∞)→[0,+∞) attains its strict global minimum at ξ=1 and Φ(1)=0. Then Φ(ξ)≥0 and so the functional L1 is non-negative.



Calculating the time derivative of L1 along the solution of system (2), we obtain


dL1dt=∫Ω{1−f(T1,I1,V1)f(T,I1,V1)∂T∂t+1η11−I1I∂I∂t+f(T1,I1,V1)V1kη2I11−V1V∂V∂t+pcη1∂Z∂t+1η1f(T1,I1,V1)V1∫0∞f1(τ)e−α1τΦf(T,I,V)Vf(T1,I1,V1)V1−ΦfTτ,Iτ,VτVτf(T1,I1,V1)V1dτ+1η1g(T1,I1)I1∫0∞f1(τ)e−α1τΦg(T,I)Ig(T1,I1)I1−Φg(Tτ,Iτ)Iτg(T1,I1)I1dτ+1η2f(T1,I1,V1)V1∫0∞f2(τ)e−α2τΦII1−ΦIτI1dτ}dx.











Using λ=dT1+f(T1,I1,V1)V1+g(T1,I1)I1=dT1+aη1I1 and kη2I1=μV1, we get


dL1dt=∫Ω{dT11−TT11−f(T1,I1,V1)f(T,I1,V1)+f(T1,I1,V1)V1−1−VV1+f(T,I1,V1)f(T,I,V)+f(T,I,V)Vf(T,I1,V1)V1+g(T1,I1)I1−1−II1+f(T,I1,V1)g(T1,I1)f(T1,I1,V1)g(T,I)+f(T1,I1,V1)g(T,I)If(T,I1,V1)g(T1,I1)I1−1η1f(T1,I1,V1)V1∫0∞f1(τ)e−α1τ[Φf(T1,I1,V1)f(T,I1,V1)+Φf(Tτ,Iτ,Vτ)VτI1f(T1,I1,V1)V1I+Φf(T,I1,V1)f(T,I,V)]dτ−1η1g(T1,I1)I1∫0∞f1(τ)e−α1τ[Φf(T1,I1,V1)f(T,I1,V1)+Φg(Tτ,Iτ)Iτg(T1,I1)I+Φf(T,I1,V1)g(T1,I1)f(T1,I1,V1)g(T,I)]dτ−1η2f(T1,I1,V1)V1∫0∞f2(τ)e−α2τΦV1IτVI1dτ+pbcη1(R1Z−1)Z}dx−f(T1,I1,V1)dT∫Ω∂f∂T(T,I1,V1)|∇T|2[f(T,I1,V1)]2dx−I1dIη1∫Ω|∇I|2I2dx−f(T1,I1,V1)V1μdV∫Ω|∇I|2I2dx.











Since the function f(T,I,V) is strictly monotonically increasing with respect to T, we have for i=1,2 that


∂f∂T(T,Ii,Vi)>0and1−TTi1−f(Ti,Ii,Vi)f(T,Ii,Vi)≤0.



(16)







It follows from (H4) that


−1−VVi+f(T,Ii,Vi)f(T,I,V)+f(T,I,V)Vf(T,Ii,Vi)Vi=1−f(T,I,V)f(T,Ii,Vi)f(T,Ii,Vi)f(T,I,V)−VVi≤0,



(17)




and


−1−II1+f(T,Ii,Vi)g(Ti,Ii)f(Ti,Ii,Vi)g(T,I)+f(Ti,Ii,Vi)g(T,I)If(T,Ii,Vi)g(Ti,Ii)Ii=1−f(Ti,Ii,Vi)g(T,I)f(T,Ii,Vi)g(Ti,Ii)f(T,Ii,Vi)g(Ti,Ii)f(Ti,Ii,Vi)g(T,I)−IIi≤0.



(18)







Since H(ξ)≥0 and R1Z≤1, we have dL1dt≤0 with equality if and only if T=T1, I=I1, V=V1 and Z=0. It follows from LaSalle’s invariance principle that E1 is globally asymptotically stable.



For (ii), we construct the Lyapunov functional as follows


L2=∫Ω{T−T2−∫T2Tf(T2,I2,V2)f(X,I2,V2)dX+1η1I2ΦII2+f(T2,I2,V2)V2kη2I2V2ΦVV2+pcη1Z2ΦZZ2+1η1f(T2,I2,V2)V2∫0∞f1(τ)e−α1τ∫t−τtΦfT(x,s),I(x,s),V(x,s)V(x,s)f(T2,I2,V2)V2dsdτ+1η1g(T2,I2)I2∫0∞f1(τ)e−α1τ∫t−τtΦgT(x,s),I(x,s)I(x,s)g(T2,I2)I2dsdτ+1η2f(T2,I2,V2)V2∫0∞f2(τ)e−α2τ∫t−τtΦI(x,s)I2dsdτ}dx.











Calculating the time derivative of L2 along the solution of system (2) and using λ=dT2+f(T2,I2,V2)V2+g(T2,I2)I2=dT2+aη1I2+pη1I2Z2, I2=bc and kη2I2=μV2, we have


dL2dt=∫Ω{dT21−TT21−f(T2,I2,V2)f(T,I2,V2)+f(T2,I2,V2)V2−1−VV2+f(T,I2,V2)f(T,I,V)+f(T,I,V)Vf(T,I2,V2)V2+g(T2,I2)I2−1−II2+f(T,I2,V2)g(T2,I2)f(T2,I2,V2)g(T,I)+f(T2,I2,V2)g(T,I)If(T,I2,V2)g(T2,I2)I2−1η1f(T2,I2,V2)V2∫0∞f1(τ)e−α1τ[Φf(T2,I2,V2)f(T,I2,V2)+Φf(Tτ,Iτ,Vτ)VτI2f(T2,I2,V2)V2I+Φf(T,I2,V2)f(T,I,V)]dτ−1η1g(T2,I2)I2∫0∞f1(τ)e−α1τ[Φf(T2,I2,V2)f(T,I2,V2)+Φg(Tτ,Iτ)Iτg(T1,I1)I+Φf(T,I2,V2)g(T2,I2)f(T2,I2,V2)g(T,I)]dτ−1η2f(T2,I2,V2)V2∫0∞f2(τ)e−α2τΦV2IτVI2dτ}dx−f(T2,I2,V2)dT∫Ω∂f∂T(T,I2,V2)|∇T|2[f(T,I2,V2)]2dx−I2dIη1∫Ω|∇I|2I2dx−f(T2,I2,V2)V2μdV∫Ω|∇I|2I2dx.











From (16)–(18), we have dL2dt≤0. Further, it is not hard to see that the largest invariant set in {(T,I,V,Z)|dL2dt=0} is {E2}. By LaSalle’s invariance principle, we deduce that E2 is globally asymptotically stable. This ends the proof of Theorem 4. ☐





Remark 1. 

The hypothesis (H4) comes from (17) and (18). This hypothesis is a sufficient condition for that the time derivatives of the Lyapunov functionalsL1andL2to be non-negative. When cell-to-cell mode is ignored (i.e.,g≡0), the assumption (H4) can be reduced to


1−f(T,I,V)f(T,Ii,Vi)f(T,Ii,Vi)f(T,I,V)−VVi≤0,



(H4′) 




which is verified by many types of the incidence rate including the bilinear incidence, the saturation incidence, the Beddington-DeAnglis functional response, the Crowley-Martin functional response and the Hattaf-Yousfi functional response.





In 2017, Xu et al. [30] proposed a PDE model with two discrete delays, cell-to-cell transmission and CTL immune response. They considered the spatial diffusion only in virus. This model is given by


∂T∂t=λ−dT(x,t)−β1T(x,t)f˜(V(x,t))−β2T(x,t)g˜(I(x,t)),∂I∂t=β1T(x,t−τ1)f˜(V(x,t−τ1))+β2T(x,t−τ1)g˜(I(x,t−τ1))−aI(x,t)−pI(x,t)Z(x,t),∂V∂t=dV△V+kI(x,t−τ2)−μV(x,t),∂Z∂t=cI(x,t)Z(x,t)−bZ(x,t),



(19)




where the functions f˜ and g˜ satisfy the following properties:


f˜(0)=g˜(0)=0,f˜′(V)>0,g˜′(I)>0,f˜′′(V)≤0,g˜′′(I)≤0.



(20)







Choose the functions f(T,I,V) and g(T,I) as follows


f(T,I,V)=β1Tf˜(V)V,V≠0,β1Tf˜′(0),V=0,andg(T,I)=β2Tg˜(I)I,I≠0,β2Tg˜′(0),I=0.











Clearly, f(T,I,V)V=β1Tf˜(V) and g(T,I)I=β2Tg˜(I) for all T,I,V≥0. Based on f˜(V)V′≤0, g˜(I)I′≤0 and the last inequality of Lemma 3.1 in [30], it is not hard to prove that the above incidence functions f(T,I,V) and g(T,I) satisfy the five hypotheses (H0)−(H4). Therefore, the model and results investigated in [30] are extended and generalized.




4. Application and Numerical Simulations


In this section, we first apply our main results obtained in this study to the following model:


∂T∂t=dT△T+λ−dT(x,t)−β1T(x,t)V(x,t)1+ϵ1V(x,t)−β2T(x,t)I(x,t)1+ϵ2I(x,t),∂I∂t=dI△I+∫0∞f1(τ)e−α1τ[β1T(x,t−τ)V(x,t−τ)1+ϵ1V(x,t−τ)+β2T(x,t−τ)I(x,t−τ)1+ϵ2I(x,t−τ)]dτ−aI(x,t)−pI(x,t)Z(x,t),∂V∂t=dV△V+k∫0∞f2(τ)e−α2τI(x,t−τ)dτ−μV(x,t),∂Z∂t=dZ△Z+cI(x,t)Z(x,t)−bZ(x,t),



(21)




where β1 and β2 denote, respectively, the virus-to-cell infection rate and the cell-to-cell transmission rate. The non-negative constants ϵ1 and ϵ2 measure the saturation effect. The other state variables and parameters have the same biological meanings as in models (1) and (2). Notice that system (21) extends the DDE model presented in [9] by introducing the spacial diffusion in both cells and viruses. Also, this system is a particular case of (2) with f(T,I,V)=β1T1+ϵ1V and g(I,I)=β2T1+ϵ2I. As before, we consider system (21) with initial conditions


T(x,θ)=ϕ1(x,θ)≥0,I(x,θ)=ϕ2(x,θ)≥0,V(x,θ)=ϕ3(x,θ)≥0,Z(x,θ)=ϕ4(x,θ)≥0,(x,θ)∈Ω¯×(−∞,0],



(22)




and Neumann boundary conditions


∂T∂ν=∂I∂ν=∂V∂ν=∂Z∂ν=0on∂Ω×(0,+∞).



(23)







It is easy to check the first four hypotheses (H0)-(H3). For the fifth hypothesis, we have


1−f(T,I,V)f(T,Ii,Vi)f(T,Ii,Vi)f(T,I,V)−VVi=−ϵ1(V−Vi)2Vi(1+ϵ1Vi)(1+ϵ1V)≤0,










1−f(Ti,Ii,Vi)g(T,I)f(T,Ii,Vi)g(Ti,Ii)f(T,Ii,Vi)g(Ti,Ii)f(Ti,Ii,Vi)g(T,I)−IIi=−ϵ2(I−Ii)2Ii(1+ϵ2Ii)(1+ϵ2I)≤0.











Thus, the last hypothesis (H4) is verified. By applying Theorems 3 and 4, we obtain the following result.



Corollary 1. 






	
IfR0≤1, then the infection-free equilibriumE0of system (21) is globally asymptotically stable.



	
IfR0>1, then system (21) has two infection equilibria that are:




	(i) 

	
the infection equilibrium without cellular immunityE1that is globally asymptotically stable ifR1Z≤1;




	(ii) 

	
the infection equilibrium with cellular immunityE2that is globally asymptotically stable ifR1Z>1.
















For the numerical simulations, we choose fi(τ)=γie−γiτ for i=1,2. Clearly, ∫0∞γie−γiτdτ=1. Also, we consider the following new variables:


Y(x,t)=∫0∞e−(α1+γ1)τ[β1T(x,t−τ)V(x,t−τ)1+ϵ1V(x,t−τ)+β2T(x,t−τ)I(x,t−τ)1+ϵ2I(x,t−τ)]dτ,U(x,t)=∫0∞e−(α2+γ2)τI(x,t−τ)dτ.











Then the variables T, Y, I, U, V and Z satisfy the following system:


∂T∂t=dT△T+λ−dT(x,t)−β1T(x,t)V(x,t)1+ϵ1V(x,t)−β2T(x,t)I(x,t)1+ϵ2I(x,t),∂Y∂t=β1T(x,t)V(x,t)1+ϵ1V(x,t)+β2T(x,t)I(x,t)1+ϵ2I(x,t)−(α1+γ1)Y(x,t),∂I∂t=dI△I+γ1Y(x,t)−aI(x,t)−pI(x,t)Z(x,t),∂U∂t=I(x,t)−(α2+γ2)U(x,t),∂V∂t=dV△V+kγ2U(x,t)−μV(x,t),∂Z∂t=dZ△Z+cI(x,t)Z(x,t)−bZ(x,t).



(24)







The threshold parameters R0 and R1Z for (24) are given by (11) and (15) with η1=γ1α1+γ1 and η2=γ2α2+γ2. For the simplicity of numerical illustrations, we consider one-dimensional bounded spatial domain Ω=[0,10] with dT=dI=dZ=0.01 and dV=0.02. Also, we consider β2 and c as free parameters. All other parameter values are mentioned in Table 1.



When β2=1.5×10−5 and c=0.02, we have R0=0.8539. By the first result given in Corollary 1, the infection-free equilibrium E0(719.4245,0,0,0) is globally asymptotically stable. This means that the virus is cleared, the infection dies out and the patient will be completely cured (see Figure 1).



When β2=5.6×10−4 and c=0.02, we obtained R0=2.0830 and R1Z=0.8441. From Corollary 1 2(i), we know that E1(620.0592,4.2205,65.6663,0) is globally asymptotically stable (see Figure 2).



When β2=5.6×10−4 and c=0.03, we obtained R0=2.0830 and R1Z=1.2662. It follows from Corollary 1 2(ii) that E2(634.6036,3.3333;50.5051,31.3883) is globally asymptotically stable (see Figure 3).




5. Conclusions


In this article, we have proposed and investigated a generalized viral infection model with two infinite distributed delays, CTL immune response and spatial diffusion in both cells and virus. Also, the proposed model incorporated the classical virus-to-cell infection and the direct cell-to-cell transmission. Both routes of infection are modeled by two general incidence functions. Under some assumptions on these incidence functions, we have shown that the global dynamics of the model is completely determined by two threshold parameters that are the basic reproduction number R0 and the reproduction numbers for cellular immunity R1Z. From the viewpoint of biology, we have proved that when R0≤1 the infection-free equilibrium is globally asymptotically stable, which means that the virus is cleared and the infection dies out. Whereas, the virus persists in the host if R0>1 and two steady states appear, one without cellular immunity which is globally asymptotically stable if R1Z≤1 and the other with cellular immunity which is globally asymptotically stable if R1Z>1. Hence, the activation of the CTL immune response is unable to eliminate the virus in vivo, but plays a fundamental role in the reduction of virus particles and infected cells. This last biological result can be easily deduced by comparing the components of virus particles and infected cells before and after the activation of cellular immunity. Since R0 and R1Z have no relation to the diffusion coefficients dT, dI, dV and dZ, we conclude that the diffusion of cells and virus has no effect on the global stability of the three steady states of our PDE model with Neumann homogeneous boundary conditions. On the other hand, we have extended the models with ODEs [1,4,5], with DDEs [6,7,8,9] and with PDEs [17,18,19]. Moreover, the more recent works presented in [30,31] are improved and generalized.
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Figure 1. Spatiotemporal dynamics of the model (21) when R0=0.8539≤1. 






Figure 1. Spatiotemporal dynamics of the model (21) when R0=0.8539≤1.
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Figure 2. Spatiotemporal dynamics of the model (21) when R0=2.0830>1 and R1Z=0.8441≤1. 






Figure 2. Spatiotemporal dynamics of the model (21) when R0=2.0830>1 and R1Z=0.8441≤1.
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Figure 3. Spatiotemporal dynamics of the model (21) when R0=2.0830>1 and R1Z=1.2662>1. 
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Table 1. List of parameters and their values used in numerical simulations.






Table 1. List of parameters and their values used in numerical simulations.





	Parameter
	Value
	Parameter
	Value





	λ
	10
	α2
	0.01



	d
	0.0139
	γ2
	0.1



	β1
	2.4×10−5
	k
	50



	a
	0.29
	b
	0.1



	ϵ1
	0.05
	p
	0.01



	ϵ2
	0.07
	μ
	3



	γ1
	0.1
	β2
	Varied



	α1
	0.01
	c
	Varied
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