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Abstract: This algorithm is designed to perform numerical transforms to convert data from the
temporal domain into the spectral domain. This algorithm obtains the spectral magnitude and phase
by studying the Coefficient of Determination of a series of artificial sinusoidal functions with the
temporal data, and normalizing the variance data into a high-resolution spectral representation of
the time-domain data with a finite sampling rate. What is especially beneficial about this algorithm is
that it can produce spectral data at any user-defined resolution, and this highly resolved spectral data
can be transformed back to the temporal domain.
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1. Introduction

The Fourier Transform [1–7] is one of the most widely used mathematical operators in all of
engineering and science [8–10]. The Fourier Transform can take a temporal function and convert it
into a series of sinusoidal functions, offering significant clarity on the nature of the data. While the
original Fourier Transform is an analytical mathematical operator, Discrete Fourier Transform (DFT)
methods are overwhelmingly used to take incoherent temporal measurements and convert them into
spectral plots based on real, experimental data.

The author proposes a numerical algorithm to perform a highly-resolved spectral transform
of a temporal function of limited resolution. The spectral magnitude is determined by finding the
magnitude of the Coefficient of Determination of the function as compared with a given sinusoidal
function; this represents the independent spectral value as a function of the sinusoidal frequency.
Rather than the spectral domain being proportional to the time step, the user defines exactly which
frequencies are necessary to investigate. The spectral domain can be as large or as resolved as
is necessary; the resolution possible is limited only by the abilities of the computer performing
the transform.

2. Spectral Transform

The transform starts by first determining the peak total range of the data in the temporal domain;
this range will become the base amplitude of the spectral series. The computer then generates a series
of sine and cosine functions at each frequency within the spectral domain, and compares each of
these sinusoidal functions to the temporal data to be transformed. In the comparison, a coefficient of
determination is found and saved. To accommodate fluctuations in phase, each frequency generates
both a sine and cosine function; this ultimately results in real and imaginary spectral components.
Finally, the magnitudes of the coefficient of determination data are normalized, and the result is an
accurate spectral representation of the temporal function.

The Fourier Transform is one of the most utilized mathematical transforms in science and
engineering. By definition, a Fourier Transform will take a given function and represent it by a
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series of sinusoidal functions of varying frequencies and amplitudes. Analytically, the spectral function
F(ω) is represented as [1,2]

F(ω) =
∫ ∞

−∞
f (t)·e−2π·i·t·ωdt, (1)

where i is the imaginary term (i =
√
−1), f(t) is any temporal function of t to be transformed, and ω

(rad/s) represents the frequency of each sinusoidal function. The inverse of this function is

f (t) =
∫ ∞

−∞
F(ω)·e2π·i·t·ωdω. (2)

Conceptually, the spectral function F(ω) represents the amplitudes of a series of sinusoidal
functions of discrete frequencies ωk (rad/s)

f (t) = Σ∞
k=0F(ωk)·sin(ωk·t). (3)

Often in practical application, one does not have an exact analytical function, but a series of
discrete data points at discrete times tn. If it is necessary to convert these discrete data into the spectral
domain, the traditional approach has been to use the Discrete Fourier Transform (DFT) algorithm,
often known as Fast Fourier Transform (FFT). The DFT algorithm is, by definition [11,12]

F(ωk) = ΣN−1
n=0 f (tn)·e−2π·i·ωk ·n/N . (4)

where F(ωk) is a discrete spectral data point, and f (tn) is a discrete data point in the temporal domain.
With DFT, the spectral resolution is proportional to the temporal resolution, and it is often the case that
the limited temporal data will not be sufficient to obtain the spectral resolution desired.

If one wants to obtain frequency information, there is a certain minimum temporal resolution
necessary to properly distinguish the frequencies; this is known as the Nyquist rate [13–17].

δ f =
0.5
δt

(5)

As demonstrated in Table 1 and Figure 1, two different cosine functions with frequencies of 1 and
9 have exactly the same results when resolved at a temporal resolution δt = 0.1.

Figure 1. Equal values for f = 1 and f = 9 for cos(2π· f ·x).
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Table 1. Equal values for f = 1 and f = 9 for cos(2π· f ·x).

x f = 1 f = 9

0.0 1.0000 1.0000
0.1 0.8090 0.8090
0.2 0.3090 0.3090
0.3 −0.3090 −0.3090
0.4 −0.8090 −0.8090
0.5 −1.0000 −1.0000
0.6 −0.8090 −0.8090
0.7 −0.3090 −0.3090
0.8 0.3090 0.3090
0.9 0.8090 0.8090
1.0 1.0000 1.0000

There are many approaches to implementing Fourier transforms on data of limited resolution.
One method is to introduce a scaled coordinate system and identifying the Fourier variables as the
direction cosines of propagating light have been used to spectrally characterize diffracted waves in
a method known as Angular Spectrum Fourier Transform (FFT-AS) [18–21]. Another technique of
numerical Fourier Transform is Direct Integration (FFT-DI) [22], using Simpson’s rule to improve the
calculations accuracy. Finally, one of the simplest approaches to taking the Fourier transform with a
limited temporal resolution is to use Non-uniform Discrete Fourier Transforms (NDFT) [23–31]

F(ωk) = ΣN−1
n=0 f (tn)·e−2π·i·pn ·ωk . (6)

where 0 < pn < 1 are relative sample points over the range, and ωk is the frequency of interest.

3. Spectral Transform Algorithm

This algorithm, which the author calls the Coefficient of determination Fourier Transform (CFT),
is an approach to obtain greater spectral resolution; the full spectral domain, or any frequency range or
resolution desired, is determined by the user. Greater resolution or a larger domain will inherently
take longer to solve, depending on the computer resources available. One advantage of this approach
is that the spectral domain can also have varying resolutions, for enhanced resolution at points of
interest without dramatically increasing the computation cost of each spectral transform.

At each discrete point in the spectral domain, the algorithm generates two sinusoidal functions

Φk(t) = A·cos(2π·ωk·t), (7)

Φ̂k(t) = A·sin(2π·ωk·t),

where Φk(t) is to represent the real spectral components, Φ̂k(t) is to represent the imaginary spectral
components, ωk is the discrete frequency of interest, t is the independent variable of the data of interest,
and A is the amplitude of the function

A = max{ f (t)} −min{ f (t)}, (8)

defined and the total range within the temporal data.

% MatLab code of the CFT algorithm

% FFO is the function in the temporal domain. Sfct is a discrete function
% of frequencies, selected by the user, to define the spectral domain

FFavg=mean(FF0); FFstd=max(FF0)-min(FF0);
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for ii=2:ct
sinfct=sin(2*pi*t*(Sfct(ii))); % Real cosine function
cosfct=cos(2*pi*t*(Sfct(ii))); % Imaginary sine function
corrR=R2fct(cosfct,FF0); % R^2 of real component
corrI=R2fct(sinfct,FF0); % R^2 of imaginary component
SpecFct(ii)=corrR+(i*corrI); % Saving the Spectral Function

end
SpecFct=FFstd*SpecFct/(sum(abs(SpecFct))); % Normalize the spectral function
SpecFct(1)=FFavg; % Set the average of the temporal function (Sfct(1)=0)

The next step is to take each of these functions, and find the Coefficient of Determination between
the function and the temporal data, all with the same temporal domain and resolution [9,32–35].
The coefficient of determination is a numerical representation of how much variance can be expected
between two functions. To find the coefficient of determination between two equal-length discrete
functions G(tn) and H(tn), three coefficients are first calculated

SSt = ΣN
n=1(G(tn)− Ḡ)·(H(tn)− H̄), (9)

SS1 = ΣN
n=1(G(tn)− Ḡ)2,

SS2 = ΣN
n=1(H(tn)− H̄)2,

where N is the discrete length of the two functions, and Ḡ and H̄ represent the arithmetic mean value
of functions G(tn) and H(tn). The correlation coefficient, represented as R, is then determined as

R =
SSt√

SS1·SS2
, (10)

and the closer the two functions match, the closer the value of the correlation coefficient reaches R = 1.
If there is no match at all, the correlation coefficient will be R = 0, and if the two functions are perfectly
opposite of each other (G(tn) = −H(tn)), the correlation coefficient goes down to R = −1. In practice,
the coefficient of determination is often represented as the R2 value

R2 =
SS2

t
SS1·SS2

. (11)

This process is repeated for every sine and cosine function generated with each frequency within
the spectral domain. The coefficients of determinations can be used to represent the spectral values,
both real (cosine function) and imaginary (sine functions), for the given discrete frequency point.
These functions of R2 values for the real and imaginary components are then normalized to the
maximum real and imaginary values, and multiplied by the amplitude A determined in Equation (8).
The final outcome is a phase-resolved spectral transformation of the input function, but with a spectral
domain as large or resolved as desired.

% Correlation Coefficient Function
function [R2]=R2fct(X,Y)

ctx=length(X); foo=zeros(ctx,3);
for ii=1:ctx

foo(ii,1)=(X(ii)-(mean(X)))*(Y(ii)-(mean(Y)));
foo(ii,2)=(X(ii)-(mean(X)))^2;
foo(ii,3)=(Y(ii)-(mean(Y)))^2;

end
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foo=sum(foo);

foo2=(sqrt((foo(2))*(foo(3))));
if foo2==0

corr=0;
else

corr=foo(1)/foo2; % Closer to 1 is best
end
R2=corr^2;

end

Finally, this spectral transformation can easily be converted back to the temporal domain.
By definition, the temporal domain is merely the sum of the series of sinusoidal waves (Equation (3)),
and thus the inverse CFT transform can simply be defined as

f (t) = ΣN
k=1{real(F(ωk))·cos(ωk·t)}+ {imag(F(ωk))·sin(ωk·t)}. (12)

% MatLab code of the inverse CFT algorithm

% Ftest = temporal output function, of discrete length ctT
% t = time domain of discrete length ctT
% SpecFct = spectral function of discrete length ct to be transformed
% back to the temporal domain

Ftest=zeros(ctT,1);
for ii=1:ct

Ftest=((real(SpecFct(ii)))*cos(2*pi*t*Sfct(ii)))+Ftest;
Ftest=((imag(SpecFct(ii)))*sin(2*pi*t*Sfct(ii)))+Ftest;

end

4. Initial Demonstration of the Spectral Transform Algorithm

To demonstrate the capability of this algorithm, six functions are generated based on the two
similar functions demonstrated in Table 1 and Figure 1; the two functions are used with a temporal
range of 0 to 1, with the same temporal resolution of δt = 0.1, and frequencies of both f = 1 and
f = 9. The cosine functions are modified to have a phase shift of ±2π/3. The supplementary file
Run_Initial_Study.zip contains the MATLAB code to run this analysis and replicate these results.

The spectral transform was taken of all six of these functions with both the CFT algorithm, as well
as the NDFT algorithm defined in Equation (6). The spectral magnitude and phase from both methods
are plotted in Figure 2. By using Equation (12) to get back to the temporal domain (one example is
plotted in Figure 3), all six functions matched (R2 > 0.996) with the spectral magnitude and phase
from the CFT; there is no coherent match for the NDFT. This is realized by finding the coefficient of
determination between the recovered temporal data and the original temporal data; the R2 results are
tabulated in Table 2. While the NDFT may give a clear picture of the spectral domain of the function,
it is impossible to recover the function back to the original temporal domain without excessively
computationally intensive matrix analysis. The strength of CFT transform lies in its inverse operator
defined in Equation (12), with which the true temporal function can be obtained back from the spectral
domain obtained with highly resolved CFT.
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Table 2. Coefficient of determination between the original temporal function and the temporal function
retrieved (Equation (12)) from the spectral plot obtained with both CFT and NDFT (Figure 2).

f (Hz) Phase R2 CFT R2 NDFT

1 0 0.9999 0.1197
ine 1 2·π/3 0.9967 0.0091

1 −2·π/3 0.9964 0.0163
ine 9 0 0.9999 0.1197

9 2·π/3 0.9964 0.0163
9 −2·π/3 0.9967 0.0091

Figure 2. Spectral results of the function cos(2π·x) with a δs = 0.1, with both the proposed CFT in
magnitude (a) and phase (b), as well as NDFT in magnitude (c) and phase (d).

One important point is that, while the CFT transform is a spectral representation of the
transformed temporal function, the spectral function of this method is not a true Fourier transform
defined analytically in Equation (1). Both functions are similar (see Figure 2), but not exact; this function,
by definition, is the magnitude of the coefficient of determination R2 of the temporal function with
the associated sine and cosine wave. For this reason, the CFT versions of the spectral representation,
while similar, are not identical to the NDFT versions, and thus are not true Fourier transforms.
The power of these CFT spectral plots lie in the fact that they can be easily transformed back to the
temporal domain.
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Figure 3. Demonstration of the function cos(2π·t), both the original function (solid green lines), and the
output (blue circles) obtained from Equation (12) and the CFT spectral results, obtained with a limited
initial temporal resolution of δt = 0.1.

5. Performance of the Spectral Transform Algorithm

In the previous sections, this algorithm was demonstrated to be an effective tool to determine
spectral magnitude and phase. Next, this algorithm’s performance was compared to both traditional
FFT [11,12] of limited resolution, as well as the higher resolution NDFT method [23–31]. Often in
practical applications it is necessary to determine the frequencies of the peak spectral magnitudes
with temporal data of limited resolution. In this example, a temporal function is comprised of four
sinusoidal functions with an amplitude of 1.25, 1.5, 1.75, and 2, at frequencies of 20.80 Hz, 38.38 Hz,
61.38 Hz, and 77.55 Hz, at a phase shift of 0◦, 120◦, 240◦, and 0◦, respectively. Mathematically,
the function can be described as

f (t) =
5
4
·cos(2π·20.80·t) + 3

2
·cos(2π·38.38·t + 2

3
π) + ... (13)

7
4
·cos(2π·61.38·t + 4

3
π) + 2·cos(2π·77.55·t)

The function is performed over a temporal duration of 1 unit of time. The function is plotted in
Figure 4a, where the green lines represent the highly resolved function, and the blue circles represent
the limited temporal data of 100 Hz one might practically receive if collecting experimental data.

A traditional FFT of this limited-resolution temporal data was collected, along with a CFT with
a spectral domain of 0.01 Hz ranging from 0.01 Hz to 100 Hz, as well as a NDFT transform with
the same refined spectral domain; the spectral magnitudes are all plotted in Figure 4b. The peak
spectral magnitudes were numerically found in the spectral range of 10–30 Hz, 30–50 Hz, 50–70 Hz,
and 70–90 Hz, and tabulated in Table 3. For all four frequencies, the CFT improved upon traditional
FFT in terms of accurately centering on the frequency with peak spectral magnitude. In addition, with
limited resolution tradition FFT cannot even characterize frequencies higher than half the resolution
(Equation (5)); the spectral plots are limited up to 50 Hz. The NDFT method with the higher resolution
allowed for spectral characterization above 50 Hz, and improved upon the accuracy of the spectral
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peaks when compared to the traditional FFT, but still with greater error than the CFT. In addition,
the CFT results can be accurately transformed back to the temporal domain with Equation (12), and in
this case the transform of the spectral results matched remarkably (R2 = 0.99999) with the original
temporal function, as demonstrated in Figure 4c.

(a) (b) (c)

Figure 4. Performance data for an input temporal plot of 101 data points of resolution: (a) a comparison
of the data to the true, high resolution function; (b) the spectral function, both the CFT and a tradition
FFT analysis; and (c) the original versus the inverse transform of the spectral function.

Table 3. Performance results of peak frequency, comparing CFT versus FFT, with a temporal resolution
of 101.

True Frequency (Hz) CFT Frequency (Hz) FFT Frequency (Hz) NDFT Frequency (Hz)

20.8 22.42 23.5294 22.63
38.38 38.58 39.2157 38.98
61.38 61.42 - 62.02
77.55 77.58 - 78.37

6. Parametric Study of the Spectral Transform Algorithm

A parametric study of this transform was conducted to demonstrate that it can be used for high
resolution measurements of the spectral frequency with a limited temporal resolution. To demonstrate
this, 15 random frequencies were selected, ranging from 2 to 17 cycles over the duration of the
measured window. Both the independent and dependent temporal variables are arbitrary values to
demonstrate the transform function; the independent scale ranges from 0 to 1 and has 180 data points.
The arbitrary dependent data had random averages between −1000 and 1000, with an amplitude of
200 and random noise to represent the typical randomness found in typical test data. Each of these
15 random frequencies was phase shifted by three random phases. All forty-five arbitrary functions
were transformed into the spectral domain with this transform, with a frequency domain ranging
from 0 to 20 cycles per unit time duration, and a frequency resolution of 1 mHz; two examples of
these spectral results are presented in Figure 5. As a further test of the robustness of the transform,
the spectral data were then converted back to the temporal domain, and the new temporal function
was compared to the original function with the coefficient of determination method to ascertain errors
from the transform.

This spectral transform was remarkably effective at finding the peak primary frequency, often with
accuracies down to tens of mHz. The functions of the peak frequencies (Figure 6), both of which
were used for the initial function and the peak of the spectral transform, match with an R2 value
of 0.999991—effectively identical. The functions of the random phase angle at the peak frequencies
(Figure 7), both of which were used for the initial function and the phase of the spectral transform at
the peak frequency, match with an R2 value of 0.9982, demonstrating that this transform can be used
to capture both spectral magnitude and phase with great accuracy.
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Figure 5. Spectral results of the randomly generated functions, for frequencies of: (a) 2.0256 (Hz/Rev);
and (b) 13.0467 (Hz/Rev), but for different phases, magnitudes, and random noises.

Figure 6. Frequency prediction results, R2 = 0.999991.

Finally, the inverse of this spectral transform was conducted for each spectral output, and the
errors between the original functions and the transformed-inverse-transformed function are minimal.
As expected, not all of the fine random noise is captured; this would require a near infinite spectral
domain, which would further increase computational costs, but the overarching shapes, magnitudes,
and phases of the functions are consistently captured. Taking the coefficient of determination of each
function pair, the value of R2 is never less than 0.92. Two examples of the original function (lines) and
the transformed-inverse-transformed function (stars) are represented in Figure 8. The tabulated results
of all fifteen studies, for each of the three phase magnitude shifts, are demonstrated in Tables 4–6.
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Figure 7. Angle prediction results, R2 = 0.9982.

Figure 8. Time results of the randomly generated functions, for frequencies of: (a) 2.0256 (Hz/Rev);
and (b) 13.0467 (Hz/Rev), but for different phases, magnitudes, and random noises.

Table 4. Comparison of results, for phase shift angle 1.

Test Max Freq Max Freq Sin(Phase) Sin(Phase) R2

Original CFT Result Original CFT Result (Temporal)

1 2.0256 2.095 −0.72837 −0.56129 0.92791
2 10.6771 10.678 0.88707 0.88349 0.94843
3 5.5118 5.537 0.82648 0.76277 0.94092
4 11.1441 11.146 0.32585 0.30499 0.93117
5 4.1527 4.137 0.020562 0.14696 0.93132
6 13.0467 13.05 0.94015 0.94829 0.93359
7 11.9742 11.973 −0.31888 −0.32338 0.92769
8 11.3472 11.339 0.78318 0.78725 0.93398
9 12.5892 12.578 −0.35645 −0.31945 0.93956
10 11.128 11.122 0.90871 0.90812 0.92836
11 3.9531 3.954 −0.20131 −0.20166 0.93636
12 5.6981 5.677 0.080619 0.14678 0.93363
13 16.1721 16.158 0.38625 0.41684 0.94243
14 12.2989 12.32 0.57446 0.63023 0.93483
15 10.0715 10.085 −0.43758 −0.3967 0.92398
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Table 5. Comparison of results, for phase shift angle 2.

Test Max Freq Max Freq Sin(Phase) Sin(Phase) R2

Original CFT Result Original CFT Result (Temporal)

1 2.0256 2.026 −0.062681 −0.056313 0.93311
2 10.6771 10.658 0.25575 0.18466 0.93944
3 5.5118 5.511 0.54959 0.54223 0.9434
4 11.1441 11.166 −0.90216 −0.87023 0.93194
5 4.1527 4.141 −0.92686 −0.92268 0.92885
6 13.0467 13.031 −0.64986 −0.6287 0.92476
7 11.9742 11.97 −0.95715 −0.95146 0.93294
8 11.3472 11.344 0.16368 0.17658 0.92725
9 12.5892 12.593 −0.25732 −0.23808 0.94473

10 11.128 11.145 0.86293 0.90011 0.93841
11 3.9531 3.97 0.65591 0.69795 0.94498
12 5.6981 5.7 −0.62372 −0.63233 0.93151
13 16.1721 16.169 0.76013 0.75789 0.93039
14 12.2989 12.31 −0.99804 −1 0.93751
15 10.0715 10.084 0.9865 0.98098 0.9411

Table 6. Comparison of results, for phase shift angle 3.

Test Max Freq Max Freq Sin(Phase) Sin(Phase) R2

Original CFT Result Original CFT Result (Temporal)

1 2.0256 2.009 −0.81562 −0.79053 0.93367
2 10.6771 10.666 0.58339 0.5697 0.92987
3 5.5118 5.53 0.72393 0.68535 0.93461
4 11.1441 11.154 −0.99286 −0.99909 0.92839
5 4.1527 4.122 −0.3222 −0.20013 0.95071
6 13.0467 13.04 −0.90228 −0.88856 0.94272
7 11.9742 11.958 −0.86461 −0.82531 0.93705
8 11.3472 11.347 −0.85766 −0.86378 0.93519
9 12.5892 12.588 −0.66127 −0.67959 0.92307

10 11.128 11.152 −0.9832 −0.96008 0.9276
11 3.9531 3.969 −0.9574 −0.96818 0.9428
12 5.6981 5.734 −0.99907 −0.9842 0.94156
13 16.1721 16.183 0.85337 0.82142 0.93247
14 12.2989 12.296 −0.86634 −0.85394 0.92086
15 10.0715 10.075 −0.94753 −0.9473 0.94203

7. Conclusions

This effort has demonstrated a practical, working, invertible method of numerically transforming
a 1D temporal function, called Coefficient of determination Fourier Transform(CFT), obtaining
high-resolution in the spectral domain from limited resolution in the temporal domain, and retaining
the ability to go back to the temporal domain from the spectral data with Equation (12). The CFT
algorithm, while very similar, is not a true Fourier transform as defined analytically in Equation (1);
it is a representation of the spectral magnitudes as related to its coefficient of determination R2 value.
The CFT transform inherently is more computationally expensive than traditional DFT and NDFT
methods. Any desired spectral resolution and spectral domain can be used to characterize the input
data. The transform can even convert the function to a spectral domain of varying resolution, so that
peaks can be accurately identified without too much computational expense. The algorithm was first
tested with simple phase-shifted cosine functions, and the inverse transform of the spectral resolution
matched remarkably. Next, the spectral transform algorithm was tested at fifteen different random
frequencies, all with three different random phases, all with random noises and errors, and consistently
the transform was able to characterize the peak frequency and phase angle remarkably, with a higher
degree of accuracy than one can expect with traditional DFT methods.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
NDFT Non-uniform Discrete Fourier Transform
CFT Coefficient of determination Fourier Transform
f (t) Generic temporal function of time t.
F(ω) Generic spectral function of frequency ω.
ωn a discrete spectral value of the frequency
tn a discrete temporal value of the time domain
f (tn) a discrete value of the temporal function f (t)
pn arbitrary temporal resolution for NDFT
Φk(t) Cosine function to represent real discrete spectral magnitude as related to ωk (Equation (7))
Φ̂k(t) Sine function to represent imaginary discrete spectral magnitude (Equation (7))
A Amplitude of functions Φk(t) and Φ̂k(t) (Equation (8))
G(tn) arbitrary function of discrete temporal value tn. Ḡ is the mean of G(tn).
H(tn) arbitrary function of discrete temporal value tn. H̄ is the mean of H(tn).

References

1. Nagel, R.K.; Saff, E.B.; Snider, A.D. Fundamentals of Differential Equations, 5th ed.; Addison Wesley: Boston,
MA, USA, 1999.

2. Haberman, R. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th ed.;
Prentice Hall: Upper Saddle River, NJ, USA, 2003.

3. Harris, F.J. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE
1978, 66, 51–83. [CrossRef]

4. Dorrer, C.; Belabas, N.; Likforman, J.P.; Joffre, M. Spectral resolution and sampling issues in Fourier-transform
spectral interferometry. J. Opt. Soc. Am. B 2000, 17, 1795–1802. [CrossRef]

5. Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier: Burlington, MA, USA, 2005.
6. Zill, D.G.; Cullen, M.R. Advanced Engineering Mathematics, 2nd ed.; Jones and Bartlett Publishers: Sudbury,

MA, USA, 2000.
7. Numerical Recipies in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1988;

Chapter 13, pp. 584–591, ISBN 0-521-4310805.
8. Chen, W.H.; Smith, C.H.; Fralick, S.C. A Fast Computational Algorithm for the Discrete Cosine Transform.

IEEE Trans. Commun. 1977, 25, 1004–1009. [CrossRef]
9. Agarwal, R.C. A New Least-Squares Refinement Technique Based on the Fast Fourier Transform Algorithm.

Acta Cryst. 1978, 34, 791–809. [CrossRef]
10. Finzel, B. Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein

structures. J. Appl. Cryst. 1986, 20, 53–55. [CrossRef]
11. Garcia, A. Numerical Methods for Physics, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1999.
12. Poon, T.C.; Kim, T. Engineering Optics With Matlab; World Scientific Publishing Co.: Hackensack, NJ,

USA, 2006.
13. Nyquist, H. Certain Topics in Telegraph Transmission Theory. Proc. IEEE 2002, 90, 280–305. [CrossRef]

http://www.mdpi.com/2079-3197/6/4/61/s1
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1364/JOSAB.17.001795
http://dx.doi.org/10.1109/TCOM.1977.1093941
http://dx.doi.org/10.1107/S0567739478001618
http://dx.doi.org/10.1107/S0021889887087144
http://dx.doi.org/10.1109/5.989875


Computation 2018, 6, 61 13 of 13

14. Landau, H.J. Necessary Density Conditions for Sampling and Interpolation of Certain Entire Functions.
Acta Math. 1967, 117, 37–52. [CrossRef]

15. Shannon, C.E. Communication in the Presence of Noise. Proc. IEEE 1998, 86, 447–457. [CrossRef]
16. Luke, H.D. The Origins of the Sampling Theorem. IEEE Commun. Mag. 1999, 37, 106–108. [CrossRef]
17. Kupfmuller, K. On the Dynamics of Automatic Gain Controllers. Elektr. Nachrichtentech. 2005, 5, 459–467.
18. Harvey, J. Fourier treatment of near-field scalar diffraction theory. Am. J. Phys. 1979, 47, 974–980. [CrossRef]
19. Jiang, D.; Stamnes, J.J. Numerical and experimental results for focusing of two-dimensional electromagnetic

waves into uniaxial crystals. Opt. Commun. 2000, 174, 321–334. [CrossRef]
20. Stamnes, J.J.; Jiang, D. Focusing of electromagnetic waves into a uniaxial crystal. Opt. Commun. 1998,

150, 251–262. [CrossRef]
21. Jiang, D.; Stamnes, J.J. Numerical and asymptotic results for focusing of two-dimensional waves in uniaxial

crystals. Opt. Commun. 1999, 163, 55–71. [CrossRef]
22. Shen, F.; Wang, A. Fast-Fourier-transform based numerical integration method for the Rayleigh–Sommerfeld

diffraction formula. Appl. Opt. 2006, 45, 1102–1110. [CrossRef] [PubMed]
23. Boyd, J.P. A Fast Algorithm for Chebyshev, Fourier, and Sine Interpolation onto an Irregular Grid.

J. Comput. Phys. 1992, 103, 243–257. [CrossRef]
24. Lee, J.Y.; Greengard, L. The type 3 nonuniform FFT and its applications. J. Comput. Phys. 2005, 206, 1–5.

[CrossRef]
25. Dutt, A. Fast Fourier Transforms for Nonequispaced Data. Ph.D. Thesis, Yale University, New Haven, CT,

USA, 1993.
26. Dutt, A.; Rokhlin, V. Fast Fourier Transforms for Nonequispaced Data II. SIAM J. Sci. Ccomput. 1993,

14, 1368–1393. [CrossRef]
27. Dutt, A.; Rokhlin, V. Fast Fourier Transforms for Nonequispaced Data II. Appl. Comput. Harmon. Anal. 1995,

2, 85–100. [CrossRef]
28. Greengard, L.; Lee, J.Y. Accelerating the Nonuniform Fast Fourier Transform. SIAM Rev. 2004, 46, 443–454.

[CrossRef]
29. Dohler, M.; Kunis, S.; Potts, D. Nonequispaced Hyperbolic Cross Fast Fourier Transform. SIAM J.

Numer. Anal. 2010, 47, 4415–4428. [CrossRef]
30. Fessler, J.A.; Sutton, B.P. Nonuniform Fast Fourier Transforms Using Min-Max Interpolation. IEEE Trans.

Signal Process. 2003, 51, 560–574. [CrossRef]
31. Ruiz-Antolin, D.; Townsend, A. A Nonuniform Fast Fourier Transform Based on Low Rank Approximation.

SIAM J. Sci. Comput. 2018, 40, 529–547. [CrossRef]
32. Cameron, A.C.; Windmeijer, F.A. An R-squared measure of goodness of fit for some common nonlinear

regression models. J. Econ. 1997, 77, 329–342. [CrossRef]
33. Magee, L. R2 Measures Based on Wald and Likelihood Ratio Joint Significance Tests. Am. Stat. 1990,

44, 250–253.
34. Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biomelrika 1991,

78, 691–692. [CrossRef]
35. Strang, G. Introduction to Linear Algebra, 3rd ed.; Wellesley-Cambridge Press: Wellesley, MA, USA, 2003.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02395039
http://dx.doi.org/10.1109/JPROC.1998.659497
http://dx.doi.org/10.1109/35.755459
http://dx.doi.org/10.1119/1.11600
http://dx.doi.org/10.1016/S0030-4018(99)00671-9
http://dx.doi.org/10.1016/S0030-4018(98)00055-8
http://dx.doi.org/10.1016/S0030-4018(99)00101-7
http://dx.doi.org/10.1364/AO.45.001102
http://www.ncbi.nlm.nih.gov/pubmed/16523770
http://dx.doi.org/10.1016/0021-9991(92)90399-J
http://dx.doi.org/10.1016/j.jcp.2004.12.004
http://dx.doi.org/10.1137/0914081
http://dx.doi.org/10.1006/acha.1995.1007
http://dx.doi.org/10.1137/S003614450343200X
http://dx.doi.org/10.1137/090754947
http://dx.doi.org/10.1109/TSP.2002.807005
http://dx.doi.org/10.1137/17M1134822
http://dx.doi.org/10.1016/S0304-4076(96)01818-0
http://dx.doi.org/10.1093/biomet/78.3.691
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spectral Transform
	Spectral Transform Algorithm
	Initial Demonstration of the Spectral Transform Algorithm
	Performance of the Spectral Transform Algorithm
	Parametric Study of the Spectral Transform Algorithm
	Conclusions
	References

