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Abstract: Much of biology-inspired computer science is based on the Central Dogma, as implemented
with genetic algorithms or evolutionary computation. That 60-year-old biological principle based
on the genome, transcriptome and proteasome is becoming overshadowed by a new paradigm
of complex ordered associations and connections between layers of biological entities, such as
interactomes, metabolomics, etc. We define a new hierarchical concept as the “Connectosome”,
and propose new venues of computational data structures based on a conceptual framework called
“Grand Ensemble” which contains the Central Dogma as a subset. Connectedness and communication
within and between living or biology-inspired systems comprise ensembles from which a physical
computing system can be conceived. In this framework the delivery of messages is filtered by size
and a simple and rapid semantic analysis of their content. This work aims to initiate discussion on
the Grand Ensemble in network biology as a representation of a Persistent Turing Machine. This
framework adding interaction and persistency to the classic Turing-machine model uses metrics based
on resilience that has application to dynamic optimization problem solving in Genetic Programming.

Keywords: biology-inspired computing; genetic programming; dynamic optimization; Grand
Ensemble; Persistent Turing Machine; resilience

1. Introduction

Numerous complex real-world optimization problems have emerged in scientific fields such as
biomedicine, engineering, economics, and business, that cannot be solved in reasonable amounts of
time and yet precise solutions exist [1]. Such problems are often highly nonlinear and include multiple
variables acting under complex constraints. Gradient based optimization methods using analytical
or numerical methods can fail to solve problems with greater than one local optimum. Metaheuristic
approaches produce efficient results using an iterative generation process that integrates different
concepts for exploring and exploiting search spaces that guide a subordinate heuristic, with learning
strategies used to find near-optimal solutions [2]. Examples of metaheuristic algorithms include:
Genetic Algorithm (GA) as a popular algorithm that mimics the natural evolution process [3], Particle
Swarm Optimization inspired by social behavior of birds searching for food [4], and Ant Colony
Optimization inspired by the foraging behavior of ant colonies [5]. Genetic Programming (GP) is
an extension of GA: using evolutionary operators on candidate programs with a tree structure to
improve the adaptive fit between the population of candidate programs and an objective function.
Nearly all metaheuristic algorithms are nature-inspired, do not require substantial gradient information,
and can fit multiple parameters [6]. Each metaheuristic algorithm has unique advantages with respect
to robustness and performance in different problem spaces [7]. Since any one metaheuristic algorithm
cannot optimally solve all optimizing problems [8], new algorithms are sought to handle specific
optimizing problems.
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The aim of the present work is to develop a framework for optimization algorithms that is based
on biological properties of RNAs interacting in a transcriptome cloud analogous to an information
system [9]. The transcriptome cloud of RNAs is regulated by two opposing factors: sequence similarity
and reverse complementarity to all other transcript sequences. RNA mobility and diffusion have been
suggested to be influenced by simple semantic operators arising from observations of anomalous
diffusion of RNA [10]. This framework supports selective transport of biological information, storage
of information with rapid retrieval for dynamic problems, and prevention of run-away storage
requirements. The main contribution of this paper is the presentation of a new bio-inspired framework
providing guidance into solving optimization problems based on information properties of RNA.

We introduce a premise in Biology that individual RNA transcripts collectively form
an information cloud of sequence words, and this cloud interacts via similarity, reverse
complementarity and compartmentalism, operating on segments or words of each individual RNA
in the transcriptome, which for some genes may have significant regulatory impact by decreasing or
increasing their diffusion coefficient [ibid.]. In the computer science realm, transcripts are the genes in
GA or the program code in GP. Certain real biology transcripts may have specific transporter proteins
or translocators avoiding RNA-RNA interactions (e.g., “zipcode” motif [11]) and hence would not be
significantly impacted by interaction with the surrounding transcriptome cloud. In the GA/GP realm,
these would be problem-specific algorithms.

In bioinformatics, computation of scores for RNA-transcriptome word interactions would add
information dimensionality to multiscale -omics data analysis, similar to the idea described as
a “communicasome” by others [12]. This bioinformatic effort provides a deeper understanding
of nucleotide word structure and RNA language meaning [13]. Frameworks for understanding human
pathologies resulting from changes in gene expression can be applied to ideas like resilience and
personalized medicine. We propose a “Connectosome”, similar to a communicasome mentioned
in [12] where: (1) RNA diffuses away from point of transcription on DNA creating an information
cloud of sequences; (2) all RNAs comprise the transcriptome, and each transcript is affected by local
RNAs within the cloud; (3) diffusion rates of individual RNAs are modeled with a semantic analysis of
similarity and reverse complementarity of RNA words at that location in the cloud of transcripts; and
(4) transcriptome cloud affects anomalous RNA diffusion that can give rise to emergent and patterned
behavior in the cell [14]. We consider how a systems or network biology framework translates into
models of interactive computation for biology-inspired algorithms.

The rest of this paper is organized as follows: Section 2 provides background methods and
relevant datasets. Section 3 provides a survey on evolutionary computing, then dynamic optimization
strategies, in which current research has been organized so that the reader can identify open issues
this new bio-inspired computing framework inspires. Emergent biology from an information cloud of
RNA sequences is introduced, with connection to biology big data-omics, and description of vision of
Grand Ensemble with relevance to membrane computing and Turing machines. The framework of
Anomalous Diffusion for genetic programming is introduced. Finally, Section 4 is devoted to resilience
with a suggested metric, and Section 5 is the conclusion and future works.

2. Materials and Methods

This work draws upon bioinformatic analyses of datasets described in [9,15] that involve
spatial and temporal transcriptome measurements. As validation of this transcriptome model
framework, we utilized a simple transcriptome of a few highly expressed genes. From seven
published RNA studies, with data sources grouped into high and low study parameter sets, we
analyzed mean enrichment values under two-sample equal variance assumption models. We assumed
that appearance in exosomes or microparticles requires greater mobility and hence larger diffusion
coefficients than cytoplasmic or nuclear RNAs [15]. Description of data sources are summarized here.
Villarroya-Beltri [16] reports microarray datasets of exosome and cellular fractions from activated and
resting human T lymphocytes. They differentially assessed whether RNAs are specifically enriched
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within exosomes and suggest that mRNA and miRNA loading into exosomes is not a simple passive
process. Specific miRNAs were more prevalent in exosomes than in cells, and in most cases this
difference is preserved under cellular resting or activated conditions. Similarly, most miRNAs
preferentially found in cells than in exosomes also keep this tendency regardless of the activation state
of the cell, suggesting resilience for expression patterns in the transcriptome. We calculated similarity
of transcript words and reverse-complement as a count of subsequences in common with all of the
subsequences in the transcriptome. Additionally, tWord and rcWord factor the expression level of
that word in the transcriptome. Values of rcWord were lower than tWord for exosomes compared to
cytoplasmic miRNAs. This supports the transcriptome model since exosome transcripts must diffuse
further than cytoplasmic RNA, so avoiding reverse complementarity facilitates diffusion. Park [17]
compared microarray analysis of cytoplasmic and nuclear fractions of hct116 colon cancer cells. We
sorted their data into nuclear enriched, and those which were preferentially found in the cytoplasm.
We found that tWord was 4.73 for nuclear and 10.58 for cytoplasmic miRNAs, with a significant t-test
p-value of 0.023 between nuclear and cytoplasmic groups. We also found nuclear enriched miRNAs
have higher rcWord values compared to cytoplasmic miRNA (p-value = 0.021 in Table 2 in [10]),
suggesting those transcripts have greater potential to interact with other transcriptome RNAs and
hence may have lower than expected diffusion coefficients. Huang [18] study utilized RNA-seq with
exosomes from human plasma. We found that the top 100 abundant miRNAs in exosomes had higher
similarity count measures compared to 100 with low “rcmm” reads. In support of the transcriptome
model, exosome transcripts have more similarity to the simple model transcriptome. From these
data, we find that exosome transcripts have less reverse complementarity to the simple transcriptome.
These results are also supported by Cheng [19] study of exosomes in human blood comparing 50 most
abundant miRNAs in exosome samples to low abundance transcripts.

Pseudo code for the transcriptome anomalous diffusion model can be found in Supplemental
Materials section.

3. Results

3.1. Evolutionary Computing

Evolutionary Computation derives optimization algorithms inspired by biological evolution
principles such as genetics and natural selection [20]. Evolutionary Algorithms (EAs) are
meta-heuristics that can be applied to a variety of search and optimization problems. Existing
EAs include: Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary Programming
and Evolution Strategies. All of these model candidate solutions to a problem as populations of
individuals with genotypes that are iteratively transformed, evaluated against some fitness criterion,
then selected according to “survival of the fittest”, until an optimal solution is found. The difference
among them lies in the way individuals are transformed, and on the search operators applied to
obtain new solutions. Alternately, these existing iterative approaches have been referred to as Artificial
Evolution, in which biology concepts are implemented [21]. A new term Computational Evolution
(CE) reflects a new generation of bio-inspired computing [22] that builds upon new knowledge from
biology and increased synergies between biologists and computer scientists. This present work builds
a computation framework from recent biology insight, with the intent to provide new CE algorithms,
and to deepen understanding of biological regulation.

3.2. Dynamic Optimization Strategies

Numerous real-world scenarios that can be modelled as dynamic optimization problems (DOPs)
are characterized by the dynamic nature of the model elements, for example: the objective function
or search space. Solving DOPs by metaheuristics has been productive [23–25] because of their
capacity to deal with complex scenarios, and incorporation of specific mechanisms to face problem
dynamics. Current mechanisms for DOPs can be categorized as: diversity during program run,
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diversity after changes, memory approaches, and multi-population approaches [26]. Nguyen [27]
suggested another approach is to use the self-adaptive mechanisms of meta-heuristics to cope
with changes. Self-adaptation is a commonly known parameter control technique in evolutionary
computation that has been extensively studied in stationary environments [28–30]. Metaheuristics have
certain inherent self-adaptive behavior (e.g., evolution strategy, real-coded genetic algorithms—GAs).
However, such behavior can be insufficient to deal with problems in dynamic environments [28,31].
Therefore, mechanisms or extensions to metaheuristics need to be designed to deal with dynamic
problems. Extensions of Cartesian Genetic Programming (CGP) [32] have significant features that
correspond to the transcriptome model discussed here. In CGP, programs are represented as directed
acyclic graphs using a two-dimensional grid of nodes. When the genotype is decoded, some nodes
may be unconnected, and hence are non-coding which assist evolution with a ready supply of
potential functions. We can model resilient properties of real biological transcriptomes that are
solving multi-objectives with transport and localization of information by anomalous diffusion of
individual transcripts.

3.3. Silencing and Enhancing Transcripts for Dynamic Environments

A transcript in transcriptome T could be a solution to some problem if it is not hidden or silenced.
RNAs except for miRNAs typically have regions that are solvent inaccessible and/or double stranded,
preventing intra-molecular interactions [33]. mRNAs have more secondary structure or intra-strand
base pairing than expected by chance [34]. For each component RNA subsequence word, we determine
whether it is expected in a single-stranded and solvent-accessible state (state “A”), or double-stranded
or buried within the RNA molecule and is inaccessible (state “I”). Although these computations are
intensive and numerous for a whole transcriptome [35], the RNA structure can be pre-calculated
and supplied as a lookup table. Solvent accessibility estimates for each transcript word partition the
frequency entries in the transcriptome matrix by reducing A in the amount that I increase. These shifts
in A/I affect the tWord and rcWord values for most transcripts. Shifts of A→ I could be caused by
RNA-binding factors (RNA or protein) that cover a word in the transcript or word in the transcriptome,
or indirectly by binding to some other region of the RNA causing a cis type of structural alteration
leading to solvent inaccessibility. Transcriptome Cloud or nebula regulation [10] is proposed to occur as
an indirect result of some factor that changes A/I for some word that then alters a different interacting
transcript’s diffusion coefficient. Conversely, I→ A shifts could be caused by the release of binding
factors or conformational change leading to exposure of the particular word.

In a computational model, this paradigm corresponds most closely to modular CGP.
As an enhancement of CGP, reusable sub-functions extend a genotype by adding more complex
nodes denoted as modules [36]. The modules, which closely resemble transcripts in the biological
model, are propagated through evolution by dynamically allocating and releasing them by compress
and expand operators [37]. The computational operators are behaving like the transcriptome A/I
shifts that expose or cover sub-functions encoded in the transcript.

3.4. Connectosome in the Grand Ensemble

We can consider the connectosome as a construct composed of three ensembles identified as the
transcriptome, proteasome, and liposome (Figure 1). Instead of DNA centered, the transcriptome
in the grand ensemble is an establisher or initiator of the cell state. DNA provides the raw RNA
material from transcription to establish and maintain the transcriptome, but RNA flows in and out
of the cell are significant from biology experiments on exosomes and microparticles. We propose
self-regulatory properties of the transcriptome establish attractor states arising from the opposite
tendencies of sequence similarity and reverse complementarity. The liposome is an encapsulation and
compartmentalization operator formed by action of enzymes and proteins. Proteasome is composed
of functions and operators that are translated from the transcriptome. Every item has a function, or
provides the raw material for a possible function as in miRNA silencing. Transcriptome is composed



Computation 2017, 5, 32 5 of 12

of instructions using words to make proteasome and liposome layers, and has selection filters based
on accessible (readable) words. Transfer of blocks or sets of words (RNA) is inversely proportional
to relatedness to the whole transcriptome, with local interactions being stronger than remote RNA
words. The extracellular pool is composed of input data sources, output solutions from sets of words
as instructions, and other virtual system cells.
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Figure 1. Establishment of transcriptome as result of anomalous diffusion of RNA. Black represents
DNA, green represents RNA, while blue and orange represent proteins and lipids respectively.
Arrows denote flow of information from donor cell, to extracellular pool, to recipient cell. Biological
connectosome maps to schema of enhancements in Cartesian Genetic Programming (CGP).

3.5. Relevance to Membrane Computing

Since the Grand Ensemble (Figure 1) includes the concept of lipid membranes that also get secreted
and absorbed by real cells, the analogue to GA/GP could be extended to membrane computing
algorithms. Membrane computing (P systems) is a class of computing model abstracted from the
structure and functioning of living cells and from interactions of living cells in tissues or higher
order biological structures [38]. Many variants of membrane computing models have been developed
that have significant potential to be applied to various computationally hard problems in feasible
time, such as the traveling salesman problem [39], maximum clique problem [40], Hamilton path
problem [41], and tripartite matching problem [42]. Figure 2 shows a representation of implementation
of the grand ensemble in membrane or GP algorithms. Each cell is composed of a prior transcriptome
(T0), transcripts that are imported (TIN), and removal of TOUT. Import and export in each cell is subject
to transcript filtering influenced by S, RC, and N. TOUT from all cells is pooled the stochastically
distributed to all cells, subject to the same filtering upon importation. This scheme may help to prevent
stalling in CGP [43], by allowing major shifts of transcript partitioning if the accumulation of small
evolutionary changes results in shifts of compartmentalization due to rank changes in S and RC.
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Figure 2. Transcriptomes partitioned into cells or membrane bound computer programs. Within cells
there can also be compartmentalization of transcripts leading to functional modules. Filter function F
operates bidirectionally upon RNA transcripts using semantic operators.

3.6. In Silico Virtual Living System as a Persistent Turning Machine (PTM)

The Grand Ensemble biology paradigm conceptualization maps in computer science as
a Persistent Turing Machine [44]. This is a Turing Machine with a read-only tape, here conceived
as the genome node, a read/write tape, conceived as the transcriptome node, and a write only tape
which becomes the extracellular pool. The most basic system is composed of a single entity containing
the four ensemble nodes (chromosome, transcriptome, proteome, and lipidome) representing the
Central Dogma. The ensemble nodes can send or receive contents to/from the extracellular pool as
a flow from donor cell to extracellular pool, and adsorption by a recipient cell. This cycling in the
transcriptomes would be a generation in CGP. More cells can be added in this model, which are linked
by the extracellular pool.

Recurrent CGP, which is an extension to CGP, allows creation of acyclic graphs providing feedback
to store internal state information [45]. The transcriptome stores its state as a distribution of diffusion
coefficients for each transcript, resulting from interactions with surrounding RNA that can alter the
eventual location of each transcript. Recurrent CGP connections represent controls on diffusion in the
transcriptome. This extension of CGP is suited to missing data or partially observable tasks supporting
a resilience feature of the system. This also is suited to implement the Anomalous Diffusion model
below since the compartmentalism and module phenotype mapping is influenced by the two opposing
semantic operators S and RC. The parameter values in the semantic operators are derived from the
prior state of the system, and hence the transcriptome is acting recurrently. The whole is adding to the
individual parts, similar to Banzhaf’s concept of emergence in CGP [46].

3.7. Anomalous Diffusion Model

RNA molecules and proteins undergo constrained diffusion, largely limited by spatial constraints
of other molecules and move by a stop-and-go mechanism where free diffusion is interrupted by
random association with cellular structures [47]. Most importantly, the dynamic nature of RNAs
is emerging as a means to control physiological cellular responses and pathways [48]. Brownian
effects are ubiquitous and play a very important role when one infers macroscopic behaviors from the
mesoscopic level of description, a route utilized frequently in the study of complex systems. Dynamics
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at the mesoscopic level is governed by a set of Langevin processes or equivalently by the corresponding
N-particle Fokker–Planck equation [49,50].

Consider a transcriptome from a cell type alpha to be represented as Tα, such that it is the sum
of all RNAs, including mRNA, miRNA, lncRNA and rRNA within the cell. This set is the result of
transcripts produced from the cellular DNA, Tα

0, transcripts inputted from the extracellular space as
microparticles and exosomes Tα

IN, and what remains from export to the extracellular space as Tα
OUT.

Or, Equation (1):
Tα = Tα

0 + Tα
IN − Tα

OUT (1)

with Equation (2):

Tα
OUT = Tα × F[S, RC, N, Tα], Tα

IN = TEC × F[S, RC, N, Tα] (2)

where F is a filter function using Tα that increases diffusion for transcripts with greater similarity S,
and decreases diffusion for larger RC and N. Thus the extracellular pool is composed of transcripts
with greater similarity S, and less reverse complementarity RC to the transcriptome, and have smaller
size N. If the transcripts represent subprograms in a CGP framework, then Tα

OUT would be the
transcripts passed to the next generation in this model of anomalous diffusion of transcripts. The
filter function would be easily implemented by stochastically selecting transcripts (subprograms) that
share code similarity to the whole program, and have small size N. This later selection may assist with
preventing program bloat [51] and is a direct consequence of diffusion’s dependence on size. The
RC complementarity filter is a unique semantic selection on transcripts not found in the literature for
GP. For any transcript composed of operands, a complement can be formed that reverses the order of
the operands, and each replaced with its complement. Most operands can be easily identified with
a complement. For instance, Input & Output, Add & Subtract or Left Shift & Right Shift would be
complements (Figure 3).
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semantically on information encoded as either RNA or lines of code in an evolvable subroutine.

We propose that an inherent property of algorithms, whether actual biological or computational,
reverse complementation generates well-formed structures that adds resilience similar to non-coding
or “junk” DNA. RC structures would have similar information content or entropy to the original
algorithm, and hence is very different from a random ordering of operands.
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4. Discussion

4.1. Resilience as a Systems Biology Measure from Transcriptome Model

A Resilience measure from Transcriptome RNAs could provide basic knowledge of responses
to system stress. Insight into structural determinants of resilience and robustness can guide the
understanding of systems that go through transitions. Systems Engineering research has developed
methodologies to measure the functionality and complexity of engineered systems for designing
and assessing system resilience. While system functions like resilience, functionality, and complexity
are widely used concepts in systems engineering, there is significant diversity in definitions and
no unified approach to measurement in the Systems Biology area [52]. One method for measuring
impacts to functionality in dynamic engineered systems is based on changes in kinetic energy [53].
This metric can be applied at particular levels of abstraction and system scales, consistent with the
established multiscale nature of biological systems. Application of global metrics to GP could assist
with prevention of stalling [43].

4.2. Measuring Complexity

A difficulty in complexity theory is the lack of clear definitions, particularly those that are
measurable [54], and that there are several types of complexity. The first formal treatment of complexity
focused on algorithmic complexity, which reflects the computation requirements for a mathematical
process [55]. One of the most workable definitions is that of thermodynamic depth, asserting that
complexity is a “measure of how hard it is to put something together” [56]. There are several variations
on this approach, with the commonality that complexity disappears for both ordered and purely
random systems [57]. Bar-Yam [58] defines the complexity of a physical system as the length of
the shortest string that can represent its properties. In our case here, this could be the size of the
transcriptome filter F composed of opposing semantic operators S and RC.

An energy-based metric proposed by Chaisson [59] measures the energy rate density, which is the
energy flow through a system in a time epoch, and divided by the system mass. A practical difficulty
in using this metric is determining the appropriate mass and energy. In measuring the transcriptome,
we can use the mass of RNA production and the total energy processed by the system. Energy in
this framework could be approximated with the sum total of all possible RNA-RNA interactions,
which is just the count of all tWord and rcWord frequencies in T. A more realistic model incorporates
the differing interaction energies between complement words, e.g., difference between A-U and C-G
nucleotides and dinucleotides [34].

As defined by the INCOSE Resilient Systems Working Group, “Resilience is the capability of
a system with specific characteristics before, during and after a disruption to absorb the disruption,
recover to an acceptable level of performance, and sustain that level for an acceptable period of
time” [60]. Robustness is the ability of a system to reject disturbances without altering its state.
A system is robust when it can continue functioning in the presence of internal and external challenges
without fundamental changes to the original system. In relation to previous section on energy
availability, robustness is the ability for a system to retain reachable states in the event of falling
available energy.

4.3. Measuring Resilience

From Equation (2) F is a transcriptome filter function of S, RC, and N operating on Tα.
The extracellular pool is composed of transcripts with greater similarity S, and less reverse
complementarity RC to the transcriptome, and have smaller size N. The filter is essentially a semantic
selection on transcripts resulting from anomalous diffusion. We propose that resilience is proportional
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to the size of the transcriptome filter, which is composed of the opposing actions of S and RC, and to the
balance between S and RC. Then the size of F, where |F| = |S| + |RC| or on a per nucleotide basis:

Resilience = (|S| + |RC|)/N (3)

such that |S| is sum of all similarity matches, |RC| is sum of all reverse complement interactions,
and N is the nucleotide size of the transcriptome. This work proposes Equation (3) as a measure of
resilience that is proportional to the sum of similar and of reverse-complement word matches (divided
by the number of nucleotides in transcriptome to normalize for size) in the whole transcriptome.
For simple systems of 2 complementary letters, |S| > |RC| and scales faster than N (examined for up
to N = 4), with resilience proportional to N.

The biology of miRNAs binding to mRNAs and regulation by lncRNAs presents a method for
self-modifying CGP to be resilient to rapid changes in the problem space. mRNAs (sub-programs)
could be recruited quickly in a dynamic environment by unbinding miRNA or lncRNAs (sub-program
blocks or enhancers) in the realm of dynamic optimization in computer science. A more complex
system or network would be consistent with being more resilient. But the difficulty is also measuring
complexity, because a large sized network might contain many pathways leading from A to B,
but could instead be composed of a spoke(A) & wheel(B) design, such that damage to the spoke
will fail the system. So instead, as a first attempt at measuring resilience from transcriptome data,
we propose that a filter mechanism acts on individual transcripts caused by opposing semantic
information characteristics of the whole transcriptome. Then size of the complexity of that filter
could be a simple quantifiable measure of resilience. A recent publication showed that miRNAs are
filtered by sequence similarity [15] and another study shows that the same miRNAs are also filtered by
reverse complementary to the same whole transcriptome model [10]. Hence the proposed measure
of resilience is the sum of similarity and reverse complementary interactions possible in the whole
transcriptome. Since these probability distributions are the basis of thermodynamics, taking the log of
(|S| + |RC|)/N would represent the entropy of filtering in the transcriptome. We divide by the size
of the transcriptome (N) to normalize on a per nucleotide basis, and realize that for a random sequence
transcriptome, there will be some expected value of |S| and |RC|.

5. Conclusions

This paper illustrates recent advances in transcriptome and network biology that can lead
to enhancing new frameworks in computer science. It is our intent to formalize this Grand
Ensemble treatment into a language of persistent and interactive TMs that could advance the field
of biology-inspired computing. Once implemented in silico, we can study these models to uncover
emergent and complex behavior. Measures calculated from semantic analyses of the transcriptome
relate to compartmentalization, and anomalous diffusion of transcripts, which can be utilized to
structure and control self-modifying CGP. Transitions between chaos and homeostasis in these
computational models may provide insight into the origins of real biological tissues, organs, and
pathology states. This insight could be applied to personalized medicine to provide diagnosis and
prognosis for a range of complex human disorders.

Supplementary Materials: The Pseudo Code listing are available online at www.mdpi.com/2079-3197/5/3/32/s1;
also see biological background in [9,10,14].

Acknowledgments: Supported by 8U54MD007588, G12MD007602, P30 HL107238 and grants from NIH/National
Institute on Minority Health and Health Disparities. The content is solely the responsibility of the author and
does not necessarily represent official views of the respective institutions.

Conflicts of Interest: The author declares no conflict of interest.

www.mdpi.com/2079-3197/5/3/32/s1


Computation 2017, 5, 32 10 of 12

References

1. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009;
Volume 74.

2. Osman, I.H.; Laporte, G. Metaheuristics: A bibliography. Ann. Oper. Res. 1996, 63, 513–623.
3. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor,

MI, USA, 1975.
4. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference

on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
5. Dorigo, M.; Stützle, T. Ant Colony Optimization; Bradford Company: Holland, MI, USA, 2004.
6. Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.

[CrossRef]
7. Ishibuchi, H.; Yoshida, T.; Murata, T. Balance between genetic search and local search in memetic algorithms

for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 2003, 7, 204–223. [CrossRef]
8. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1,

67–82. [CrossRef]
9. Wang, X.-Q.; Abebe, F.; Seffens, W. Dynamic System Modeling the Whole Transcriptome in a Eukaryotic Cell.

In Proceedings of the Dynamic Systems and Applications, Atlanta, GA, USA, 27–30 May 2015; Volume 7,
pp. 342–344.

10. Seffens, W. Models of RNA Interaction from Experimental Datasets: Framework of Resilience; Marchi, F.A.,
Cirillo, P.D.R., Mateo, E.C.C., Eds.; InTech Publishing: Rijeka, Croatia, 2017; Chapter in Transcriptome
Analysis; ISBN 978-953-51-5452-5.

11. Batagov, A.; Kuznetsov, V.; Kurochkin, I. Identification of nucleotide patterns enriched in secreted RNAs as
putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genom. 2011, 12 (Suppl. 3), S18.
[CrossRef] [PubMed]

12. Yoon, Y.; Kim, O.; Gho, Y. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 2014,
47, 531–539. [CrossRef] [PubMed]

13. Shifrin, D.; Beckler, M.; Coffey, R.; Tyska, M. Extracellular vesicles: Communication, coercion, and
conditioning. Mol. Biol. Cell 2013, 24, 1253–1259. [CrossRef] [PubMed]

14. Regner, B.; Vucinic, D.; Domnisoru, C.; Bartol, T.; Hetzer, M.; Tartakovsky, D.; Sejnowski, T. Anomalous
diffusion of single particles in cytoplasm. Biophys. J. 2013, 104, 1652–1660. [CrossRef] [PubMed]

15. Seffens, W.; Abebe, F.; Evans, C.; Wang, X.-Q. Spatial Partitioning of miRNAs is related to Sequence Similarity
in Overall Transcriptome. Int. J. Mol. Sci. 2016, 17, 830. [CrossRef] [PubMed]

16. Villarroya-Beltri, C.; Gutiérrez-Vázquez, C.; Sánchez-Cabo, F.; Pérez-Hernández, D.; Vázquez, J.;
Martin-Cofreces, N.; Martinez-Herrera, D.J.; Pascual-Montano, A.; Mittelbrunn, M.; Sánchez-Madrid, F.
Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs.
Nat. Commun. 2013, 4, 2980. [CrossRef] [PubMed]

17. Park, C.W.; Zeng, Y.; Zhang, X.; Subramanian, S.; Steer, C. Mature microRNAs identified in highly purified
nuclei from HCT116 colon cancer cells. RNA Biol. 2010, 7, 606–614. [CrossRef] [PubMed]

18. Huang, X.; Yuan, T.; Tschannen, M.; Sun, Z.; Jacob, H.; Du, M.; Liang, M.; Dittmar, R.L.; Liu, Y.; Liang, M.;
et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013,
14, 319. [CrossRef] [PubMed]

19. Cheng, L.; Sharples, R.A.; Scicluna, B.J.; Hill, A.F. Exosomes provide a protective and enriched source of
miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles 2014, 3,
23743. [CrossRef] [PubMed]

20. Eiben, A.; Smith, J. Introduction to Evolutionary Computing; Springer: Berlin, Germany, 2003.
21. Banzhaf, W.; Beslon, G.; Christensen, S.; Foster, J.; Képès, F.; Lefort, V.; Miller, J.; Radman, M.; Ramsden, J.

From Artificial Evolution to Computational Evolution: A Research Agenda. Nat. Rev. Genet. 2006, 7, 729–735.
[CrossRef] [PubMed]

22. Timmis, J.; Amos, M.; Banzhaf, W.; Tyrrell, A. Going back to our Roots: Second Generation Biocomputing.
Int. J. Unconv. Comput. 2006, 2, 349–382.

23. Cruz, C.; González, J.R.; Pelta, D. Optimization in dynamic environments: A survey on problems, methods
and measures. Soft Comput. 2011, 15, 1427–1448. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1109/TEVC.2003.810752
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1186/1471-2164-12-S3-S18
http://www.ncbi.nlm.nih.gov/pubmed/22369587
http://dx.doi.org/10.5483/BMBRep.2014.47.10.164
http://www.ncbi.nlm.nih.gov/pubmed/25104400
http://dx.doi.org/10.1091/mbc.E12-08-0572
http://www.ncbi.nlm.nih.gov/pubmed/23630232
http://dx.doi.org/10.1016/j.bpj.2013.01.049
http://www.ncbi.nlm.nih.gov/pubmed/23601312
http://dx.doi.org/10.3390/ijms17060830
http://www.ncbi.nlm.nih.gov/pubmed/27338352
http://dx.doi.org/10.1038/ncomms3980
http://www.ncbi.nlm.nih.gov/pubmed/24356509
http://dx.doi.org/10.4161/rna.7.5.13215
http://www.ncbi.nlm.nih.gov/pubmed/20864815
http://dx.doi.org/10.1186/1471-2164-14-319
http://www.ncbi.nlm.nih.gov/pubmed/23663360
http://dx.doi.org/10.3402/jev.v3.23743
http://www.ncbi.nlm.nih.gov/pubmed/24683445
http://dx.doi.org/10.1038/nrg1921
http://www.ncbi.nlm.nih.gov/pubmed/16894364
http://dx.doi.org/10.1007/s00500-010-0681-0


Computation 2017, 5, 32 11 of 12

24. Pelta, D.; Cruz, C.; Verdegay, J. Simple control rules in a cooperative system for dynamic optimization
problems. Int. J. Gen. Syst. 2009, 38, 701–717. [CrossRef]

25. Novoa-Hernández, P.; Corona, C.; Pelta, D. Efficient multi-swarm PSO algorithms for dynamic environments.
Memet. Comput. 2011, 3, 163–174. [CrossRef]

26. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments—A survey. IEEE Trans. Evol. Comput.
2005, 9, 303–317. [CrossRef]

27. Nguyen, T.T.; Yang, S.; Branke, J. Evolutionary dynamic optimization: A survey of the state of the art.
Swarm Evol. Comput. 2012, 6, 1–24. [CrossRef]

28. Angeline, P. Adaptive and Self-Adaptive Evolutionary Computations. In Computational Intelligence:
A Dynamic Systems Perspective; Palaniswami, M., Attikiouzel, Y., Eds.; IEEE Press: Hoboken, NJ, USA,
1995; pp. 152–163.

29. Eiben, A.; Michalewicz, Z.; Schoenauer, M.; Smith, J. Parameter Control in Evolutionary Algorithms.
In Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence; Lobo, F., Lima, C.,
Michalewicz, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 54, pp. 47–75.

30. Meyer-Nieberg, S.; Beyer, H.-G. Self-Adaptation in Evolutionary Algorithms. In Parameter Setting in
Evolutionary Algorithms, Studies in Computational Intelligence; Lobo, F., Lima, C., Michalewicz, Z., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; Volume 54, pp. 19–46.

31. Weicker, K.; Weicker, N. On Evolution Strategy Optimization in Dynamic Environments. In Proceedings of
the 1999 Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; IEEE Press: Hoboken,
NJ, USA; pp. 2039–2046.

32. Miller, J.F. Cartesian Genetic Programming (Natural Computing Series); Springer: Berlin, Germany, 2011.
33. Singh, Y.H.; Andrabi, M.; Kahali, B.; Ghosh, C.; Mizuguchi, K.; Kochetov, A.; Ahmad, S. On nucleotide

solvent accessibility in RNA structure. Gene 2010, 463, 41–48. [CrossRef] [PubMed]
34. Seffens, W.; Digby, D. mRNAs Have Greater Calculated Folding Free Energies than Shuffled or Codon

Choice Randomized Sequences. Nucleic Acids Res. 1999, 27, 1578–1584. [CrossRef] [PubMed]
35. Yoo, J.-K.; Digby, D.; Davis, A.; Seffens, W. Whole Transcriptome mRNA Secondary Structure Analysis

Using Distributed Computation. In Proceedings of the 2006 IEEE International Conference on Granular
Computing, Atlanta, GA, USA, 10–12 May 2006; pp. 647–650.

36. Kaufmann, P.; Platzner, M. Multi-Objective Intrinsic Evolution of Embedded Systems. In Organic
Computing—A Paradigm Shift for Complex Systems; Muller-Schloer, C., Schmeck, H., Ungerer, T., Eds.; Springer
Basel AG: Basel, Switzerland, 2011; pp. 193–206.

37. Kaufmann, P.; Platzner, M. Advanced Techniques for the Creation and Propagation of Modules in Cartesian
Genetic Programming. In Genetic and Evolutionary Computation (GECCO); ACM: New York, NY, USA, 2008;
pp. 1219–1226.

38. Paun, G.H. Computing with Membranes; Technical Report; Turku Center for Computer Science: Turku, Finland,
1998.

39. Nishida, T.Y. An approximate algorithm for NP-complete optimization problems exploiting P systems.
In Proceedings of the Brainstorming Workshop on Uncertainty in Membrane Computing, Palma, Majorca,
Spain, 8–10 November 2004; pp. 185–192.

40. Garcia-Arnau, M.; Manrique, D.; Rodriguez-Paton, A.; Sosík, P. A P system and a constructive membrane-
inspired DNA algorithm for solving the maximum clique problem. BioSystems 2007, 2, 1–11. [CrossRef]
[PubMed]

41. Pan, L.Q.; Alhazov, A. Solving HPP and SAT by P systems with active membrane and separation rules.
Acta Inform. 2006, 43, 131–145. [CrossRef]

42. Niu, Y.Y.; Pan, L.Q.; Perez-Jimenez, M.J.; Font, M.R. A Tissue P Systems Based Uniform Solution to Tripartite
Matching Problem. Fundam. Inform. 2011, 109, 1–10.

43. Haddow, P.C.; Tyrrell, A.M. Genetic Programming and Evolvable Machines; Springer: Berlin, Germany, 2011;
Volume 12, pp. 183–215.

44. Goldin, D.; Smolka, S.; Wegner, P. Turing Machines, transition systems, and interaction. Electr. Notes Theor.
Comput. Sci. 2001, 52, 120–136. [CrossRef]

45. Turner, A.J.; Miller, J.F. Recurrent Cartesian Genetic Programming. In Parallel Problem Solving from
Nature—PPSN XIII 2014 LNCS 8672; Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J., Eds.; Springer
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