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Abstract: An airflow in the first four generations of the tracheobronchial tree was simulated by the
1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D
models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller
airways, extended with convective transport model throughout the lung and alveolar components
which were combined with the model of oxygen and carbon dioxide transport between the alveolar
volume and the averaged blood compartment during pathological respiratory conditions. The novel
features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of
3D segmentation of the computed tomography (CT) data; 1D−0D coupling of the models of 1D
bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our
simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster
(Biot) and periodic (Cheyne-Stokes) respirations and bronchial asthma attack. The suitability of the
proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed
in all these cases. In the future, these results might be integrated into research and practical studies
aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of
breathing patterns and alveolar gas exchange for patients with breathing problems.

Keywords: multiscale modeling; in silico; respiratory mechanics; alveolar gas exchange; mechanical
ventilation; abnormal breathing patterns; bronchial asthma attack; normal (sinusoidal) breathing;
cluster (Biot) breathing; periodic (Cheyne-Stokes) breathing

1. Introduction

Lung ventilation is a vitally important function of the human body. It provides oxygen (O2)
supply and carbon dioxide (CO2) elimination. A balance of O2 and CO2 exchange with optimal
respiration is required to keep homeostasis in the human body. Thus, the balance of O2/CO2 exchange
is related to respiratory function capacity and its breathing pattern, which includes depth, respiratory
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rate, flow rate, consistency of minute ventilation and parameters of the respiratory cycle (tidal volume
and respiratory rate).

Some typically occurring changes of breathing pattern, such as periodic and cluster breathings,
are associated with particular diseases, and severe conditions and very well described. These kinds
of breathing pattern changes are typical for severely ill patients and critical conditions; continuous
monitoring of the patient’s breathing pattern is thus necessary.

Some respiratory system diseases, such as bronchial asthma, are characterized by their own
breathing patterns and they can be managed well. In addition, there is another type of breathing
pattern change, defined as respiratory dysfunctions. In these cases, chronic or recurrent changes in
breathing pattern, that cannot be attributed to a specific medical diagnosis, cause respiratory and
non-respiratory complaints such as anxiety, lightheadedness and fatigue [1]. Patients with respiratory
dysfunctions may have dyspnea with normal lung function, hyperventilation, deep sighing, frequent
yawning, exercise-induced breathlessness, chest tightness and pain [1–4]. Subsequently, there is no
gold standard for the diagnosis of such breathing pattern changes beyond their clinical description [1].
From this point of view, Fekr et al. (2014) suggested that the measurement of human respiratory signals
is crucial in cyberbiological systems since a disordered breathing pattern can be the first symptom
of different physiological, mechanical, or psychological dysfunctions. Owing to this hypothesis, a
remote real-time cloud platform was presented for both monitoring the respiration rate and automatic
breath pattern classification for patients with breathing problems (e.g., respiratory complications after
surgery) [5]. Therefore, computational analysis of breathing patterns and blood gasses balance in
patients with specific breathing pattern changes, based on a computational model of the airflow and
matter transfer in the lung with individual computed tomography (CT) data analysis, could be a
suitable application for such cyber-biological systems.

The lung structure is complex. It includes glottis and a strongly ramified tracheobronchial tree,
which is terminated by the large number of alveoli. Left and right lobes have different volumes and
structures. The lung elasticity demonstrates non-linear behavior. The turbulent flow may be generated
in the complex laryngeal region, which may affect the flow and pressure in the bronchial airways [6,7].
The early termination of the tracheobronchial tree structure is performed in most models. It requires a
correct boundary conditions statement at the terminal branches. This question was comprehensively
studied in [8–10].

Current in silico studies deal with this problem in more or less detail or cover just a part of the
problem. An approach of detailed patient-specific 3D lung reconstruction is mostly applied to the
study of particle deposition [11–14] or nasopharynx-trachea ventilation features [6,7,15]. It is also
extended with the 3D−1D coupling of upper and middle airway segments and with the fluid-structure
interaction (FSI) [16] method, which allows inclusion of the trachea and bronchial walls’ elasticity.
The lumped (volume averaged) models operate with lung mechanics in terms of tidal volume and
pressure with the lower portion of individualization [17,18]. Such models may be used as boundary
conditions for multiscale 3D−0D, 3D−1D−0D or 1D−0D simulations of the respiratory gas flow in
the lung [9,19–22] et al. In such models, averaging procedures are applied to the three-dimensional
mass and momentum balance equations (3D) of the air flow in the tracheobronchial region, which
allow for consideration of the flow parameters as functions of one (1D) or two (2D) spatial coordinates.
The 0D models are also referred to as lumped parameter models in which the flow parameters are
considered as functions of time.

A number of works are devoted to mathematical and computational simulations of blood
biochemistry with impact on O2, CO2 and related acid-base balance [23–25]. To the best of our
knowledge, the problem of individual computational analysis of respiratory mechanics jointly with
alveolar gas balance during pathological conditions has been rarely addressed in the literature.

In this work, the 1D model of incompressible fluid flow through the network of the elastic tubes
was used to simulate respiratory gas flow in the first four generations of the tracheobronchial tree.
The 1D structure of the tracheobronchial tree was reconstructed on the basis of 3D segmentation of
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individual anonymous CT data. It was coupled with the 0D model of lumped alveolar components,
which aggregates parts of alveolar volume and smaller airways. The model was extended with O2

and CO2 transport model through the tracheobronchial tree, alveolar components and averaged
blood compartment. Well-known physiological data were used for the parameter identification and
validation. The main attention in this work was paid to the alveolar gas exchange during the asthma
attack and pathological breathing. Thus, the 3D effects and possible turbulence in the glottis and
the trachea region are not significant. The novel features of this work are 1D reconstruction of the
tracheobronchial tree structure on the basis of 3D segmentation of the CT data; 1D−0D coupling of the
models of the 1D bronchial tube and 0D alveolar components; as well as the alveolar gas exchange
model. Using the developed integrated multiscale model, we have analyzed CO2 elimination efficiency
during artificial ventilation and during the changes of alveolar gas balance due to the pathological
breathing patterns (cluster and periodic breathing) and due to the asthma attack.

2. Materials and Methods

2.1. Mathematical Model of the Respiratory Gas Flow in the Lung

The lung structure was decomposed to the conducting zone (the first four generations, see
Figure 1) and eight bronchoalveolar compartments which aggregate a portion of the corresponding
smaller airways and alveoli. The 1D network structure (Figure 1b) was automatically produced,
which is based on the manual 3D segmentation of the patient-specific CT-scans of the lung (Figure 1a).
The length and diameters of the 1D linear segments were derived from 3D structure by processing
corresponding curvilinear segments. Details of this method are given in Section 2.5.
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Figure 1. (a) 3D segmentation of the individual computed tomography (CT) data of the 
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Figure 1. (a) 3D segmentation of the individual computed tomography (CT) data of the
tracheobronchial tree; (b) 1D structure based on the 3D segmentation.

The respiratory gas in the trachea and bronchial tubes of the conducting zone was simulated by
1D dynamical model of the flow of incompressible fluid through the elastic tube. The flow in every
tube (1D subdomain) is described by mass and momentum balance equations [26,27]:
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where t is the time; x is the coordinate along the tube; k is the index of the bronchial tube; ρ is the
density of the respiratory gas in tracheobronchial tree (supposed to be constant); Sk is the cross-section
of the tube area; uk(t, x) is the linear velocity of the respiratory gas averaged over cross-section Sk(t, x);
pk(Sk) is the pressure of respiratory gas. We suppose an absence of source or sink of the mass inside
the tube and absence of frictional, gravitational and other forces. The elasticity of the bronchial
tube’s walls is introduced as the pressure to cross-section relationship (wall state equation) in the
linear approximation:

pk(Sk) = ρwc2
0k

(
Sk
S0k
− 1
)

(3)

where ρw is the density of the material of bronchial tube; S0k is the reference cross-section area
corresponded to the unstressed state; c0k is the velocity of small disturbance propagation in the
material of the wall of the bronchial tube. The linear approximation was selected according to the
anatomic features of bronchial tube walls, which are more rigid than arteries. This formulation is
based on the experimental study of the behavior of the collapsible tubes [28]. The values of c0 were set
according to the literature on respiratory physiology [29–31] and validation of the distribution of the
pressure and linear velocity in the bronchioles by generations [26].

2.2. Boundary Conditions

In accordance with the anatomy of the tracheobronchial tree, we assume that all bifurcations
are dichotomous: they are always composed of one incoming bronchial tube which is denoted by
kn

1 and two outgoing bronchial tubes denoted by kn
2,3 (Figure 1b). The boundary conditions at the

junction point with the index n of the bronchial tubes with the indices kn
1 , kn

2 , kn
3 are stated as a mass

conservation condition and Bernoulli’s theorem (the difference of gravitational potential is neglected):

Skn
1
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2

= In(t), i = 1–3, (5)

where x̃kn
i
= Lkn

i
for the incoming bronchial tube; x̃kn

i
= 0 for the outgoing bronchial tubes, Lkn

i
is the

length of the tube, In(t) is an intermediate variable which is constant at a given time in every junction.
At the input to the nasopharyngeal region, the constant atmospheric pressure patm condition is applied
instead of Equations (4) and (5).

p1(S1(t, 0)) = patm = const (6)

In accordance with Equation (3), this condition is equivalent to the constant cross-section
condition. The boundary conditions at the junctions of terminal bronchial tubes with bronchoalveolar
compartments are set based on the mass conservation condition and pressure continuity
(equilibrium) condition:

dVak
dt

= Sk(t, Lk)uk(t, Lk) (7)

pak = pk(t, Lk) (8)

Conducting zone of the lung is decomposed to the eight bronchoalveolar compartments which
aggregate a portion of the corresponding smaller airways and alveoli. Each compartment is attached to
the corresponding terminal tube of tracheobronchial tree (the tubes in the range from 8 to 15, Figure 1b).
Inertia term is neglected. Integrated mechanics of the bronchoalveolar compartment were set in terms
of pressure-volume relationship in the form:

Rk
a

dVk
a

dt
+ Ek

a

(
Vk

a −Vk
0a

)
= pk

a − ppl(t), (9)
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where k is the index of the bronchoalveolar compartment (coincides with the index of the corresponding
terminal bronchiole, see Figure 1b); Vk

a is the volume of the bronchoalveolar compartment; Vk
0a is the

volume at the unstressed state; Rk
a is the effective hydraulic resistance; Ek

a is the effective compliance; pk
a

is the pressure inside the bronchoalveolar compartment; ppl(t) is the pleural pressure from respiratory
muscles, which is defined according to the breathing conditions. In the case of normal conditions
(sinusoidal breathing):

ppl(t) = pg sin(νt), (10)

where ν is respiratory rate; and pg is the amplitude of the pressure from the respiratory muscles.
Inflation of the lung is not uniform. In our model, the lobular regions are presented as bronchoalveolar
compartments with different values of Vk

0a:

Vk
0a =

d2
k

15
∑

j=8
d2

j

Vtot
0 , (11)

where Vtot
0 is the total volume of the lungs (see Table A1); and dk is the diameter of the terminal

bronchiolar tube (see Table A2). Thus, we assume that the volume of the bronchoalveolar compartment
is proportional to the cross-section of the appropriate terminal bronchial tube. The material of the
bronchoalveolar compartments is approximated as linear-elastic in this work and is thus supposed to
be Ek

a constant (see Table A1). The value of Ek
a can be measured as a slope of static volume−pressure

curve [29–31]. It was supposed that each effective compartment has the same value of Ek
a . The effective

hydraulic resistance of the total lungs is generally estimated as a slope of the volume rate−pressure
gradient curve [29–31]. The compartment resistances can be calculated similarly to the electric circuit
resistance, if taking into account their parallel connections. In this work, the values Rk

a of every
compartment are supposed to be dependent on viscous friction. They can be derived as functions
of volume for some selected compartments independently of other compartments. The hydraulic
resistance coefficient due to viscous friction for the internal flow in the sphere was not well studied.
We propose to estimate it by the well-known Poiseuille’s hydraulic resistance for the tube:

Ra =
8ηle f

πr4
e f

(12)

where effective length le f and effective radius re f can be approximated using the volume equivalence
between tube and sphere:

Va ≈ πr2
e f le f ≈

4πr3
e f

3
(13)

Finally, using Equations (12) and (13) can be reduced to the:

Ra =
128η

9π2Va
(14)

where Vk
a is the volume of the bronchoalveolar compartment, which is varied in time according to

Equation (9). Equation (14) was substituted with Equation (9). This approach was validated by the
comparison of the calculated and measured alveolar air flow and alveolar pressure (see Figures 2 and 3
in Section 3.1.).
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The boundary conditions at the bifurcations Equations (4) and (5), at the input to the
nasopharyngeal region Equation (6) and at the junctions with bronchoalveolar compartments
Equations (7)–(10) should be combined with compatibility conditions along the characteristics of
a hyperbolic set Equations (1) and (2) leaving the integration domain. Here we outline the main
aspects. More details can be found in [26,27]. Using the notation

Vk =

(
Sk
uk

)
, F(Vk) =

(
Skuk

u2
k

2 + pk(Sk)
ρ

)
(15)

We can rewrite Equations (1) and (2) in a divergent form:

∂Vk
∂t

+
∂F(Vk)

∂x
= 0 (16)

The eigenvalues λk and left eigenvectors wk of the Jacobi matrix Ak =
∂Fk
∂Vk

=
{

∂Fki
∂Vkj

}2

i,j=1
are:

λki = uk + (−1)i

√
Sk
ρ

∂pk
∂Sk

= uk + (−1)ic0k

√
Sk
S0k

, i = 1, 2 (17)

wki =

( √
1
ρ

∂pk
∂Sk

(−1)i√Sk

)
=

( c0k√
S0k

(−1)i√Sk

)
, i = 1, 2. (18)
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Compatibility conditions of Equations (1) and (2) along characteristics are:

wki ·
(

dVk
dt

)
i
= wki ·

(
∂Vk
∂t

+ λki
∂Vk
∂x

)
= 0, i = 1, 2 (19)

In the case of respiratory mechanics both in normal and pathological conditions: |uk| < c0k

√
Sk
S0k

;
furthermore, there exists one positive and one negative eigenvalue and one incoming and one outgoing
characteristic at the entrance and the output of every bronchial tube. Every set of boundary conditions,
as described above, must be combined with Equation (19) for every incoming and outgoing tube. For
the incoming tube, positive eigenvalue must be taken (i = 2, positive slope), for the outgoing tube,
negative eigenvalue must be taken (i = 1, the negative slope).

2.3. Mathematical Model of the Oxygen and Carbon Dioxide Transport in the Lung

The transport of oxygen and carbon dioxide associated with the 1D flow is described by the
convection equation:

∂Ck,m

∂t
+ uk

∂Ck,m

∂x
= 0 (20)

where m is the index of the substance; Ck,m is the fraction (concentration) of the substance m in
the kth tube. The boundary conditions at the junctions of the bronchial tubes are set as a mass
conservation condition:

Ckn
1 ,m

(
t, Lkn

1

)
Skn

1

(
t, Lkn

1

)
ukn

1

(
t, Lkn

1

)
=

= Ckn
2 ,m(t, 0)Skn

2
(t, 0)ukn

2
(t, 0) + Ckn

3 ,m(t, 0)Skn
3
(t, 0)ukn

3
(t, 0)

(21)

If ukn
j

(
t, x̃kn

j

)
> 0, then Ckn

j ,m is derived from Equation (20) along outgoing characteristic.

If ukn
j

(
t, x̃kn

j

)
< 0, then

Ckn
j ,m

(
t, x̃kn

j

)
= Cnode

n,m (22)

where Cnode
n,m is concentrated at the junction, which is derived from Equation (21). The boundary

conditions at the input to the nasopharynx during inspiration (u1(t, 0) > 0) are set as:

C1,O2(t, 0) = Catm
O2

, C1,CO2(t, 0) = Catm
CO2

, (23)

or derived from Equation (20) if u1(t, 0) < 0 (expiration).
At the outputs of terminal bronchial tubes concentration, Ck,m(t, Lk) is derived from Equation (20),

if uk(t, Lk) > 0, or is calculated together with the model of the gas exchange between the
bronchoalveolar compartment and the blood:

Ck,m(t, Lk) = Ck
a,m, if uk(t, Lk) < 0 (24)

d
(

Ck
a,mVk

a

)
dt

= Ck,mSk(t, Lk)uk(t, Lk) + DmSk
a

(
Cb

m − Ck
a,m

)
(25)

dCb
m

dt
=

Qb
m

Vb + Dm∑
k

Sk
a

Vb

(
Ck

a,m − Cb
m

)
(26)

where k is in the range of the indices of bronchoalveolar compartments (in this work k = 8, ..., 15, see
Figure 1b); Ck

a,m is the mth substance fraction in kth bronchoalveolar compartment; Dm is the coefficient
of the diffusion of mth substance between bronchoalveolar compartment and the blood; Cb

m is the mth

substance fraction in the blood; Qb
m is the source or sink of the mth substance corresponding to the
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physiological conditions of the body; Vb is the total volume of the blood in the body; Sk
a is the effective

area of the surface of bronchoalveolar compartment, which is calculated as:

Sk
a =

3
√

36π
(
Vk

a
)2 (27)

2.4. Numerical Implementation

From the mathematical standpoint, the 1D model of respiratory gas flow in the tracheobronchial
tree is similarly to the 1D model of a blood flow in a network of vessels. This is a set composed of pairs
Equations (1) and (2) of nonlinear hyperbolic equations for every bronchial tube. These pairs are joined
together through non-linear algebraic equations which are derived from the boundary conditions at
the inlet Equation (6) or finite difference discretization of the conditions at the outlets Equations (7)–(9)
and at the junctions Equations (4) and (5). Every set is extended by the finite difference discretization
of the appropriate compatibility condition Equation (19) in each of the above cases.

Fractional time steps, implicit−explicit algorithm allows splitting computations into several
stages. The grid-characteristic finite difference method [32] was successfully applied to both respiratory
gas flow and blood flow models [33–36]. At the first (explicit) stage, we use the first-order explicit
monotonic implementation of this method for solving the set Equations (1) and (2) at every time step
at the internal nodes of the numerical grid of every bronchial tube. At the second (implicit) stage, we
solve the non-linear algebraic equation sets at the inlet, outlets and junctions by Newton’s method for
the terminal nodes of the numerical grid of every bronchial tube. This set is constructed using finite
difference discretization of Equation (19), which is based on the values of neighboring internal grid
nodes calculated at the first stage. Null approximation for the iterations at the second stage is taken
from the previous time step which is partly validated convergence of Newton’s method, since the time
step is relatively small. Practically, no more than five iterations were required to achieve convergence
up to 10−6 relative error for all simulations in this work. Several other possible approaches have
been reviewed in [36]. The main difference of the numerical implementation in this work concerns
discretization of the boundary condition sets: Equations (4)–(9); compatibility conditions Equation (19)
and the model of the of respiratory gasses transport Equations (20)–(27).

Compatibility conditions Equation (19) are discretized by the first-order implicit approximation
using forward difference for the entrance to the bronchial tube (xk = 0) and backward difference for
the output of the bronchial tube (xk = Lk) along the x axis and first-order implicit approximation
along the t axis: (

∂V
∂x

)n+1

0
=

Vn+1
1 −Vn+1

0
h

,
(

∂V
∂x

)n+1

J
=

Vn+1
J −Vn+1

J−1

h
, (28)

(
∂V
∂t

)n+1

p
=

Vn+1
p −Vn

p

τn+1
, p = 0, J (29)

where Vn
p is an element of discrete function which is defined on the mesh and represents mesh analog

for the V from Equation (15). This mesh is uniform along the x axis:

(
xj, tn

)
: xj = hj; j = 0, ..., J; hJ = L; tn =

n−1

∑
p=0

τp (30)

Time step is selected on the basis of stability requirement imposed by the numerical method for
Equations (1) and (2):

τn+1 = 0.9 max
k=1,...,K;i=1,2

∣∣λn
ki

∣∣
hk

(31)
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where K is the total number of bronchial tubes. Finally, Equation (19) can be discretized as

(wi)
n
p ·
(

Vn+1
p −Vn

p

τn+1
+ (λi)

n
p

Vn+1
p −Vn+1

q

h

)
= 0, (i, p, q) ∈ {(1, 0, 1), (2, J, J − 1)} (32)

There exists an obvious one-to-one mapping between the p and the triplet (i, p, q). Thus, we use
shorter notation p = 0, J instead of the full notation (i, p, q). Using the notations:

αn
p =

(−1)i+1c0√
Sn

pS0

, βn
p =

un
p + (−1)iσn

p un
q − αn

p

(
Sn

p + (−1)iσn
p Sn

q

)
1 + (−1)iσn

p
, σn

p =
τn+1

h
(λi)

n
p (33)

Equation (32) can be rewritten as:

un+1
p = αn+1

p Sn+1
p + βn+1

p , p = 0, J (34)

Finally, the discretization of the boundary conditions at the bronchial tube junctions Equations (4),
(5) and (19) can be reduced to the set of three quadratic equations in the form:

sI I = As + b (35)

where s =
(
Sk1

(
tn+1, Lk1

)
, Sk2(tn+1, 0), Sk3(tn+1, 0)

)T , sI I =
(

S2
k1

(
tn+1, Lk1

)
, S2

k2
(tn+1, 0), S2

k3
(tn+1, 0)

)T
,

coefficients of A and b are derived from Equations (4), (5), (34) and depend on αp, βp and constants of
the model (see Table A1).

Discretization of the cross-section area at the inlet to the tracheobronchial tree can be derived by
substituting Equation (3) with Equation (6):

(S1)
n+1
0 =

(
1 +

patm

ρwc2
01

)
S01 (36)

and using Equation (34) to compute (u1)
n+1
0 .

Discretization of the boundary conditions at the outlets of the tracheobronchial tree (junctions of
the bronchioles and bronchoalveolar compartment) can be derived as follows: (7) is integrated over a
time step by the implicit Euler method as:

Vn+1
a = Vn

a + τSn+1
J un+1

J (37)

Equations (7), (8) and (37) are used to rewrite Equation (9) as:

128η

9π2
(

Vn
a + τSn+1

J un+1
J

)Sn+1
J un+1

J + Ea

(
Vn

a + τSn+1
J un+1

J −V0a

)
= ρc2

0

(
Sn+1

J

S0
− 1

)
− pn+1

pl (38)

Substitution of Equation (32) with Equation (36) results in the fourth-order polynomial equation
for the only unknown variable, Sn+1

J , which is solved by Newton’s method starting from the value Sn
J

as null approximation. This is sufficient for the convergence as the time steps, which are limited by the
stability condition Equation (31), are sufficiently small relative to the respiratory cycle

(
τ ≈ 10−4s

)
.

The model of respiratory gas transport in Equations (20)–(27) is discretized by implicit methods
after the values of the airflow were calculated by the above methods. Thus, the values of the area
cross-section, linear velocity and alveolar volume at the upper time layer (t = tn+1) are known.
The numerical algorithm is split for: processing the internal nodes of the bronchial tubes (Equation (20));
boundary conditions at the junctions of the bronchial tubes (Equations (21) and (22)); input to
the nasopharynx (Equation (23)); junctions of the terminal bronchial tubes and bronchoalveolar
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compartments (Equations (24)–(27)) which are extended, if required, with the implicit discretization of
Equation (20) derived at the appropriate terminal point (input or output of the bronchial tube) if the
airflow velocity is directed outside the tube at this point.

2.5. Computed Tomography (CT) Data Processing

Initial 3D bronchial tube structure was segmented manually from an anonymous CT dataset.
It was used as a source for automatic generation of 1D core network in 3D space and corresponding
graph structure. Algorithm from [37] was applied. It was initially introduced and successfully applied
for processing of patient-specific vascular networks. The algorithm consists of skeletonizing phase
and graph structure generation phase. The first stage of the skeletonizing phase is a variant of the
distance-ordered homotopic thinning (DOHT) algorithm [38], which produces as an output the initial
skeleton of the input 3D image. Artificial structures in the form of short segments (twigs) may be
also generated during this stage. The second stage was developed in order to remove such noise
from the structure (see [37] for more details). In the second phase, the voxels of the skeletonized
structure are divided into two groups: inner voxels (i.e., voxels adjacent to exactly two other skeletal
voxels) and nodal voxels (other voxels). In this work, it was assumed that each voxel had 26 adjacent
voxels. Finally, the groups of inner voxels were converted to the edges of the graph and nodal voxels
were converted to the graph vertices. The average diameter and the actual length were computed
following the above workflow and saved as attributes of the graph edges. Manual 3D segmentation
and automatic 1D core network construction results are shown in Figure 1a,b. Network parameters are
presented in Table A2.

3. Results

3.1. The Model Validation

The constants and parameters of the model are presented in Tables A1 and A2. They were
identified according to the processing of the anatomical CT data (see Section 2.5), literature
data [18,26,29–31] and model validation with the data from [29]. The previous work on validation
is presented in [26,32–34]. The major parameters of the lung ventilation affecting the alveolar gas
exchange are the alveolar air flow and alveolar pressure. Thus, in this work, we additionally performed
simulations of the dynamical change of the total air flow at the trachea (flux at the terminal point of
tube No. 1 in Figure 1) and alveolar pressure (pressure at the bronchoalveolar compartments averaged
over the compartments). The results are shown in Figures 2 and 3. The calculated data (designated
by dots) are compared to the data from [29] (designated by curve). It is obvious from Figures 2 and 3
that a reliable quantitative agreement is achieved.

3.2. Carbon Dioxide Elimination Efficiency during Artificial Ventilation

Artificial ventilation is widely used in surgery for maintaining vital conditions during anesthesia.
Generally, artificial ventilation parameters (tidal volume and respiratory rate) are manually controlled
by the anesthesiologist based on a patient’s vitals. The main task of the anesthesiologist is to maintain
vital functions of the organism providing sufficient O2 supply and CO2 elimination through the lung.
Certain parameters are not directly assayed and monitored during a surgical procedure with general
anesthesia, such as arterial blood CO2 concentration. Understanding of the relationship between
parameters of the artificial ventilation and alveolar concentration of O2 and CO2 is very important in
order to predict CO2 elimination capacity of ventilation. In this section, we perform in silico study of
the alveolar CO2 concentration dependence on the respiratory rate changes. The following assumptions
are made. The minute volume (Vminute) was fixed and tidal volume (Vtd) was derived from:

60VtdνARR = Vminute = const (39)
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The pleural pressure in Equation (10) was “switched off”
(

pg = 0
)

and the nasopharyngeal
pressure in Equation (6) was varied as:

S1(t, 0)u1(t, 0) = Qtd sin(2πνARRt), Qtd = Vtd/
T/2∫
0

sin(2πνARRt)dt =
Vtd

πνARR
(40)

where νARR is the frequency of the artificial respiratory rate (ARR), and Qtd is the amplitude of the
inhaled airflow. The ARR was varied in the acceptable physiological range (0 < νARR < 0.7 Hz).
The CO2 concentration in alveolar volume was simulated by the integrated model presented in
Section 2 and averaged over several cycles of ARR. The results are shown in Figure 4.
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The minimum value of CO2 concentration is considered as a criterion of the effective lung
functioning during artificial ventilation. The initial increase of the ARR from zero is associated with
the increase of CO2 elimination and with the decrease of CO2 concentration (Figure 4). The minimum
is achieved at the ARR frequency of 0.17 Hz, which is very close to the measured frequency of the
quiet breathing of the patient (0.23 Hz). The further increase of ARR results in the increase of the CO2

concentration. It can be explained by the tidal volume decrease Equation (39) and decreased alveolar
pressure. Finally, the partial pressure gradient of CO2 between the alveolar volume and the blood
and the period of the gas exchange per cycle is decreased. It results in the decreased lung efficiency.
The increase of ARR above optimal value is also associated with the earlier onset of the expiratory
phase. Thus, the inspired gas with minimal CO2 concentration could not fully achieve bronchoalveolar
compartments. It also contributes to the increase of CO2 concentration in the alveolar volume.

3.3. The Study of Pathological Breathing Patterns

In this work, we define breathing pattern as a time profile of pleural pressure (the function ppl(t)
in Equation (10). The breathing pattern is an important characteristic of the respiratory system. It
strongly affects the alveolar gas exchange effectiveness. In this section, we perform in silico study of
the dependence of CO2 concentration in the alveolar volume on the breathing pattern. We consider two
types of pathological breathing patterns: cluster (Biot) and periodic (Cheyne-Stokes) breathings [39,40]
and comparing them to the normal (sinusoidal) respiration [30]. Normal breathing was simulated as:

ppl(t) = pg sin(vt) (41)
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Cluster breathing is a type of abnormal breathing pattern. We consider it as a group of sinusoidal
inspirations followed by the period of apnea. It was simulated as:

ppl(t) =

{
2pg sin(vt), 0 ≤ t < 0.5Tpt

0, 0.5Tpt ≤ t < Tpt
(42)

where Tpt is the period of pattern and t is the time counted from the beginning of the period. Periodic
breathing is a type of abnormal breathing pattern which is characterized by the non-synchronous
contraction of the respiratory muscles. It was simulated as:

ppl(t) =

{
2pg sin(vt) sin(5vt), 0 ≤ t < 0.75Tpt

0.1pg sin(vt), 0.75Tpt ≤ t < Tpt
(43)

The results of the alveolar concentration of CO2 and O2 simulations are shown in Figures 5 and 6.
The alveolar CO2 concentration remained within 4.8%–5.9% during normal breathing. Both cluster and
periodic breathings significantly affect this value. The alveolar CO2 concentration was increased up to
8.4% during cluster breathing, whereas a highly increased value of this parameter was found during
periodic breathing (8%–10.4%). The alveolar O2 concentration remained within 13.9%–15.1% during
normal breathing. This value had a wider range during cluster breathing with its lowest value at
10.7%. A highly decreased value of the alveolar O2 concentration was found during periodic breathing
(8%–11%).

Thus, during periodic breathing, both alveolar CO2 and O2 values were substantially changed in
comparison to those of normal and cluster breathings.
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3.4. Asthma Model

Asthma is a chronic inflammatory disease of the respiratory system. Chronic inflammation
leads to the progressing of bronchial hyperactivity, which is caused by a violation of the autonomic
regulation of smooth muscle tone and the action of inflammatory mediators and leads to periodic
reversible bronchial obstruction, which is caused by increased lung airway resistance. Due to the lung
obstruction, some of the air is delayed in the alveoli, lungs are restretched, the residual volume is
increased and the vital capacity is reduced. A mismatch between ventilation and perfusion leads to
the increase of partial pressure of CO2 and the decrease of O2 in the blood.

Clinically, asthma attacks are classified as mild, moderate and severe [41]. In this work, asthma
attack was simulated by reducing the reference cross-section area S0 in Equation (3) for all terminal
tubes and by reducing the effective radius of the alveolar volume re f in Equation (12) as:

Sγ
0 = π

(
rγ

e f

)2
= Snorm

0 (100− γ)/100 (44)

where Sγ
0 , rγ

e f f are modified reference cross-section and effective radius during the asthma attack;
0% ≤ γ ≤ 100% is a coefficient of asthma severity; γ = 0% corresponds to the normal conditions;
γ = 100% corresponds to the full collapse of the terminal airways. The results of the simulations are
shown in Figure 7.

Changes in parameters of tidal volume and alveolar O2 concentration are slightly decreased
over the mild attack range (0% ≤ γ ≤ 20%), whereas alveolar CO2 concentration remains stable
(see Figure 7). The moderate attack range (20% ≤ γ ≤ 40%) is characterized by noticeably decreased
parameters of tidal volume and alveolar O2 concentration, accompanied by a negatively correlated
increase of alveolar CO2 concentration. The severe attack range (γ > 40%) is characterized by further
dramatic changes in all of these parameters, which exceeds the physiological range in γ > 50%. Thus,
the upper limit of the severe asthma attack simulation range was γ = 50%.
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Thus, based on a computational model of the airflow and matter transfer in the lung with
individual CT data analysis, the following simulating models were developed: (1) Model of CO2

elimination efficiency during artificial ventilation; (2) Model of pathological breathing patterns (cluster
(Biot) and periodic (Cheyne-Stokes) breathings) compared to the normal (sinusoidal) breathing pattern;
(3) Asthma breathing model in cases of mild, moderate and severe attacks.

4. Discussion

Currently, in silico studies addressed to respiratory lung modeling have been covering detailed
patient-specific 3D lung reconstruction [13,14], nasopharynx-trachea ventilation features [6,7,15],
3D-1D coupling of upper and middle airway segments, and FSI simulations [16]. The lumped
models operate with lung mechanics in terms of tidal volume and pressure with lower details [17,18].
These models are used as boundary conditions for multiscale 3D−0D, 3D−1D−0D or 1D−0D
simulations [9,19–22]. Some studies are devoted to simulations of blood biochemistry, including
alveolar gas (O2/CO2) exchange [23–25].

To the best of our knowledge, the problem of individualized computational analysis of respiratory
mechanics and alveolar gas balance during pathological conditions has been rarely addressed in the
literature. Therefore, in this work, the 1D model of incompressible fluid flow through the network
of the elastic tubes was used to simulate airflow in the first four generations of the tracheobronchial
tree. It was coupled with 0D nonlinear models of lumped alveolar components, which aggregates
parts of alveolar volume and smaller airways. The model also included a convective transport model
throughout the lung and alveolar components. The main novel features of our work are: the use of
automatic 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation
of individual CT data; a new method of 1D−0D coupling of a 1D bronchial tube and 0D alveolar
component; as well as an in silico study of the respiratory gas transport and balance during pathological
conditions. Using the developed integrated multiscale model, we analyzed CO2 elimination efficiency
during artificial ventilation due to the pathological breathing patterns of both cluster and periodic
breathings as well as the asthma attack.

Simulation of artificial ventilation was based on constant minute volume, variable breathing
frequency and calculated tidal volume with the alveolar CO2 concentration as an output value.
According to the results of our simulations we suggest that the optimal value of the ventilation
frequency is about 0.2 ± 0.05 Hz, which corresponds to the clinically measured value of normal
breathing (0.23 Hz). This value is also in agreement with the optimal ventilation frequency (0.23 Hz)
corresponding to the minimum work of breathing, which was presented in the work of breathing
model based on the Otis equation [42].
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The impact of pathological breathing patterns such as a cluster (Biot) and periodic (Cheyne-Stokes)
respirations on alveolar CO2 and O2 concentrations was demonstrated by simulation setting of specific
time profile to the pleural pressure function. The alveolar CO2 concentration was increased up to
8.4% during cluster breathing, and with highly increased values during periodic breathing (8%–10.4%)
in comparison with that of normal breathing. During periodic breathing, both alveolar CO2 and O2

values were substantially changed in comparison to those of normal and cluster breathings.
Asthma attack was simulated by reducing the reference cross-section area of the terminal

bronchioles and the effective radius of the bronchoalveolar compartments. Changes in parameters of
tidal volume and alveolar O2 concentration are slightly decreased over the mild attack range, whereas
alveolar CO2 concentration remains stable. The moderate attack range is characterized by noticeably
decreased parameters of tidal volume and alveolar O2 concentration, which was accompanied by
negatively correlated increase of alveolar CO2 concentration. The severe attack range is characterized
by further dramatic changes in all of these parameters.

Approximation of the hydraulic resistance given by Equation (14) is not precise. Nevertheless, this
formulation allows consideration of each bronchoalveolar compartment independently. It provides
a potential possibility for a correct simulation of the heterogeneous lung structure beyond the CT
segmented region, which has not been implemented in this work. Equation (14) does not account
for the smaller bronchial tubes’ properties in detail. The accuracy of this method would have been
increased had better CT data quality been available, along with the increase of the CT segmented
region covered by the 1D model.

The use of the first-order explicit numerical method for the 1D part of the model (see Section 2.4)
resulted in the strict limitation on the time step due to stability conditions. The higher-order methods
may be applied to the numerical discretization of this part of the model for the increase of the
numerical efficiency. It would require the higher-order approximation of the compatibility conditions
(see Equation (19)) and should be analyzed in the future. Current numerical implementation is
still effective for clinical practice. The typical time of the simulations was not more than half an
hour per case.

Our aim in the future is patient-specific analysis. We werelimited in this work by the data quality
available from typical hospital CT scans that we extended with 0D compartments. The parameters of
the reconstructed trachea-bronchial tree and 0D compartments should thus be validated by additional
patient-specific data which were not available at the time of investigation. Identification of the
parameters and model validation were performed on the basis of well-known literature on the
physiology [18,29–31]. The results of the simulations demonstrated good quantitative agreement.
It is clear that more patient-specific cases and validations are needed to be able to include this approach
in clinical practice.

5. Conclusions

The results of our mathematical modeling of breathing patterns of severely ill patients with
cluster and periodic respirations, as well as breathing patterns of patients with an asthma attack,
demonstrated the suitability of our mathematical simulations by differentiating the individual
properties of patients in each case. Further improvements of the model, however, are required, and
should include: heterogeneous anatomy of the left and right lobes; non-linear elasticity of parenchymal
tissue; higher-order numerical discretization of 1D; automatic patient-specific parameter identification
and validation; and sufficient patient-specific simulations.

In the future, the results of our study could be integrated into research and practical studies
aimed to design cyberbiological systems for offline analysis and real-time monitoring of respiration
parameters including their monitoring, individualized classification and prediction of breathing
patterns, in addition to analysis of alveolar gas exchange for patients with breathing problems
(e.g., patients after surgical interventions and other high-risk patients).
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Appendix

Table A1. Constants of the model.

Symbol Value Unit

ρ 1.23 × 10−6 kg/cm3

η 1.8 × 10−3 kg/(cm s)
θO2 0.17 cm2/s

θCO2 0.16 cm2/s
DO2 1.2 × 10−3 l/s

DCO2 6.7 × 10−2 l/s
Ea 0.5 kPa/l
ν 0.16 Hz

Vtot
0 5 l
pg 1.3 kPa

patm 101.3 kPa
Vblood 4 l

Vminute 5 l
Qb

O2
0.25 l/min

Qb
CO2

0.2 l/min
Catm

O2
0.209

Catm
CO2

2.8 × 10−4

Tpt 1 min

Table A2. Parameters of the 1D structure of the tracheobronchial tree (Figure 1b).

Index Length, cm Diameter, cm c0, cm/s

1 12.49 1.38 7700
2 5.41 0.87 7382
3 2.86 1.11 7382
4 1.25 0.68 7064
5 1.63 0.66 7064
6 2.45 0.84 7064
7 1.82 0.53 7064
8 2.32 0.25 6747
9 1.5 0.47 6747

10 3.86 0.26 6747
11 1.02 0.43 6747
12 2.1 0.44 6747
13 0.6 0.64 6747
14 0.54 0.4 6747
15 1,29 0.27 6747
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