# Electron Correlations in Local Effective Potential Theory

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Case of External Static Electromagnetic Field

## 3. Case of External Time-Dependent Electromagnetic Field

## 4. Conclusions

## Supplementary Materials

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix Brief Summary of Quantal Density Functional Theory

## References

- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
**1965**, 140, A 1133. [Google Scholar] [CrossRef] - Sahni, V. Quantal Density Functional Theory, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sahni, V. Quantal Density Functional Theory II: Approximation Methods and Applications; Springer-Verlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Qian, Z.; Sahni, V. Quantum mechanical interpretation of the time-dependent density functional theory. Phys. Lett. A
**1998**, 247, 303–308. [Google Scholar] [CrossRef] - Qian, Z.; Sahni, V. Time-dependent differential virial theorems. Int. J. Quantum Chem.
**2000**, 78, 341–347. [Google Scholar] [CrossRef] - Qian, Z.; Sahni, V. Sum rules and properties in time-dependent density-functional theory. Phys. Rev. A
**2001**, 63, 042508. [Google Scholar] [CrossRef] - Sahni, V. Quantum-mechanical interpretation of density functional theory. Top. Curr. Chem.
**1996**, 182, 1–39. [Google Scholar] - Sahni, V. Physical Interpretation of Density Functional Theory and of Its Representation of the Hartree-Fock and Hartree Theories. Phys. Rev. A
**1997**, 55, 1846. [Google Scholar] [CrossRef] - Holas, A.; March, N.H. Exact exchange-correlation potential and approximate exchange potential in terms of density matrices. Phys. Rev. A
**1995**, 51, 2040. [Google Scholar] [CrossRef] [PubMed] - Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev.
**1994**, 136, B864. [Google Scholar] [CrossRef] - Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett.
**1984**, 52, 997. [Google Scholar] [CrossRef] - Pan, X.-P.; Sahni, V. Hohenberg-Kohn Theorems in Electrostatic and Uniform Magnetostatic Fields. J. Chem. Phys.
**2015**, 143, 174105. [Google Scholar] [CrossRef] [PubMed] - Yang, T.; Pan, X.-P.; Sahni, V. Quantal Density Functional Theory in the Presence of a Magnetic Field. Phys. Rev. A
**2011**, 83, 042518. [Google Scholar] [CrossRef] - Saarikovski, H.; Saarikoski, H.; Reimann, S.M.; Harju, A.; Manninen, M. Vortices in quantum droplets: Analogies between boson and fermion systems. Rev. Mod. Phys.
**2010**, 82, 2785. [Google Scholar] [CrossRef] - Holas, A.; March, N.H. Density matrices and density functionals in strong magnetic fields. Phys. Rev. A
**1997**, 56, 4595. [Google Scholar] [CrossRef] - Taut, M. Two electrons in a homogeneous magnetic field: Particular analytical solutions. [CrossRef]
- Taut, M.; Eschrig, H. Exact solutions for a two-electron Quantum Dot model in a magnetic field and application to more complex systems. Z. Phys. Chem.
**2010**, 224, 631–649. [Google Scholar] [CrossRef] - Slamet, M.; Sahni, V. Study of a Quantum Dot in an Excited State. Bull. Am. Phys. Soc.
**2016**, 61, 357. [Google Scholar] - Ghosh, S.K.; Dhara, A.K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields. Phys. Rev. A
**1988**, 38, 1149. [Google Scholar] [CrossRef] - Vignale, G. Mapping from current densities to vector potentials in time-dependent current density functional theory. Phys. Rev. B
**2004**, 70, 201102. [Google Scholar] [CrossRef] - Zhu, H.-M.; Chen, J.-W.; Pan, X.-Y.; Sahni, V. Wave Function for Harmonically Confined Electrons in Time-Dependent Electric and Magnetostatic Fields. J. Chem. Phys.
**2014**, 140, 024318. [Google Scholar] [CrossRef] [PubMed] - Kohn, W. Cyclotron Resonance and de Haas-Van Alphen Oscillations of an Interacting Electron Gas. Phys. Rev.
**1961**, 123, 1242. [Google Scholar] [CrossRef] - Dobson, J. Harmonic-Potential Theorem: Implications for Approximate Many-Body Theories. Phys. Rev. Lett.
**1994**, 73, 2244. [Google Scholar] [CrossRef] [PubMed] - Achan, D.; Massa, L.; Sahni, V. Wigner High Electron Correlation Regime in Nonuniform Electron Density Systems: Kinetic and Correlation-Kinetic Aspects. Comput. Theor. Chem.
**2014**, 1035, 14–18. [Google Scholar] [CrossRef] - Achan, D.; Massa, L.; Sahni, V. Wigner High Electron Correlation Regime of Nonuniform Density Systems: A Quantal Density Functional Theory Study. Phys. Rev. A
**2014**, 90, 022502. [Google Scholar] [CrossRef]

**Figure 1.**Fields and potentials of the model noninteracting fermions in their ground state for the mapping from a quantum dot in a magnetic field also in a ground state: (

**a**) the electron-interaction (Pauli–Coulomb) ${\mathcal{E}}_{\mathrm{ee}}(\mathbf{r})$ and Correlation–Kinetic ${\mathcal{Z}}_{{t}_{c}}(\mathbf{r})$ fields; (

**b**) the local effective electron-interaction potential ${v}_{\mathrm{ee}}(\mathbf{r})$ and its Pauli–Coulomb ${W}_{\mathrm{ee}}(\mathbf{r})$ and Correlation–Kinetic ${W}_{{t}_{c}}(\mathbf{r})$ components.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sahni, V.; Pan, X.-Y.; Yang, T.
Electron Correlations in Local Effective Potential Theory. *Computation* **2016**, *4*, 30.
https://doi.org/10.3390/computation4030030

**AMA Style**

Sahni V, Pan X-Y, Yang T.
Electron Correlations in Local Effective Potential Theory. *Computation*. 2016; 4(3):30.
https://doi.org/10.3390/computation4030030

**Chicago/Turabian Style**

Sahni, Viraht, Xiao-Yin Pan, and Tao Yang.
2016. "Electron Correlations in Local Effective Potential Theory" *Computation* 4, no. 3: 30.
https://doi.org/10.3390/computation4030030