
computation

Article

Online Adaptive Local-Global Model Reduction for
Flows in Heterogeneous Porous Media

Yalchin Efendiev 1,2,*, Eduardo Gildin 3 and Yanfang Yang 1

1 Department of Mathematics, Texas A&M University, College Station, TX 77843, USA;
yyfang.y@gmail.com

2 Numerical Porous Media (NumPor), King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia

3 Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA;
egildin@tamu.edu

* Correspondence: efendiev@math.tamu.edu; Tel.: +1-979-458-0836

Academic Editor: Qinjun Kang
Received: 8 March 2016; Accepted: 23 May 2016; Published: 7 June 2016

Abstract: We propose an online adaptive local-global POD-DEIM model reduction method for
flows in heterogeneous porous media. The main idea of the proposed method is to use local
online indicators to decide on the global update, which is performed via reduced cost local
multiscale basis functions. This unique local-global online combination allows (1) developing local
indicators that are used for both local and global updates (2) computing global online modes via
local multiscale basis functions. The multiscale basis functions consist of offline and some online
local basis functions. The approach used for constructing a global reduced system is based on
Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated
by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by
incorporating new data, which become available at the online stage. Once the criterion for updates
is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM
approximation of the nonlinear functions. The main contribution of the paper is that the criterion
for adaption and the construction of the global online modes are based on local error indicators and
local multiscale basis function which can be cheaply computed. Since the adaption is performed
infrequently, the new methodology does not add significant computational overhead associated
with when and how to adapt the reduced basis. Our approach is particularly useful for situations
where it is desired to solve the reduced system for inputs or controls that result in a solution outside
the span of the snapshots generated in the offline stage. Our method also offers an alternative
of constructing a robust reduced system even if a potential initial poor choice of snapshots is
used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of
our method.

Keywords: online adaptive model reduction; local model reduction; POD global model reduction;
discrete empirical interpolation method; flows in heterogeneous media

1. Introduction

Reduced order models (ROM) aims at reducing the computational complexity and, in turn, the
simulation time of large-scale dynamical systems by approximating the state-space to much lower
dimensions. This yields reduced models that can produce nearly the same input/output response
characteristics as the original ones. Approaches to construct ROMs by projection include the Proper
Orthogonal Decomposition (POD) method [1], the balanced truncation (BT) [2], the Krylov subspace
projection methods, the trajectory-piecewise linear (TPWL) techniques [3] and variants of them.
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Among these approaches, the POD method is perhaps the most popular one. For example, the POD
was successfully applied to a number of areas [4–11].

For POD projection type model reduction, the process typically consists of an offline stage
followed by an online stage. In the offline stage, the low dimension solution space, also called
as the POD subspace, is generated and a reduced system for the problem at hand is constructed
by projecting onto the low dimension solution space; in the online stage, on the other hand, an
approximated solution is obtained by integrating the reduced dynamical system. The online solution
relies only on the pre-computed quantities from the offline stage. Therefore, a good approximation
from the reduced model can be expected only if the offline information is a good representation of the
problem with initial input parameters.

Much progress on adaptivity has been made in the context of model reduction. Offline adaptive
methods [12] seek to provide a better reduce solution space while the reduced system is constructed
in the offline stage. However, once the reduced system is derived, it stays fixed and is kept unchanged
in the online stage. Therefore, the online solution relies only on the pre-computed information from
the offline stage which is not incorporated at the online phase. Unlike the offline adaptation, online
adaptive methods modify the reduced system during the computations in the integration stage. Most
of the existing global online adaptive methods [13–15] rely only on precomputed quantities from
the offline stage. We consider here a different approach whereby online adaptivity is performed by
incorporating new data that becomes available in the online stage.

We use the POD Galerkin method for global model reduction. However, for a nonlinear system,
projection alone is not sufficient to deliver a computationally efficient model, since the nonlinear
terms require computations that often render solving the reduced system almost as expensive
as solving the full order system. To deal with nonlinearities, we apply the Discrete Empirical
Interpolation Method (DEIM) proposed in [16]. The DEIM samples the nonlinear terms at selected
interpolation points and then combines interpolation and projection to obtain an approximation in a
low-dimensional DEIM space.

In the linear system setting, one can compute the projection matrices based on the fixed operators
offline, that is, outside of the time dependent loop, and perform the reduction by projecting directly
onto a much smaller subspace as in Equation (2). However, for nonlinear systems, as in the case
of flow in heterogeneous porous media, one cannot perform such projection without having to
recompute the operators for every time step. In this case, the best choice is to compute the projection
matrices offline and perform the projection and integration of the reduced model online. This setting
is particularly useful for the POD-DEIM-based model reduction, whereby the projection matrices are
computed offline and are based solely on runs of the fine scale model. In summary, in the offline stage,
we construct the reduced order model; in the online stage, given particular parameters or inputs, the
reduced model can be approximated efficiently and integrated in time. Online computations have
costs that may not depend on the size of the fine scale model. For this reason, we perform the online
adaptivity infrequently.

In the online stage, we propose a criterion to decide when updates are required. Once the
criterion is satisfied, we adapt the POD subspaces, the DEIM space and the DEIM interpolation points
for the nonlinear functions by incorporating new data that becomes available online. For the adaption
of the POD subspace, we propose a local-global strategy. First, instead of global error indicators
based on the residual which are expensive to compute, we use local error indicators to monitor when
global POD basis adaption is needed. By using local error indicators, the computational time can
be reduced as one avoids computing global error indicators. Secondly, we employ a local model
order reduction method, i.e., the generalized multiscale finite element method (GMsFEM) [17–20], to
solve the global residual problem to get the new POD basis function. Based on local error indicators
(see [21–24] for local error indicators for GMsFEM), some local multiscale basis functions are updated
and used to compute the online global modes inexpensively. For the adaption of DEIM, we employ
a modified low rank updates method investigated in [25], which introduces computational costs
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that scale linearly in the number of unknowns of the full-order system. We remark that the offline
local-global approaches have been studied in the literature [26–29]. In the proposed method, we
develop online multiscale basis functions for both local and global updates.

Our particular interest here is subsurface flow problems. POD techniques were first used by
Vermeulen et al. [30] in the context of subsurface flow problems, e.g., that was a groundwater flow
problem with a single water component. Jansen et al. [9,31] applied POD to a two-phase oil-water
flow. In [32] TPWL was introduced to solve an oil-water flow system. A local-global multi-scale
model reduction was proposed in [33]. A constraint reduction based on POD-TPWL was present
in [34]. In [11,35], POD-DEIM model reduction was used to solve a two-phase flow problem with
gravity. However, these methods can only deal with cases that the variation in inputs is within a
certain range, i.e., the offline procedure should be able to anticipate almost all the the dynamics of the
online system. In many applications, such as optimization and history matching, the final solution
trajectory may be hard to predict before the problem is solved. Therefore, a good POD subspace just
from using the offline information may not yield robust approximation solutions. Here, we propose
to adapt the reduced system by using online data in the online stage. Our numerical results show
that one can achieve a good approximation of the solution at a reduced cost.

This paper is organized as follows. In Section 2, the concept of model reduction based on
POD-DEIM is given; a short review of POD and DEIM is presented. In Section 3, online adaptive POD
is described in Section 3.1, and a discussion of online adaptive DEIM approximation is described in
Section 3.2. Applications to single-phase flow and two-phase flow problems are given in Sections 4.1
and 4.2 respectively. The paper ends with our conclusion in Section 5.

2. Preliminaries

In this section, we will first review the concept of POD-DEIM based model reduction method,
which can reduce the dimension of large-scale ODE systems regardless of their origin. A large source
of such systems is the semidiscretization of time dependent PDEs. After spatial discretization for a
nonlinear PDE, we get a system of nonlinear ODEs of the form

d
dt

y(t) = By(t) + f(y(t)) (1)

where y(t) ∈ Rn, B ∈ Rn×n is a constant matrix, and f(y(t)) is a nonlinear function.
We start our exposition by briefly reviewing the global model reduction framework. Let Vk ∈

Rn×k(k � n) be an orthonormal matrix consisting of reduced basis. Replacing y(t) in Equation (1)
by Vkỹ(t)(ỹ ∈ Rk), and by Galerkin projection of the system (1) onto Vk, we get the reduced system
of (1) (the super index T means the transpose of a matrix):

d
dt

ỹ(t) = VT
k BVkỹ(t) + VT

k f(Vkỹ(t)). (2)

The quality of the above POD Galerkin approximation depends on the choice of reduced basis.
Snapshot based POD constructs a set of global basis functions from a singular value decomposition
(SVD) of snapshots, which are discrete samples of trajectories associated with a particular set of
boundary conditions and inputs. It is expected that the samples will be representative of the solution
manifold of the problem of interest. Among the various techniques for obtaining a reduced basis,
POD constructs a reduced basis that is optimal in the sense that a certain approximation error
concerning the snapshots is minimized. The details of POD are presented in Section 2.1.

To evaluate the nonlinear term VT
k f(Vkỹ(t)) in Equation (2), we first need to project the solution

from the reduced space to the fine solution space, then evaluate the nonlinear function f at all the n
fine components, finally we project the n fine components back onto Vk. The process results in a cost
that is as expensive as solving the original system. To handle this inefficiency, we use DEIM [16],
which is reviewed in Section 2.2.
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The POD-DEIM model reduction method consists of two stages. In the offline stage, given some
inputs, which can be boundary conditions, or control parameters, we run several simulations for the
system described by Equation (1) to produce snapshots for the solution states (pressure, saturation
or concentration in subsurface flow simulation context) and nonlinear functions. POD is performed
to construct the reduced subspaces for the states, and interpolants for the nonlinear functions. In the
online stage, the approximate solution of the problem is obtained by writing the solution as a linear
combination of the reduced basis, which was fixed at the offline phase. Next, we describe in more
details the aforementioned process.

2.1. Proper Orthogonal Decomposition

The POD basis in Euclidean space is specified formally in this section. We refer to [36] for more
details on the POD basis in general Hilbert space.

Given a set of snapshots {y1, y2, · · · , yns} ∈ Rn, let Y = span{y1, y2, · · · , yns} and r = dim(Y).
A POD basis of dimension k < r is a set of orthonormal vectors {φi}k

i=1 ∈ Rn whose linear span best
approximates the space Y. The basis set {φi}k

i=1 ∈ Rn solves the minimization problem

min
{φi}k

i=1

ns

∑
j

∥∥∥∥∥yj −
k

∑
i=1

(yT
j φi)φi

∥∥∥∥∥
2

2

(3)

with φT
i φj = δij.

It is well known that the solution to Equation (3) is provided by the set of the left singular vectors
of the snapshot matrix Sy = [y1, y2, · · · , yns ] ∈ Rn×ns . Applying SVD to Sy, we get

Sy = V Λ WT (4)

where V = [v1, · · · , vr] ∈ Rn×r, W = [w1, . . . , wr] ∈ Rns×r are the left and right projection matrices
respectively, and Λ = diag(σ1, · · · , σr) ∈ Rr×r with σ1 ≥ σ2 ≥ · · · σr > 0. The rank of Sy is
r ≤ min(n, ns). The first k column vectors {vi}k

i=1 of V are selected as the POD basis (the criterion to
decide k is explained later ). The minimum l2-norm error from approximating the snapshots using
the POD basis is then given by

ns

∑
j

∥∥∥∥∥yj −
k

∑
i=1

(yT
j vi)vi

∥∥∥∥∥
2

2

=
r

∑
i=k+1

σ2
i . (5)

The appropriate number of POD basis to be retained for a prescribed accuracy can
be determined, for example, by means of the fractional energy (see discussions in [37] for
selecting modes):

E =

√
∑k

i=1 σ2
i√

∑ns
i=1 σ2

i

. (6)

A small number of POD basis is retained if the singular values decay fast. This decay depends
on the intrinsic dynamics of the system and the selection of the snapshots. In the next section, we
review DEIM, which is applied to reduce the nonlinear terms.

2.2. Discrete Empirical Interpolation Method (DEIM)

In the offline stage, we get the snapshots of the nonlinear function f(y(t)) as:

{f(y(t1)), · · · , f(y(tM))} ∈ Rn.

By applying POD to the above snapshot matrix and selecting the first m eigen-vectors
corresponding to the dominant eigen-values, we obtain the DEIM basis U ∈ Rn×m. DEIM [16] selects
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m distinct interpolation points {p1, · · · , pm} ∈ {1, · · · , n} and assemble the DEIM interpolation
points matrix P = [ep1 , · · · , epm ] ∈ Rn×m, where ei ∈ {0, 1}n is the i-th canonical unit vector. The
DEIM interpolant of f is defined by (U, P). The DEIM approximation of f is derived, based on
(U, P), as

f(y(t)) ≈ U(PTU)−1PTf(y(t))

where PTf(y(t)) samples f at m components only. In what follows, local model reduction will
be reviewed.

2.3. Local Model Order Reduction via GMsFEM

We will give a brief overview of the local model reduction using the GMsFEM [17–20]. Let T H
be a usual conforming partition of the domain Ω into finite elements called coarse elements, and H is
the coarse mesh size. Then, each coarse element is divided into a connected union of fine elements,
which are conforming across coarse element faces. This fine grid partition is denoted by T h, with h as
fine mesh size . The fine grid is used to construct the locally supported multiscale basis functions, and
compute the reference (fine) solution in the numerical examples. The reference solution is computed
on the fine grid. Let {xi|1 ≤ i ≤ Nc} be the set of nodes on the coarse grid with Nc being the number of
nodes in T H. For each coarse node xi, a coarse neighborhood is defined as ωi =

⋃{Kj ∈ T H; xi ∈ K̄j}.
An illustration of the definitions is given in Figure 1. The multiscale basis functions are nodal based
and supported on coarse neighborhoods. Specifically, for each coarse node xi, we construct a set of
basis functions {ψωi

k |k = 1, 2, · · · , Li} such that each ψ
ωi
k is supported on the coarse neighborhood

ωi. Note that Li can be different for different nodes.

xi
xi ωi

Coarse
Neighborhood

A coarse element in T H

K4

K3 K2

K1
K

T H (Coarse discretization)

Figure 1. Illustration of a coarse neighborhood and a coarse element.

Let ω be a given coarse neighborhood, to construct the multiscale basis functions supported on
ω, first we construct a snapshot space Vω

snap. Vω
snap is a set of functions defined on ω and contains

all or most necessary information of the fine scale solution restricted to ω. A typical choice of Vω
snap

is local flow solutions, which are constructed by solving local problems with all possible boundary
conditions. This can be expensive and for this reason, one can use randomized boundary conditions
(see [38,39]) and construct only a few more snapshots than the number of desired local basis functions.
Next, we construct the offline space Vω

off for ω by performing a spectral decomposition of Vω
snap, and

choosing the eigenvectors corresponding to the largest eigenvalues. The offline space is defined as
ΦL

off = span{ψi
k : 1 ≤ k ≤ Li, 1 ≤ i ≤ Nc}. We refer to [17,40] for details. The above computations

are performed in the offline stage. For time dependent problems, as time advancing, ΦL
off may not be

good enough to represent the behavior of the full resolved solution at some time instants. We use an
adaptive enrichment algorithm which allows one to use more basis functions in regions with large
errors. We refer to [40] for details.
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3. Online Adaptive POD-DEIM Model Reduction

In this section, we discuss the construction of the online adaptive POD-DEIM model
reduction framework. We start with the online adaptive POD and later introduce the adaptive
POD-DEIM algorithm.

3.1. Online Adaptive Local-Global Proper Orthogonal Decomposition

We adapt the POD subspaces at some particular instants as time proceeds. Two issues are
addressed here: at which instants to adapt, and how to adapt the POD subspaces. The updates
are performed online, therefore the goal is to keep the computational cost as low as possible.

The main idea of adaptive local-global POD model order reduction method is summarized in
Algorithm 1. The superindex G stands for global, superindex L stands for local, and superindex T
means transpose of a matrix. ΦG

k−1 is the initial global POD matrix for time step k− 1. Similarly, ΦL
k−1

is the initial local multiscale basis matrix for time step k− 1. In Figure 2, a flow chat corresponding to
Algorithm 1 is given. In Figure 3, we present an schematic description of Adaptive-POD-1. We note
that there is no global fine problem computation in the method.

Algorithm 1 Adaptive Local-Global POD Model Order Reduction Method

OFFLINE STAGE:
1: Construction of snapshots for states, local off-line space (consists of local ms basis) by GMsFEM
2: Construction of POD subspaces (POD projection matrices)

ONLINE STAGE : for step k adaption
3: INPUT : Global POD basis matrix ΦG

k−1, local off-line space ΦL
k−1

4: Solve the reduced system: (ΦG
k−1)

TAΦG
k−1Xk−1

r = (ΦG
k−1)

TFk (Global reduced-order model)
5: Compute local error indicators, and decide if adaption is needed. If yes, go to 6. Otherwise, go to

next time step k + 1
6: Solve the global residual problem Aφk,online = Fk − AΦG

k−1Xk−1
r for φk,online by adaptive local

method with initial local off-line space ΦL
k−1

7: Update the POD subspace by Adaptive-POD-1 or Adaptive-POD-2
8: OUTPUT : Global POD basis matrix ΦG

k , local offline space ΦL
k

At time step k-1, integration of global reduced 

model

Compute local error indicators for coarse neighborhoods

Global basis adaption

No

Yes

k=k+1

Local model reduction 

method(GmsFEM)

k=k+1

N(ω)>ƟN

Offline stage: 

Online stage: 

Training 

simulation
Local model reduction 

method(GmsFEM)
Local ms

basis

Snapshots
POD projection matrices

Local ms basis computed on the 
fine grid

Figure 2. Flowchat of the online adaptive local-global POD method.
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Fine grid in a coarse block 





Consists of  local ms basis computed online

G on

1 1 off on,..., ,G G L L

l l   

       
     
       
            
         

                    
               

     
       
            

Figure 3. Schematic description of the online adaptive local-global POD method.

In the offline stage, a training simulation is run by the GMsFEM. Local multiscale bases are
constructed, and snapshots for states at some time steps are saved. Next, POD is performed on the
snapshots to construct the POD projection matrices. In the online stage, at every time step we solve a
global reduced system, which is usually very small, for example, in Section 4.1, the largest dimension
is 8. Next we use our criterion to decide if global basis adaption is necessary. The criterion is specified
in the next paragraph. If adaption is needed, a new global basis is obtained by solving a residual
problem with GMsFEM. Again, in Section 4.1, a residual problem is of size about 104; in Table 1, the
size of the reduced problem of the residual problem by GMsFEM is about 600.

It is important to monitor when the approximation from the reduced system is no longer
sufficiently accurate according to a particular criterion, leading to adaptation of the POD subspaces.
This adaption must be performed when the system dynamics has deviated from the current POD
subspace as reflected by the residual evaluation. In [41], some residual based POD modes were added
to the old POD subspace for Navier-Stokes equations. In [42], a second error estimate based on a
second Galerkin system to account for situations in which qualitative changes in the dynamics occur
was introduced. In this case, two reduced systems must be solved at a time, thus incurring higher
computational cost. In [43], a residual based indicator was used in nonlinear dissipative systems.
Here, we propose to use local error indicators based on the multiscale basis, which is cheaper to be
computed. The main idea is as follows:

• For coarse blocks ω1, ω2, · · · , ωN , compute their corresponding H−1 norm of the residual, and
denote as r1, r2, · · · , rNc .

• Count the total number N(ω) of coarse blocks with ri > a certain error tolerance. Here a large
error means the current POD modes cannot give a good representation of the features in that
coarse block.

• If N(ω) > θNc, then adaption is needed, θ is a fraction of the total number of coarse blocks.
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In general, one can use a threshold for the sum of the local indicators. The choice of the threshold
is typically based on experimental results and analysis. The larger the threshold is, more updates are
performed. Next, we describe how to update the POD subspace.

For the POD subspace adaption at step k, suppose Nk−1 number of initial POD modes
{φG

1 , · · · , φG
Nk−1
} are given. ΦG is the POD matrix with {φG

1 , · · · , φG
Nk−1
} as column vectors. We

obtain the online snapshot vector φk,online by solving a residual problem (for linear system), or the
high fidelity system (for nonlinear system). We illustrate how to get the new online global basis for
the linear case. Suppose we are solving Equation (1). At every time step, we need to solve a linear
system of the form

AX = Fk. (7)

The POD reduced order system for Equation (7) is

(ΦG)TAΦGXr = (ΦG)TFk. (8)

The residual is res = Fk −AΦGXr. If update is needed, then we solve the residual problem

Aφk,online = res (9)

to obtain the online basis φk,online.
Note that Equation (9) is expensive to solve because it is a fine-grid problem. We propose to use

the local model reduction method as described in Section 2.3 to solve it. In the following, we introduce
two methods to adapt the POD subspace after φk,online is obtained. One way is to add φk,online directly
to {φG

1 , · · · , φG
Nk−1
}, therefore the new POD subspace is the span of {φG

1 , · · · , φG
Nk−1

, φk,online}. In this
way, the number of POD modes increases by one after every adaption. We denote this method as
Adaptive-POD-1.

It is possible that as time proceeds, some modes in the POD subspace become negligible
(redundant) in representing the near future dynamics, therefore it can be removed from the POD
subspace. This can be achieved in various ways. In our simulations. we follow the following
procedure. Apply POD to the set of vectors, see [43]

{w1φG
1 , · · · , wNk−1 φG

Nk−1
, φk,online}

where the weights wi are defined as

wi = min

{
σi√

∑
Nk−1
j=1 σ2

j

,
〈|Ci|〉√

∑
Nk−1
j=1

〈
|Cj|

〉2

}

where σi are singular values associated with φi, Ci is the amplitude of φG
i , i.e., the coefficient of mode

φG
i , and 〈|Ci|〉 is the temporal mean value of |Ci| obtained from the reduced system starting from the

first instant since the last update until k− 1. In this way, the weights wi eliminate those modes whose
average energy decreased considerably since the last update. Therefore only a small number of POD
modes is retained through the whole simulation. We denote this method as Adaptive-POD-2.

3.2. Online Adaptive DEIM

In this section, we summarize the idea of online adaptive DEIM as in [25]. First, we adapt the
DEIM space by rank one updates. Secondly, we adapt the DEIM interpolation points. Its algorithm
is given in Algorithm 2. It is shown in [25] that the run time cost of the adaption scales linearly with
the number of degrees of freedom of the full-order system.
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Algorithm 2 Online Adaptive DEIM [25]

1: INPUT : (Uk−1, Pk−1), number of sampling points ms, window size w
2: Select ms points from {1, 2, · · · , n} that are not points in Pk−1.
3: Assemble sampling points matrix Sk by combining Pk−1 and the selected points.
4: Compute the coefficient matrix Ck for [ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1)] with interpolant (Uk−1, Sk)
5: Solve the minimization problem (10) for αk, βk
6: Update basis Uk = Uk−1 + αkβT

k
7: Compute diag(UT

k Uk−1)
8: Find the index i of the pair of basis vectors which are nearest to orthogonal
9: Let uk be the i− th column of the adapted basis Uk

10: Store all other m− 1 columns of Uk in Ûk ∈ Rn×(m−1)

11: Store all other m− 1 columns of Pk−1 in P̂k ∈ Rn×(m−1)

12: Approximate uk with the DEIM interpolant (Ûk, P̂k) as ûk = Ûk(P̂T
k Ûk)

−1P̂T
k uk

13: Find the index pi
k that corresponds to largest residual of |ûk − uk|

14: Update interpolation matrix Pk: if epi
k

is not a column of Pk−1, then for the i− th column of Pk−1,
replace interpolation point epi

k−1
with epi

k
15: OUTPUT : (Uk, Pk)

For the basis adaption for f(y(t)) at step k, suppose an initial DEIM interpolant (Uk−1, Pk−1) is
given. We extend the interpolation points matrix Pk−1 as

Sk = [ep1 , · · · , epm , epm+1 , · · · , epm+ms ].

The extra ms points are chosen from {1, · · · , n}\{p1, · · · , pm} randomly. Therefore, we get a new
DEIM interpolant (Uk−1, Sk). Note that Uk−1 is still the same. Next we define a window of size w that
contains the vectors of ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1) obtained in the previous online computations;
an alternative is to also include intermediate states from the Newton-Raphson iterations of the
previous online computations. We then construct DEIM approximations of the nonlinear function
f at the vectors ŷ(tk), ŷ(tk−1), · · · , ŷ(tk−w+1) with the DEIM interpolant (Uk−1, Sk). For each ŷ(tki

),
the coefficient is derived as

ck(y(tki
)) = (ST

k Uk−1)
+ST

k f(ŷ(tki
))

which are put as columns in the coefficient matrix Ck ∈ Rm×w. (ST
k Uk−1)

+ ∈ Rm×(m+ms) is the
Moore-Penrose pseudo-inverse.

We then derive two vectors αk ∈ Rn and βk ∈ Rm such that the adapted DEIM basis Uk =

Uk−1 + αkβT
k minimizes the Frobenius norm of the residual at the sampling points given by Sk

‖ST
k (UkCk − Fk)‖2

F (10)

where Fk = [f(ŷ(tk)), · · · , f(ŷ(tk−w+1))]. The vectors αk, βk are obtained by solving a generalized
eigenvalue problem, we refer to [25] for details.

Note that the sampling points are only used for the DEIM basis adaptation whereas ultimately
the DEIM interpolation points are used for the DEIM approximation.

With the adapted DEIM basis Uk at step k, we also adapt the DEIM interpolation points.
The standard DEIM greedy algorithm is computationally expensive to apply in the online stage, since
it recomputes all m interpolation points. It is unnecessary to change all interpolation points after a
rank-one update to the DEIM basis. Therefore, we adapt the DEIM interpolation points as follows.
First, we compute the dot product between the old and the adapted DEIM basis

diag(UT
k Uk−1). (11)

If the dot product of two normalized vectors is one, then they are colinear and the adapted basis
vector has not been rotated with respect to the previous vector at step k − 1. If it is zero, they are
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orthogonal. We select the basis vector uk of Uk that corresponds to the component of Equation (11)
with the lowest absolute value. The new interpolation point pi

k is derived from uk following the
standard DEIM algorithm. It then replaces the interpolation point pi

k−1. Other interpolation points
are unchanged.

4. Applications

We present numerical examples to demonstrate the efficiency of the online adaptive POD-DEIM
model reduction method. In Section 4.1, we will apply the approach to a time-dependent linear
single-phase problem, therefore only adaptive POD is needed. In Section 4.2, we consider a two-phase
flow model driven by viscosity. In all examples, we use time step units.

4.1. Single-Phase Flow

In this section, we consider the single-phase flow problem:

∂h̃
∂t

+∇ · a∇h̃ = q in Ω (12)

h̃ = 0 on ∂Ω (boundary condition) (13)

h̃(t = 0) = h̃0 in Ω (initial condition). (14)

Discretizing in a finite element space, for example Q1 which consists of piecewise linear functions
on Ω, for space and using backward Euler method for time discretization, we obtain the following
algebraic system:

(M + ∆tS)h̃n = Mh̃n−1 + ∆tQn, in Ω (15)

where Mij =
∫

Ω ψiψjdx is the mass matrix, Sij =
∫

Ω a∇ψi · ∇ψjdx is the stiffness matrix, ψi, ψj ∈ Q1,
∆t is the time step size.

In this example, the computational domain is Ω = (0, 1)2, a uniform fine mesh with n = 100 is
used. Our proposed approach can also be used for solving problems on unstructured grids. The size
of the full-order system at every time step is 10, 000. For the coarse mesh, we use the mesh size 1/10.
The final simulation time is 10, time-stepping size is ∆t = 0.1, therefore there are 100 snapshots in
total. The logarithm of the permeability field is shown in Figure 4. In the offline stage, the right-side
hand function q for the training simulation is only nonzero on the five blue regions in Figure 5.
The values of q with respect to time is given in the left figure of Figure 6. In the test simulation,
q is given in the right figure of Figure 6, two nonzero regions are added, one is nonzero through 60–80,
the other is nonzero through 90–100, which are the red ones in Figure 5. There is a large decrease in
the value q1 at time instant 35. In Table 2, the average L2, H1 errors with different number of POD
basis are presented. We can see that even if we use all the 100 POD basis, the average L2 error is still
about 18%. In Table 1, we start with 5 initial global POD basis. The column Goff means the number
of initial global POD basis for each time instants, while the column Loff means the number of initial
local basis functions, and the column Ladd means the number of local basis added to solve the residual
problem (9). For instance, for the third row, the first column shows that we need to update at time
instant 2; the second column means for time instant 2, the number of initial global POD basis is 6;
the third column means for time instant 2, the number of initial local basis functions is 484; the forth
column means we add 126 local basis to the multiscale solution space, from which the global basis is
obtained. For the whole test simulation, we add basis at time instants 1, 2 and 35, then we get about
1% average L2 error. The relative L2, H1 errors with respect to time are shown in Figure 7, which
show a good agreement of our numerical solution with the reference solution. The reference solution
is computed on the fine grid. Here, since the number of POD basis is already very small, we only use
the Adaptive-POD-1 method.
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Figure 7. Relative errors advancing in time for the adaptive POD.

Table 1. Adaptive-POD-1 with 5 initial global POD basis.

Time Instant to Add Goff Loff Ladd

1 5 484 119
2 6 484 116
35 7 484 126

Average error L2 H1

0.0135 0.0027
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Table 2. Average POD errors.

Number of POD Basis L2 H1

2 0.6114 0.3254
5 0.3470 0.1676
8 0.2956 0.1378

100 0.1830 0.0796

4.2. Two-Phase Flow

4.2.1. An Incompressible Two-Phase Flow Model

In this section, we summarize the underlying partial differential equations to simulate porous
media flows. In particular, we consider two-phase flow in a reservoir domain (denoted by Ω) under
the assumption that the displacement is dominated by viscous effects; i.e., we neglect the effects of
gravity, compressibility, and capillary pressure. This assumption is a useful simplification, but the
overall methodology can be applied to more general cases. The two phases are water and oil, and
they are assumed to be immiscible. We write Darcy’s law for each phase as follows:

ul = −
krl(sl)

µl
K∇ p̃ (16)

where ul is the phase velocity, K is the permeability tensor, krl is the relative permeability to phase
l (l = o, w), sl is saturation, and p̃ is pressure. Throughout the paper, we use a single set of
relative permeability.

The mass conservation law for the two phases is:

φ
∂sl
∂t

+∇ · ul = ql . (17)

Combining Darcy’s law, mass conservation, and the property sw + so = 1, we derive the
following coupled system of pressure and saturation equations (we use s instead of sw for simplicity):

∇ · u = qw + qo in Ω (18)

φ
∂s
∂t

+∇ · ( fw(s)u) =
qw

ρw
in Ω (19)

u · n = 0 on ∂Ω (no flow at boundary) (20)

s(t = 0) = s0 in Ω (initial known saturation) (21)

where φ is the porosity, λ is the total mobility defined as

λ(s) = λw(s) + λo(s) =
krw(s)

µw
+

kro(s)
µo

(22)

fw(s) is the flux function,

fw(s) =
λw(s)
λ(s)

=
krw(s)

krw(s) +
µw
µo

kro(s)
(23)

and u = uw + uo = −λ(s)K∇ p̃ is the total flux. Moreover, qw and qo are volumetric source terms for
water and oil.

Here, we follow the sequential formulation, that is at each time step one solves for pressure
first and then uses the result to solve for the saturation. The pressure equation is solved by mixed
finite element method, see [35,44] which produces mass conservative velocity field, and the saturation
equation is solved by finite volume method.
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4.2.2. Numerical Example

We apply the online adaptive model reduction method to an oil-water flow model with the
structure of a 5-spot. A 5-spot pattern is a well configuration that involves 1 producing well (or 1
injector well) in the center and 4 injecting wells (or 4 producers) in the corners of a Cartesian grid.
It can be seen as a five wells (point source) in the whole domain. It is designed to maximize the
reservoir sweep as water is being injected into the reservoir. Here we set four injection wells in the
corners and one production well in the middle of the domain. All the wells are rate controlled. The
computational domain is Ω = (0, 1)2, a uniform fine mesh with h = 1/220 is used. The fluid viscosity
ratio is µw/µo = 0.2. To get the snapshots, we simulate the flow with end of simulation time 800, time
stepping size ∆t = 4, with well rates as shown in the left in Figure 8. From this forward (training)
simulation, we save the snapshots of the states and the nonlinear functions at every 2 units in time.
Therefore, 100 snapshots are saved for the states and nonlinear functions. Each snapshot is reshaped
to a column vector and is stacked in a snapshot matrix. After applying POD to each matrix, we get
the POD subspace. For the test simulation, total simulation time is 400, ∆t = 4, and the well rates are
given in the right of Figure 8.
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Figure 8. Injection rate schedules for training and test models.

From Figure 8 we see that the rates are constant for the training simulation, and well 2 is shut
off all the time; while for the test simulation, well 2 is open at the time instant 31 and well 3 is closed
from 80 to the end of simulation time. Large deviations in the rates of the training and test simulation
start at three points: the beginning since different constants are used for rates; time instant 31; time
instant 80. These deviations are expected to result in requirement of online adaption. We use the L2

norm of the residual as indicators for adaption. To better understand the impact of injection rates on
the whole system, we will investigate the method for the pressure and saturation equations separately
first. For the adaptive DEIM application, number of sampling points is ms = 800, and window size is
w = 25.

In Case 1, we apply POD reduction to the pressure equation only, while solve the saturation
equation on the fine grid. Note that only POD reduction is used, no DEIM is involved since the
pressure equation is linearly dependent on the pressure and velocity. The selection criterion (6)
for choosing the number of initial POD basis is to capture 99.99% of the energy of the snapshots.
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In Figure 9, relative saturation errors for 3 scenarios with 5 initial POD basis for flux are given.
The red line is for static POD without updating, the errors are greater than 10% all the time, and
there are jumps at time instants {31,80}. The blue line is for adaptive POD with adaption at time
instants {1,31}. The dot purple line is for adaptive POD with adaption at time instants {1,31,80}, which
gives a good accuracy. Figure 10 presents the comparison of water-cut (water flux fractional function
fw(s)) corresponding to these 3 scenarios with the fine water-cut. Both figures show that adaption is
necessary in order to obtain a good accuracy.
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In Case 2, we apply model reduction to the saturation equation only while solving the pressure
equation on the fine grid. First, we consider POD without DEIM. As pointed out in Section 2, due to
the nonlinearity of the saturation equation, no improvement in efficiency will be achieved if no DEIM
is used. We only consider this case to compare with the case for POD-DEIM in the next example.
We will see that the POD-DEIM needs more updates than POD. The selection criterion (6) for choosing
the number of initial saturation POD basis is to capture 99% of the energy of the snapshots. 20
initial saturation POD basis is selected. Updates are needed at {1, 4, 31, 32, 33, 35, 36, 38, 40, 42, 43}. In
Table 3, the numbers of saturation POD basis after updating for Adaptive-POD-1, Adaptive-POD-2
are presented. For example, the number of basis for Adaptive-POD-1 after updating at time
instant 33 is 25, the number of basis for Adaptive-POD-2 after 4 is 16. The relative saturation
errors for both Adaptive-POD-1 and Adaptive-POD-2 are given in Figure 11, we can see that
Adaptive-POD-2 delivers almost the same accuracy while using much less number of basis compared
with Adaptive-POD-1. The comparison of water-cut between the solutions of Adaptive-POD-1,
Adaptive-POD-2 and the fine solution is shown in Figure 12, which shows a good agreement. Second,
we apply POD-DEIM to the saturation equation. We use the adaptive DEIM technique as described
in Section 3.2 to approximate fw. 15 initial DEIM basis functions are selected for fw. The comparison
of water-cut between the solution of Adaptive-POD-2-DEIM, Adaptive-POD-2-DEIM and the fine
solution is shown in Figure 13, they are in good agreement in general. The saturation errors for
both Adaptive-POD-1-DEIM and Adaptive-POD-2-DEIM are given in Figure 14. We can see that the
error of Adaptive-POD-2-DEIM is less than Adaptive-POD-1-DEIM, while the number of basis for
Adaptive-POD-2 is less than Adaptive-POD-1.

Table 3. Number of POD basis for saturation after each update of POD subspace for Equation (19).

1 4 31 32 33 35 36 38 40 42 43

Adaptive-POD-1 21 22 23 24 25 26 27 28 29 30 31
Adaptive-POD-2 22 16 8 8 7 7 7 7 7 7 7
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Figure 11. Relative saturation errors advancing in time: POD for the saturation equation.
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In Case 3, apply our model reduction method to the coupled system, i.e., POD for the pressure
equation and POD-DEIM for the saturation equation. Velocity needs updates at {1, 31, 36, 48, 80},
and saturation needs 13 updates at instants as listed in the Table 4. The numbers of saturation
POD basis after updating for Adaptive-POD-1, Adaptive-POD-2 are shown in Table 4. The saturation
error is given in Figure 15, from there we see that Adaptive-POD-2 has better performance
than Adaptive-POD-1. The comparison of water-cut between the solution of Adaptive-POD-1,
Adaptive-POD-2 and the fine solution is shown in Figure 16. We observe good agreement.

Table 4. Number of POD basis for saturation after each update of POD subspace for the
coupled system.

1 4 31 32 34 35 36 38 39 47 53 54 60

Adaptive-POD-1 21 22 23 24 25 26 27 28 29 30 31 32 33
Adaptive-POD-2 21 16 8 8 7 7 7 7 7 7 7 7 7
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Figure 15. Relative saturation errors advancing in time: POD-DEIM for the coupled system.
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5. Conclusion

We presented an online adaptive local-global POD-DEIM model reduction method for nonlinear
systems where both POD subspaces and DEIM interpolants are adapted during the online stage
by incorporating online information locally. In the global adaptive framework, we employ local
techniques to realize adaption leading to computational savings in evaluating the residual. Our
approach is particularly useful for situations where it is desired to solve the reduced system for
inputs or controls that result in a solution outside the span of the snapshots generated in the offline
stage. This happens in many applications, such as inverse problem and optimization, where the final
solution path may be difficult to predict before the problem is solved. Our method also offers an
alternative to constructing a robust reduced system even if a potential initial poor choice of snapshots
is used, since it can absorb representative information into the POD solution space along the online
simulation process. Future work includes finding an efficient way to obtain the online basis for a
nonlinear system.
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