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Abstract: Modeling flow and transport in porous media requires the management of complexities
related both to physical processes and to subsurface heterogeneity. A thorough approach needs a
great number of spatially-distributed phenomenological parameters, which are seldom measured
in the field. For instance, modeling a phreatic aquifer under high water extraction rates is very
challenging, because it requires the simulation of variably-saturated flow. 3D steady groundwater
flow is modeled with YAGMod (yet another groundwater flow model), a model based on a
finite-difference conservative scheme and implemented in a computer code developed in Fortran90.
YAGMod simulates also the presence of partially-saturated or dry cells. The proposed algorithm
and other alternative methods developed to manage dry cells in the case of depleted aquifers are
analyzed and compared to a simple test. Different approaches yield different solutions, among
which, it is not possible to select the best one on the basis of physical arguments. A possible
advantage of YAGMod is that no additional non-physical parameter is needed to overcome the
numerical difficulties arising to handle drained cells. YAGMod also includes a module that allows
one to identify the conductivity field for a phreatic aquifer by solving an inverse problem with the
comparison model method.
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1. Introduction

The flow of water in porous sediments is described in mathematical terms by joining the mass
conservation principle with the phenomenological Darcy’s law [1,2]. This results in non-linear
equations for variably-saturated media and linear equations for fully-saturated ones. Non-linearity
in the forward problem, which is solved to predict the state of the system in response to some forcing
(e.g., pumping rates), is introduced by source terms or boundary conditions. The forward problem
can be solved analytically only for simple cases, i.e., usually for homogeneous media, domains with
simple geometries and for simple source terms. Therefore, analytical solutions can be useful to
interpret the results of field tests, e.g., pumping and tracer tests, and of laboratory experiments,
where the boundary conditions can be effectively controlled. On the other hand, their use to predict
the behavior of complex natural systems is limited by the assumptions that are introduced to simplify
the equations and the boundary conditions. Therefore, in practical applications, a variety of computer
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codes, based on the classical numerical methods of the solution of partial differential equations
(finite differences, finite elements, finite volumes, etc.), is used to solve the forward problem.

One of the most challenging problems in hydrogeology is modeling variably-saturated
groundwater flow processes. A fully-rigorous solution of this problem requires knowledge of the
non-linear relationship of conductivity and matric potential with soil water content, for all the
lithologies recognized in the subsoil. Therefore, approximated approaches, which introduce relatively
simple modifications of the classical equations for saturated groundwater flow, are often applied.
They give rise to numerical difficulties in the presence of dry cells or elements, e.g., under the
influence of an extraction source term. When a cell becomes dry, i.e., its calculated water level
falls below the bottom of the cell, two main problems arise [3–6]. First, the dry cell cannot receive
external water, if it is declared as “inactive”; neither can it contain any extraction source term,
unless it is rewetted, i.e., the water level rises above a prescribed threshold. Second, drying and
rewetting functionality often yields difficulties for the convergence of iterative algorithms used for
the solution of the algebraic equations of the discrete model. Doherty [3] proposes an asymptotically
small transmissivity to avoid drained cells being deactivated, even if they actually become dry: this
approach uses a function that prevents cell transmissivity from becoming negative. The innovative
idea of Keating and Zyvoloski [4] is a weak scaling for vertical connectivity, from partially-saturated
to dry conditions. On the other hand, Niswonger et al. [6] use a quadratic approximation of the
function that relates horizontal conductance to hydraulic head, over small intervals close to the
fully-dry and fully-saturated limits.

Within this background, the first goal of this paper is to propose a code, YAGMod (yet
another groundwater flow model), developed in Fortran90, for the simulation of constant-density,
groundwater flow under stationary conditions, which is the extension of the codes developed by
our research team over the years [7–17]. YAGMod is based on a conservative finite difference scheme
for stationary conditions and is oriented to the simulation of flow in saturated media. It takes into
account the possible drying of shallow blocks of the domain with an original approach, which limits
the number of additional parameters that have to be assigned by the user and that have a weak
physical significance. Notice that YAGMod considers both prescribed distributed sources and variable
point sources. While the former can be used to simulate aquifer recharge, the latter can be used to
simulate draining systems or the effects of the water head drawdown on a water-well discharge.

The second goal of this paper is to compare the algorithm used by YAGMod to handle desaturated
cells with the above-mentioned algorithms proposed by Doherty [3], Keating and Zyvoloski [4] and
Niswonger et al. [6]. This is performed by means of a simple, but significant test case.

Moreover, YAGMod includes a module for the model calibration, namely the identification
of transmissivity from the knowledge of the reference head and source fields all over the
domain. The calibration is performed for 2D flow conditions implementing the comparison
model method (CMM). This method was originally proposed by Scarascia and Ponzini [18],
successively developed by Ponzini and Lozej [19] and cast in a more formal mathematical
framework by Ponzini and Crosta [20]. The CMM has been applied and implemented with success
to study 2D hydraulic flow in regional aquifers [14,16,17,21–23], and therefore, for the moment, its
implementation within YAGMod covers these kinds of systems only.

The third goal of this paper is a thorough and rigorous extension of the CMM to the case of a
phreatic aquifer. This is possible because YAGMod takes into account the variation of the saturated
thickness of each cell for the solution of the forward problem.
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Generally speaking, the “best” model should permit one to properly describe the physical
processes and should run with limited computational resources. Unfortunately, these objectives
are usually conflicting: physical processes in natural systems might be very complex, non-linear
and dependent on a huge number of physical parameters; the computer codes that can handle
such situations require supercomputers with high memory capacity and a lot of parallel processors.
Simplified approaches are commonly adopted by scientists and engineers. Nevertheless, relatively
simple models and tests, like those proposed in this paper, can be very useful to cope with
complex natural systems with a computationally-frugal approach, which can provide first insights
into the relevant natural processes, on the most sensitive parameters, etc., as recently shown, e.g.,
by Hill et al. [24].

2. Forward Model

This section is dedicated to a description of YAGMod, and particular emphasis will be given to its
innovative features.

2.1. Mathematical Model and Discretization

The 3D flow of groundwater, considering constant fluid density and steady-state conditions, is
described by the balance equation:

divq = f (1)

which, using the phenomenological Darcy’s law q = −Kgradh, becomes:
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where q is Darcy’s velocity (LT−1); h is the water or hydraulic head (L); f is the source term, i.e., the
volume of water injected per unit time and unit volume of the porous medium (T−1); K is the
hydraulic conductivity (LT−1).

The numerical solution of Equation (2) is found with the finite difference method. The continuous
physical system is replaced by a finite set of cells or blocks, which are identified by three integer
indices (i, j, k), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nz and 1 ≤ k ≤ Nz, and could be rectangular in the horizontal
plane. The side lengths of the cells along the x and y directions, ∆x and ∆y, are assumed to be
constant for all of the grid; the cell thickness, denoted by ∆z(i,j,k), can vary for each cell. The center
of a cell is called a node and is denoted with the same indices as the corresponding cell. Values of
the hydraulic head are referred to each node, and the spatially-varying hydraulic conductivities are
considered to be effective parameters of a cell.

The saturated thickness of a cell is given by:
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(bot)
(i,j,k)

(3)

where z
(top)
(i,j,k) and z

(bot)
(i,j,k) represent the height of, respectively, the top and bottom surfaces of a cell.

For each cell, an integral balance equation can be written. The water discharge into or from a cell
is calculated considering only the six adjacent (first-neighborhood) cells (Figure 1).

In order to handle complex aquifers’ geometries, each cell is identified by a domain code
(Figure 2): I identifies the internal cells, for which the hydraulic head can vary freely; D identifies
the cells where Dirichlet conditions are assigned, i.e., the hydraulic head is prescribed; E identifies the
cells external to the domain or where no flow takes place.
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Figure 1. (a) Plan view of a domain’s layer; (b) vertical section view. Red arrows are examples of
groundwater fluxes through first-neighborhood cells and considered in the discrete model.

Figure 2. Domain code example in a 2D domain: I, E and D codes correspond, respectively, to internal,
external and prescribed-head (Dirichlet boundary conditions) cells; the blue line denotes the border
of the domain.

The integral version of Equation (2) could be discretized for each cell as:

K(i+1/2,j,k)
h(i+1,j,k)− h(i,j,k)

∆x
∆y ϑ(i+1/2,j,k) +

+ K(i−1/2,j,k)
h(i−1,j,k)− h(i,j,k)

∆x
∆y ϑ(i−1/2,j,k) +

+ K(i,j+1/2,k)
h(i,j+1,k)− h(i,j,k)

∆y
∆x ϑ(i,j+1/2,k) +

+ K(i,j−1/2,k)
h(i,j−1,k)− h(i,j,k)

∆y
∆x ϑ(i,j−1/2,k) +

+ K(i,j,k+1/2)
h(i,j,k+1)− h(i,j,k)

∆z(i,j,k+1/2)
∆x ∆y +

+ K(i,j,k−1/2)
h(i,j,k−1)− h(i,j,k)

∆z(i,j,k−1/2)
∆x ∆y + F(i,j,k) = 0
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where h(i,j,k) is the hydraulic head at a node (L); K(i−1/2,j,k) and K(i+1/2,j,k) (LT−1) are called internode
(or interblock) hydraulic conductivities along the x direction (analogous definitions are used for the

similar terms along the y and z directions); ϑ(i+1/2,j,k) =
(

ϑ(i,j,k)+ ϑ(i+1,j,k)

)

/2 is the arithmetic mean

of the saturated thicknesses of the cells (i, j, k) and (i+ 1, j, k) (an analogous definition is used for cells

along the y direction); ∆z(i,j,k+1/2) =
(

∆z(i,j,k) + ∆z(i+1,j,k)

)

/2 is the distance between two adjacent
nodes along the vertical; F(i,j,k) is the cell source term, i.e., the volume of water injected in the cell
(negative if extracted from) per unit time (L3T−1). Each of the nine terms appearing in the left-hand
side of Equation (4) represents the water flux through an interface separating two cells.

A single value of hydraulic conductivity is assigned to every cell, and the internode hydraulic
conductivity is calculated as the harmonic mean of the hydraulic conductivities of adjacent cells.

Equation (4) can be synthetically written for the most general case, by introducing internode
transmittances as follows:

T(i+1/2,j,k) = K(i+1/2,j,k)ϑ(i+1/2,j,k)
∆y

∆x
,

T(i,j+1/2,k) = K(i,j+1/2,k)ϑ(i,j+1/2,k)
∆x

∆y
,

T(i,j,k+1/2) = K(i,j,k+1/2)
∆x ∆y

∆z(i,j,k+1/2)

(4)

Then, Equation (4) becomes:
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)
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(

h(i,j,k−1)− h(i,j,k)

)

=

= −F(i,j,k)

(5)

2.2. Boundary Conditions and Source Terms

Dirichlet, Neumann or Robin boundary conditions can be assigned. The cells where Dirichlet
boundary conditions (prescribed head) are assigned are simply identified by using a D label for
the domain code: in that case, the hydraulic head does not change during the computation of the
solution. Neumann and Robin boundary conditions are implemented as specific types of source
terms, as specified hereinafter.

2.2.1. Distributed Source/Sink Terms

This type of source or sink term simulates areally-distributed fixed source terms, such as rainfall

recharge. For each contribution, an array of Nx × Ny × Nz elements, F
(d)
(i,j,k), represents the flow rate

into each cell of the domain; it is independent from h(i,j,k), and its dimensions are (L3T−1). The user
must consider that this type of source remains constant, even if the hydraulic head of a single cell
becomes lower than the bottom of the cell during the iterative search of a solution.

2.2.2. Local Source/Sink Terms

In the YAGMod code, local sources or sinks, i.e., those that are concentrated in a single cell,
are modeled with the paradigmatic equation:

F(loc) =

{

F(+) −K(+) · (h −H(cal)) if h ≥ H(act),
F(−) −K(−) · (h −H(cal)) if h < H(act) (6)
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where F(loc) is the local contribution of the individual source or sink. F(loc) depends on the hydraulic
head in that cell, h, according to the difference (h −H(cal)). F(+) and F(−) are fixed fluxes (L3T−1);

K(+) and K(−) are conductances (L2T−1); H(cal) and H(act) are two reference head values (L). H(act) is
a threshold, which establishes if a source or sink is active or which couple of fluxes and conductances,
(F(+),K(+)) or (F(−),K(−)), should be used to compute F(loc); H(cal), which could be equal to H(act)

in many cases, is used to calculate the contribution to the source term, which linearly depends on h.
All of these parameters can be separately defined for each source or sink.

Different combinations of F(+), F(−), K(+), K(−), H
(act) and H(cal) allow the user to generate a

great variety of source terms, some of which are listed and briefly described below.

• Drain:
F(+) = F(−) = 0, K(−) = 0; K(+) represents the drain conductance; H(act) = H(cal) represents the
drain elevation.

• Robin boundary conditions:
These conditions can be used if the aquifer interacts with another water body and water exchange
is controlled by the difference of the water head in the aquifer and in the external water body.
They are introduced through Equation (6), by assigning the following parameters: F(+) = F(−) =

0; H(act) = H(cal) are the reference hydraulic heads; K(+) and K(−) represent the conductances
for flux out or into the cell. K(+) and K(−) depend on the conductivity of the materials that
separate the aquifer from the water body at the reference water head and on the distance from
this water body. Notice that for the simulation of limited domains of aquifers with a large
extension, it is usually impossible to prescribe physically-based boundary conditions. In those
cases, Robin boundary conditions are very useful to introduce fictitious boundary conditions,
which are more flexible than prescribed head (Dirichlet) or flux (Neumann) boundary conditions.
In these situations, H(act) = H(cal) should be close to the estimated water head far from the
aquifer system, and the conductances K(+) and K(−) can assume different values to take into
account the geometrical, geological and hydrological characteristics of the aquifer.

• River/aquifer interaction:
H(act) is the height of the bottom of the river: therefore, if h ≥ H(act), the river and
groundwater are in contact, whereas, if h < H(act), then they are separated by a vadose zone,
i.e., partly-saturated sediments or rocks. In the first situation, H(cal) is the river stage; then, the
river drains the aquifer if h > H(cal) and recharges the aquifer if h < H(cal). It is quite common to
assume F(+) = 0 and to consider K(+) as a function of the conductivity of the river bed sediments,
their thickness and the area of the contact surface between the river bed and the aquifer in the
considered cell. In the second situation, namely if h < H(act), the river bed is assumed to be
composed of fine-grained materials, which could be almost saturated, but poorly permeable,
whereas the vadose zone between the river bed and the water table could be more permeable than
the river bed sediments and approximated as dry. Therefore, the water flows through the river
bed under a gravity-controlled, unit hydraulic gradient and freely flows through the relatively
permeable vadose zone: then, K(−) = 0, whereas F(−) depends on the conductivity, thickness
and extension of the river bed sediments in the considered cell and on the river stage.

2.2.3. Screened Wells

YAGMod considers a new kind of source term that takes into account the dependence of the wells’
extraction rate on the aquifer water head. In particular, this kind of source term allows one to turn off
the pumping if a cell becomes dry. Sources in this category are denoted as “screened wells”, as the
user has to give as input data not only the (x, y) coordinates of the well, i.e., the node indices iW and
jW, but also the top and bottom elevation of the screened interval (topW and botW) and the maximum
well extraction rate, qw.
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The maximum extraction rate is subdivided among the cells intersected by screened intervals, as:

q
(scr)
(iW ,jW ,k) = qW ·

K(iW ,jW ,k) L
(scr)
(iW,jW ,k)

∑
n(max)

k′=n(min) K(iW,jW ,k′) L
(scr)
(iW,jW ,k′)

(7)

with k = n(min), . . . , n(max), where: n(min) and n(max) are the indices (along the vertical direction)

of the cells corresponding to the top and the bottom of the screened interval of the well; L(scr)
(iW,jW ,k)

is the screened thickness of the well corresponding to a fully-saturated porous medium within the
(iW , jW , k) cell and is computed as:

L
(scr)
(iW,jW ,k) = min

(

h(iW ,jW ,k), s
(top)
(iW,jW ,k)

)

− min
(

h(iW,jW ,k), s
(bot)
(iW ,jW ,k)

)

(8)

where:

s
(top)
(iW ,jW ,k) =

{

z
(top)
(iW,jW,k) k = n(min), . . . , n(max) − 1,

topW k = n(max)
(9)

and:

s
(bot)
(iW ,jW ,k) =

{

z
(bot)
(iW,jW,k) k = n(min) + 1, . . . , n(max),

botW k = n(min)
(10)

Notice that if h(iW ,jW ,k) < s
(bot)
(iW ,jW ,k), then L

(scr)
(iW,jW ,k) = 0.

If the cell (iW , jW , k) desaturates, the value of q
(scr)
(iW ,jW ,k) is corrected, so that the contribution of the

well to the source term of the cell (iW , jW , k) is given by:

F
(s)
(iW,jW ,k) = q

(scr)
(iW ,jW ,k) ·

√

L
(scr)
(iW,jW ,k)

s
(top)
(iW ,jW ,k) − s

(bot)
(iW ,jW ,k)

(11)

The latter equation implies that, at a given location, the water extracted from a cell reduces as
the square root of the thickness of the screened interval that intersects a fully-saturated portion of the
aquifer in that cell.

2.3. Solution of the Balance Equations

Equation (5) can be written for each internal cell, resulting in a system of possibly non-linear
equations that can be written in matrix formulation as:

A (x) x = b(fix) + b(var)(x) (12)

where x includes the values of the water head in the internal nodes, b(fix) includes the fixed
source/sink terms (Section 2.2.1), b(var) includes the source/sink terms that depend on the water head
of the aquifer (Sections 2.2.2 and 2.2.3) and the terms appearing in the left-hand side of Equation (5)
that involve the water head at D nodes. A is a sparse, symmetric, diagonally-dominant matrix, which
is strictly diagonally dominant if at least one D node is present in the domain; its elements are built
with transmittances and, therefore, depend on x, as shown by Equations (3) and (4).

The solution to Equation (12) could be obtained with any of the methods of solution for
non-linear equations that can be found in textbooks of numerical analysis. In YAGMod, a simple
approach, based on a generalization of the relaxation methods for the solution of systems of algebraic
linear equations, is proposed. This choice is optimal from the point of view of the memory
requirement. Other approaches, e.g., Newton’s or conjugate-gradient methods, could be more
efficient in terms of elapsed running time, if the code is properly modified to profit from parallel
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computers. However, it should be noted that the specific problem addressed in this paper includes
non-differentiable terms in the system of equations, like those introduced by Equation (6) and by
the sequence of equations from Equations (7) to (11). Several tests showed that the generalization of
relaxation methods is in general quite robust, in particular for complex physical situations.

2.4. Check of the Physical Consistency of the Solution

The proposed model does not solve equations for variably-saturated conditions, but aims at
finding a solution for fully-saturated groundwater flow: the cells that become dry during the iterative
algorithm of solution are not eliminated from the domain, but are used as auxiliary cells in the sense
to be specified below.

If h(i+1,j,k) < z
(bot)
(i+1,j,k), then ϑ(i+1,j,k) = 0. If also the adjacent cells along the horizontal directions

are dry, then the terms corresponding to horizontal fluxes in Equation (5) vanish, and therefore, the
cell under examination is involved only for a balance along the vertical direction. This choice permits
one to transfer the fixed source terms to deeper cells: this is necessary, e.g., to permit the aquifer
recharge, which is assigned at the top active (i.e., internal) cells, to reach the water table. Instead, if
the adjacent cells have a non-vanishing, possibly small, thickness, then the physical situation implies
that there is a horizontal transfer of water.

When the solution procedure is completed (Section 2.3), the computer code checks the physical
reliability of the solution reached. First, a recursive function searches for every continuous path
connecting partially- or totally-desaturated cells with the uppermost active cells. At the end of this
checking step, every totally- or partially-desaturated cell needs to be connected with the surface,
in order to allow air to infiltrate into the porous medium. Second, another function searches for
the totally-desaturated cells for which the sum of all of the source terms is negative: such cells
actually contain some outflowing source terms, but extracting water from a dry cell cannot be
physically acceptable.

If one of these two physically unacceptable conditions occur (desaturated cells not connected
with the surface; net outflowing source term from dry cells), YAGMod prints a warning message to the
standard output and in the summary output file.

2.5. An Example

To show the relevance of these checks and the behavior of the code when dealing with screened
wells, two simulations have been run using two different ways to manage an extraction source
term. The domain is built up with 100 × 100 × 28 cells of 2.5 m × 2.5 m × 2.5 m dimensions.
A low conductivity lens (K(L) = 10−8 m/s) is included in a homogeneous, permeable medium
(K(H) = 10−4 m/s). In the first simulation, a single deep well, whose extraction rate is about
0.06 m3/s, is located beneath the lens at x = 125 m and z = 20 m; in the second one, the single
deep well is replaced by a screened well, from 20 m to 45 m, whose extraction rate is the same as the
other (obviously, distributed along the whole screened interval). In the latter case, the extraction rate
is controlled by the hydraulic head. Results are shown in Figure 3. The simulation run with the deep
fixed extraction rate yields physically inconsistent results: in fact, a group of completely desaturated
cells is not connected with the surface. On the other hand, the simulation run with the screened well
leads to a physically acceptable solution.
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Figure 3. Contour lines of the hydraulic head (2-meter contour interval) and map of the saturation
field (fully-saturated cells are drawn in blue; partially-saturated cells are drawn in green; dry cells
are drawn in orange) along a vertical section for a 3D problem solved with YAGMod (yet another
groundwater flow model). (top) A single deep well, whose fixed extraction rate is about 0.06 m3/s,
is located at x = 125 m and z = 20 m, beneath a low conductivity lens (dashed area). (bottom) The
single deep well is replaced by a screened well, from 20 m to 45 m (yellow line).

3. A Simple Test Case to Compare Different Approaches to Handle Dry Cells

A number of different approaches to manage dry cells has been proposed [3,4,6]. Each approach
calculates internode conductivities in a different way; in some cases, also effective extraction rates are
calculated taking into account the saturated thickness. In this section, the algorithm implemented in
YAGMod is compared to those approaches by means of a test case, which is very simple, but permits
one to emphasize some significant properties of the different methods. In particular, the basic
characteristics of the analyzed algorithms are briefly recalled using a simplified notation based on
this example. A simple 2D domain has been constructed with a grid of 3 × 1 × 2 cells whose size is
100 m × 100 m × 20 m. This 2D domain is illustrated in Figure 4, together with the cell numbering
used in the following for the sake of simplicity.

Figure 4. Scheme of the 2D domain used for the comparison test.

At cells (1), (3), (4) and (6), the hydraulic head is prescribed in such a way as to generate a
hydraulic gradient along the x direction: h(1) = h(4) = 40 m, h(3) = h(6) = 39 m. At cell (2), an
extraction source term is assigned.
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The balance equations for the internal cells (2) and (5) can be written as:

K(1,2)ϑ(1,2)
h(1) − h(2)

∆x
∆y +

+ K(3,2)ϑ(3,2)
h(3) − h(2)

∆x
∆y +

+ K(5,2)
h(5) − h(2)

∆z
∆x∆y = −F(2)

(13)

and:

K(4,5)ϑ(4,5)
h(4) − h(5)

∆x
∆y +

+ K(6,5)ϑ(6,5)
h(6) − h(5)

∆x
∆y +

+ K(2,5)
h(2) − h(5)

∆z
∆x∆y = 0

(14)

In the numerical experiments conducted in this work, h(2) and h(5) vary from minimum to
maximum values, i.e., in the interval from 0 m to 40 m. The balance errors ǫ(2) and ǫ(5) are
calculated as:

ǫ(2) = K(1,2)ϑ(1,2)
h(1) − h(2)

∆x
∆y +

+ K(3,2)ϑ(3,2)
h(3) − h(2)

∆x
∆y +

+ K(5,2)
h(5) − h(2)

∆z
∆x∆y + F(2)

(15)

ǫ(5) = K(4,5)ϑ(4,5)
h(4) − h(5)

∆x
∆y +

+ K(6,5)ϑ(6,5)
h(6) − h(5)

∆x
∆y +

+ K(2,5)
h(2) − h(5)

∆z
∆x∆y

(16)

The study of the existence and uniqueness of the solution of the problem is based on the analysis
of the total quadratic balance error:

ǫ2
tot = ǫ2

(2) + ǫ2
(5) (17)

The method proposed by Doherty [3] uses for the horizontal interblock transmissivity an
asymptotically small transmissivity function, in order to keep every cell active, even if it actually
becomes dry. This approach uses a decay function that prevents the transmissivity of a dry cell from
becoming non-positive:

T =

{

Kϑre−gϑ + Kϑ if ϑ > 0,
Kϑre f ϑ if ϑ < 0

(18)

where T is the transmissivity; K is the hydraulic conductivity of a cell; ϑ is the saturated thickness,
as for YAGMod; g and f , which are numerical parameters, and ϑr , the residual saturated thickness,
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are parameters supplied by the user. To ensure that the function defined in Equation (18) is continuous
and continuously differentiable, the following relationship must be satisfied:

g =
1
ϑr

− f (19)

so that the user must specify only two parameters, f and ϑr . The transmissivity, calculated with
Equation (18) for every cell (i, j, k) of the domain, is used to calculate interblock transmissivity with
harmonic average. For the vertical water balance, Doherty [3] considers that if any cell in the domain
becomes dry, then water inputs from the upper layer remain active. To improve vertical water
exchange with the lower layers, i.e., to permit recharge introduced at the model top to reach deeper
cells, a linear reduction of vertical interblock resistance (reciprocal of conductance) is introduced
using the following equations:

R(2,5) =































R
(u)
(2,5) for h(5) > hu,

R
(b)
(2,5) +

h(5) − z
(bot)
(5)

hu − z
(bot)
(5)

(

R
(u)
(2,5) − R

(b)
(2,5)

)

for hu > h(5) > z
(bot)
(5) ,

R
(b)
(2,5) for h5 ≤ z

(bot)
(5)

(20)

where R(2,5) is the interblock resistance; hu is the user-supplied water level below which the linear

reduction of resistance is activated; R
(u)
(2,5) is the “standard” interblock resistance given by:

R
(u)
(2,5) =

1
2

(

ϑ(2)

K(2)
+

ϑ(5)

K(5)

)

1
∆x∆y

R
(b)
(2,5) is the modified interblock resistance, calculated as the reciprocal of the “enhanced interblock

conductance” C
(b)
(2,5), given by:

C
(b)
(2,5) = mC(2,5) =

m

R
(u)
(2,5)

where m is a user-supplied multiplier. In Figure 5, the results obtained for different values of m from
one to 100 and F(2) = Q = 0.1 m3 s−1 are plotted: no significant difference was noticed among the
simulations, so that in further tests, m = 1 was assigned.

Figure 5. Map of the balance error given by Equation (17), for the approach of Doherty [3], as a
function of the hydraulic heads h(2) (x axis) and h(5) (y axis), for different values of m ((left) m = 1;
(center) m = 10; (right) m = 100). At the bottom right corner of each graph, the zone containing the
minimum error value is enlarged.



Computation 2016, 4, 2 12 of 19

The second investigated approach was proposed by Keating and Zyvoloski [4]. Horizontal
interblock transmittance is calculated as follows:

T(1,2) =
1
2





ϑ(1)

z
(top)
(1) − z

(bot)
(1)

+
ϑ(2)

z
(top)
(2) − z

(bot)
(2)



 · 2
K(1)K(2)

K(1) + K(2)
·

·
1
2

(

z
(top)
(1) − z

(bot)
(1) + z

(top)
(2) − z

(bot)
(2)

) ∆y

∆x

(21)

For vertical transmittance, the change from intrinsic vertical internode conductivity in a
partially-saturated cell to zero in a dry cell would lead to a discontinuity. To improve numerical
stability, Keating and Zyvoloski [4] allow a weak scaling controlled by a user-specified parameter, ξ:

T(2,5) =



min



1, ξ
ϑ(2)

z
(top)
(2) − z

(bot)
(2)



+ min



1, ξ
ϑ(5)

z
(top)
(5) − z

(bot)
(5)







 ·

·2
K(2)K(5)

K(2) + K(5)
· 2

∆x∆y

z
(top)
(5) − z

(bot)
(2)

(22)

Keating and Zyvoloski [4] suggest using a value of 10 for ξ, which provides both accuracy and
stability for all problems.

The last approach considered for this comparison exercise is implemented in the UPW Package
of the MODFLOW NTW model [6], a standalone version of MODFLOW 2005 [25]. The UPW Package
smooths the horizontal conductance function during wetting and drying of a cell. Using this method,
horizontal interblock conductance for our test is calculated as follows, by making reference to the
example of cells (1) and (2):

CNTW
(1,2) =











































η if X ≤ 0,

αK(1,2)

[

0.5AX2

Ω

]

if 0 < X ≤ Ω,

αK(1,2) [AX + 0.5(1− A)] if Ω < X ≤ (1 − Ω),

αK(1,2)

[

1 − 0.5A(1− X)2

Ω

]

if (1 − Ω) < X ≤ 1,

αK(1,2) if X ≥ 1

(23)

where X =
(

hup − z
(bot)
up

) (

z
(top)
up − z

(bot)
up

)−1
; hup is the maximum between h(1) and h(2); z

(bot)
up

and z
(top)
up are respectively the bottom and top level of the cell corresponding to hup; η is a small

value, usually taken as η = 1 × 10−9 m2 s−1; α =
(

z
(top)
up − z

(bot)
up

)

∆y∆x−1; K(1,2) the internode

conductivity calculated as K(1,2) = 2K(1)K(2)

(

K(1) + K(2)

)−1
; Ω is the smoothing interval length,

which is suggested to be very small (10−5), and A = Ω(1 − Ω)−1.
In this approach, vertical conductance is calculated as in standard MODFLOW 2005 [25]:

C(2,5) = 2∆x∆y
K(2)K(5)

(

h(2) − z
(bot)
(2)

)

K(5) +
(

h(5) − z
(bot)
(5)

)

K(2)

(24)
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The pumping rate is reduced as the head in the cell drops below a user-specified percentage of
the cell thickness, as:

QNWT =











0 if δ ≤ 0,

Q
(

−2δ3 + 3δ2
)

if 0 < δ < 1/Φ,

Q if δ ≥ 1/Φ

(25)

where:

δ =
1
Φ

h − z(bot)

z(top) − z(bot)

and Φ is a user-specified fraction of the cell thickness, typically assigned as Φ = 0.25.
The results obtained with the application of the four described approaches (i.e., the three

approaches described in this section and the one implemented in YAGMod), for three cases
corresponding to an extraction rate Q varying from 0.1 m3 s−1 to 0.2 m3 s−1 and 0.3 m3 s−1,
are represented in Figure 6. Notice that with the approach by Keating and Zyvoloski [4], h(5) cannot
drop below the cell bottom; therefore, the results obtained with this method for extraction rates of
0.2 m3 s−1 and 0.3 m3 s−1 could not be significantly compared to those from other algorithms. Besides
this remark, all of the methods give realistic results, even if the values that yield the least total balance
error for alternative algorithms differ from each other.

Figure 6. Map of the total quadratic balance error given by Equation (17), as a function of the hydraulic
heads h(2) (x axis) and h(5) (y axis). From left to right, respectively, the results obtained with YAGMod

and the approaches by Doherty [3], Keating and Zyvoloski [4] and Niswonger et al. [6]. From top
down, the results obtained with extraction rates of 0.1 m3 s−1, 0.2 m3 s−1 and 0.3 m3 s−1. The blue
circles point out the zone where the least value of the total quadratic balance error is located.

The hydraulic heads computed with YAGMod for an extraction rate of 0.1 m3 s−1 are smaller than
those obtained with the other approaches; on the other hand, for higher extraction rates, the behavior
is more complex, and no systematic difference is shown.

The color scales of the plots of Figure 6 are normalized with respect to the minimum and
maximum total quadratic errors, separately for each method. Therefore, the images show that all
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of the methods yield a single minimum, and for YAGMod, ǫ2
tot increases from the least value more

rapidly than for other methods.
Finally, each of the algorithms, which are here compared to YAGMod, is based on some auxiliary

parameters. Such parameters are not related to physical processes or quantities, but are necessary
to apply artifices to face the numerical problems arising from the simulation of drying cells. These
auxiliary parameters, which are listed in Table 1, have to be assigned by the user. On the other hand,
YAGMod does not require any additional parameter. This is useful to limit the arbitrariness associated
with the assignment of non-physical, auxiliary quantities.

Table 1. Parameters to be assigned by the user for the algorithms with which YAGMod is compared.

Algorithm Parameters

Doherty [3] θr, f , m
Keating and Zyvoloski [4] ξ

Niswonger et al. [6] η, Ω, Φ

4. Inverse Modeling with the Comparison Model Method

YAGMod permits the application of the comparison model method (CMM) to estimate
the conductivity field for a 2D flow field by solving an inverse problem. The CMM was
proposed to identify T at every node of a discretization grid [18] and successively developed
to directly compute internode transmissivities [19]. Further modifications were proposed by
Ponzini and Crosta [20], Ponzini et al. [26], Pasquier and Marcotte [27], Ponzini et al. [28]. The CMM
was applied to alluvial aquifers in Italy [14,16,21], Switzerland [22] and Canada [23,29,30] and to a
carbonatic aquifer in southern Italy [17,31].

4.1. Fundamentals of the CMM Algorithm

In this section, we summarize the working fundamentals of the CMM for the computation of the
conductivity field for 2D stationary flow. Therefore, the k index is omitted in the following equations.

The CMM requires the knowledge of a reference head field, h
(ref)
(i,j) , which is usually obtained

from the interpolation of field measurements and any other relevant geological or hydrological
information. Furthermore, a reference source term has to be estimated at every cell of the domain,

F
(ref)
(i,j) , and it coincides with the same term introduced in Equation (5) (for k = 1, as 2D flow

is assumed).
Difficulties in estimating a realistic conductivity field from the application of the CMM could

arise from the intrinsic instability of the inverse problem or the ill-conditioning of the discrete inverse
problem [32]: these difficulties are mainly related to the behavior of the balance equation, which,
when used for the forward problem, behaves as a K-to-h map, which smooths the high wavenumber
(or short wavelength) components of the conductivity field. From the point of view of the inverse
problem, errors on the head at high wavenumbers could be amplified, even if they have a small
amplitude [33]. Therefore, it is often useful to smooth the reference head and source fields.

An initial guess of the conductivity field, K
(CM)
(i,j) , must be assigned, for instance, by interpolating

the values estimated from field tests. Then, the forward problem is solved for a comparison model
(CM): the CM shares the same geometry and source terms as the model, which has to be calibrated.

In particular, the forward problem aims at finding the head field, h
(CM)
(i,j) , which solves Equation (5),

for k = 1. For the CM, h
(CM)
(i,j) = h

(ref)
(i,j) at the nodes where Dirichlet boundary conditions are assigned.

From the results of the forward problem for the CM, the aquifer unit discharge, i.e., the water
flow rate through the whole aquifer thickness per unit horizontal length, can be computed at
each cell as:

Q
(CM)
(i,j) = −K

(CM)
(i,j) ϑ

(CM)
(i,j) ∇h

(CM)
(i,j) (26)
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where ϑ
(CM)
(i,j) is computed from Equation (3), with h(i,j,k) = h

(CM)
(i,j) , and ∇h

(CM)
(i,j) is the discrete gradient

obtained with a classical finite difference approximation. The real aquifer unit discharge could be
estimated as:

Q(i,j) = −K(i,j)ϑ
(ref)
(i,j) ∇h

(ref)
(i,j) (27)

if the reference hydraulic head were a good approximation of the real head field, with the obvious

meaning of the terms appearing in the right-hand side of this equation. If K
(CM)
(i,j) is a good

approximation of the real K field, then it is reasonable to assume that:

Q
(CM)
(i,j) ≃ Q(i,j) (28)

If we take into account only the absolute values of the previous expression, from Equations (26)
and (27), the estimated conductivity can be found as:

K
(est)
(i,j) = K

(CM)
(i,j) ·

ϑ
(CM)
(i,j)

ϑ
(ref)
(i,j)

·
|∇h

(CM)
(i,j) |

|∇h
(ref)
(i,j) |

(29)

This is called the “integral” approach of the CMM, as opposed to the “differential” approach,
which considers:

Q(i,j) = |Q(i,j)| = K(i,j)ϑ(i,j)|∇h(i,j)| (30)

as a function of h(i,j), both explicitly through |∇h(i,j)| and implicitly through ϑ(i,j). A small variation of
K(i,j) and h(i,j) should produce a small variation of Q(i,j); this is expressed in terms of differentials as:

dQ(i,j) = dK(i,j)ϑ(i,j)|∇h(i,j)|+ K(i,j)dϑ(i,j)|∇h(i,j)|+ K(i,j)ϑ(i,j)d|∇h(i,j)| (31)

If the couples
(

K
(CM)
(i,j) , h

(CM)
(i,j)

)

and
(

K
(est)
(i,j) , h

(ref)
(i,j)

)

are considered, respectively, as the initial and

final “points”, so that dK(i,j) = K
(est)
(i,j) − K

(CM)
(i,j) , dϑ(i,j) = ϑ

(ref)
(i,j) − ϑ

(CM)
(i,j) and d|∇h(i,j)| = |∇h

(ref)
(i,j) | −

|∇h
(CM)
(i,j) |, and if Equation (28) holds, then dQ(i,j) = 0. Finally, from Equation (31), it follows:

K
(est)
(i,j) = K

(CM)
(i,j)



1 −
ϑ
(ref)
(i,j) − ϑ

(CM)
(i,j)

ϑ
(CM)
(i,j)

−
|∇h

(ref)
(i,j) | − |∇h

(CM)
(i,j) |

|∇h
(CM)
(i,j) |



 (32)

which is the expression of the estimated conductivity with the “differential” approach of the CMM.
The CMM can be modified and recast in an iterative fashion, to progressively improve the fit

of the reference data. This is done by using ℓ = 0, 1, . . . as the iteration index, by assuming a given

initial guess K
(0)
(i,j), and by substituting K

(est)
(i,j) with K

(ℓ+1)
(i,j) , K

(CM)
(i,j) with K

(ℓ)
(i,j) and h

(CM)
(i,j) with h

(ℓ)
(i,j) in

Equations (29) and (32).

It is often useful to weight the correction introduced at each iteration with w = min(c|∇h
(ref)
(i,j) |, 1),

where c is a positive constant, in order to avoid the excessive growth of some values where the
reference hydraulic gradient is small and, therefore, the problem ill-conditioned:

K
(ℓ+1)
(i,j) = K

(ℓ)
(i,j)



w ·





ϑ
(ℓ)
(i,j)

ϑ
(ref)
(i,j)

·
|∇h

(ℓ)
(i,j)|

|∇h
(ref)
(i,j) |

− 1



+ 1



 (33)
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for the integral approach and:

K
(ℓ+1)
(i,j) = K

(ℓ)
(i,j)



1 − w ·





ϑ
(ref)
(i,j) − ϑ

(ℓ)
(i,j)

ϑ
(ℓ)
(i,j)

+
|∇h

(ref)
(i,j) | − |∇h

(ℓ)
(i,j)|

|∇h
(ℓ)
(i,j)|







 (34)

for the differential approach.

4.2. A Test

A simple test is used to show the application of the CMM. In particular, the reference K field is
represented in Figure 7 (left image) for a domain with 10 × 10 cells and corresponds to a conductive
inclusion in a less permeable domain. The reference hydraulic head is obtained by solution of the
forward problem with Dirichlet boundary conditions and is represented by the image map in Figure 8.
The results obtained from the CMM with a homogeneous initialization K(CM) = 10−4 m s−1 are
shown in Figure 7, both for the integral (central map) and the differential (right map) approaches.

Figure 7. Simple test of the comparison model method (CMM): hydraulic conductivity field; the
color scale refers to log10 K, with K expressed in m s−1. (left) Reference field; (central) field
estimated from the CMM with the integral approach; (right) field estimated from the CMM with
the differential approach.

Figure 8. Simple test of the CMM: image plot of the reference hydraulic head and contour lines of the
reference h field (purple) and of the h fields obtained for the K fields estimated with the CMM: yellow
lines refer to the K field obtained with the integral approach (central map of Figure 7) and green lines
to the K field obtained with the differential approach (right map of Figure 7).
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The high conductivity region is quite well reproduced by the CMM, although it is a little bit
faint, an effect that depends on the spectral response of the balance equation: this induces also some
small differences between the water head computed from the K fields estimated with the CMM and
the reference h field (see Figure 8), above all around the border of the high conductivity region.

5. Conclusions

Yet another groundwater flow model, YAGMod, has been described in this paper. The basic
characteristics of this model are briefly summarized below.

1. When the water head in a cell is lower than the cell’s top coordinate, the cell is considered as
partially saturated, and its saturated thickness is used for the water balance. If the water head
is lower than the cell bottom, then the cell is considered as dry, but it is not excluded from the
water balance calculations. In fact, the water head in this cell is used to compute a vertical water
balance that permits one to transfer source terms (namely, aquifer recharge) from the shallow
layers down to the deep ones.

2. A large number of different sources or boundary conditions, which depend on the water head
in the cell, are simulated with a single prototype equation.

3. If the position of the screened intervals of a water abstraction well is known, the extraction rate
can be limited when the water head falls within the screened interval or turned off when the
water head falls below the bottom of the screens.

The comparison of the algorithm used by YAGMod and those proposed by Doherty [3], Keating
and Zyvoloski [4] and Niswonger et al. [6] shows that the different approaches yield different
solutions, among which, it is not possible to select the best one on the basis of physical arguments.
Nevertheless, the advantage of YAGMod is that it does not introduce any additional parameter whose
values should be assigned by the user and which mostly have a limited physical significance.
Differently, the other approaches require that the user defines one or more additional parameters.
These parameters mostly have a limited physical significance, making the parameterization of the
model more complex.

Moreover, YAGMod can be used also to solve the inverse problem with the CMM for a phreatic
aquifer, with either an integral or a differential approach and taking into account the variability of
saturation. This further strengthens the features of YAGMod, because the CMM is embedded in the
source code and can be applied to estimate the hydraulic conductivity field, directly at the model
scale. The present version of YAGMod is developed to apply the CMM with 2D flow fields, but it can
be easily extended to 3D flows, if data with high quality and high density are available.

YAGMod is sufficiently flexible to be adapted to other situations, as was done to model
groundwater flow in multi-layered coastal aquifers by De Filippis et al. [31], who modified YAGMod to
cope with the variable thickness of the aquifer saturated with fresh water and to identify the spatial
variability of a fractured and karst carbonatic aquifer with the application of the CMM to a single
layer, while the parameters of other layers are fixed with estimates based on prior information.

The strategy used by YAGMod to cope with draining cells can be easily applied to integrated
finite differences [34], but can be adapted also to other numerical techniques, which are based on
the discretization of the integral balance equation over a given subdomain.
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