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Abstract: Fluid-solid coupling is ubiquitous in the process of fluid flow underground and 

has a significant influence on the development of oil and gas reservoirs. To investigate these 

phenomena, the coupled mathematical model of solid deformation and fluid flow in 

fractured porous media is established. In this study, the discrete fracture model (DFM) is 

applied to capture fluid flow in the fractured porous media, which represents fractures 

explicitly and avoids calculating shape factor for cross flow. In addition, the extended finite 

element method (XFEM) is applied to capture solid deformation due to the discontinuity 

caused by fractures. More importantly, this model captures the change of fractures aperture 

during the simulation, and then adjusts fluid flow in the fractures. The final linear equation 

set is derived and solved for a 2D plane strain problem. Results show that the combination 

of discrete fracture model and extended finite element method is suited for simulating 

coupled deformation and fluid flow in fractured porous media. 

Keywords: fluid-solid coupling; porous elasticity; fractured porous media; discrete fracture 

model; extended finite element method 
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1. Introduction 

The technology of hydraulic fracturing has been widely used for reservoir stimulation, especially 

for unconventional reservoirs [1]. Coupled rock deformation and fluid flow in fractured porous media 

is important for reservoir simulation because rock deformation exerts an important influence on 

reservoir production [2]. 

The general theory of 3D consolidation with elasticity constitutive relationship and Darcy’ law has 

been established by Biot [3], and the effective stress formulation has been put forward by Terzaghi [4]. 

A great number of researches about fluid-solid coupling have been done based on these theories in 

petroleum engineering, from conventional reservoirs to fractured reservoirs [5]. 

There exist several methods to simulate fluid flow in fractured porous media [6]. Warren and Root 

introduced the dual continuum concept to characterize naturally fractured reservoirs [7]. The dual 

continuum approaches treat fracture and matrix both as continua distributed within reservoir domain. 

The fracture-matrix cross flow is based on the analytical solution of pseudosteady-state flow within the 

matrix system with a simple geometry of matrix blocks. Moreover, shape factors are calculated for 

different geometries of matrix blocks. The dual continuum approaches consist of dual porosity and 

dual permeability models [8]. Schematics for dual porosity concept and dual permeability concept are 

shown in Figures 1 and 2 respectively. The difference between dual porosity model and dual 

permeability model is that dual permeability model takes global matrix-matrix flow into account while 

dual porosity model does not account for it. 

 

Figure 1. Schematic illustration of dual porosity model of fractured reservoirs. (a) Actual 

reservoir; (b) Reservoir model. 

 

Figure 2. Schematic illustration of dual permeability model of fractured reservoirs. 
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An alternative to the dual continuum approaches is the discrete fracture model [9,10]. The fractures 

are represented explicitly within the domain and discretized along with the matrix domain. Lamb [11] 

presented fracture mapping approach (FM) to simulate fluid flow in fractured porous media. In the FM 

approach, an element intersected by a fracture is treated as a superposition of two elements, namely a 

matrix element and a fracture element. The matrix element and fracture element interact via a transfer 

function. The schematic of fracture mapping approach is shown in Figure 3. The approach adopts the 

transfer function presented by Barenblatt [12] to account for cross flow between the overlapping 

matrix and fracture elements, which was a dual continuum model to this extent. 

 

Figure 3. Schematic representation of fracture mapping approach (FM). 

Due to stress singularity of fracture tip, it needs mesh refinement around the fracture in the standard 

finite element framework, which is computational burdensome. An alternative to standard finite 

element method is the extended finite element method (XFEM). The extended finite element method 

was introduced by Belytschko [13] to discontinuous problems, which has been widely used in many 

fields due to flexibility in meshing [14–17]. The fracture is represented by level set method. 

Ghafouri and Lewis [18,19] presented a finite element continuum approach to describe the coupled 

deformation and fluid flow in fractured porous media, which was based on double porosity model. 

Tran [20] presented high level boundary element method with periodic boundary conditions and flux 

continuous finite volume element method to simulate coupled fluid flow through discrete fracture 

network; Al-Khoury [21] used the partition of unity method to describe the fracturing process and 

double porosity model to describe the resulting fluid flow; Vire et al. [22] presented coupling an 

adaptive mesh finite element fluid model with a combined finite-discrete element solid model to 

investigate fluid-solid interactions. The method is flexible in terms of discretization schemes used for 

each material. Recently, Vire et al. [23] presents an immersed-shell method for modeling fluid-structure 

interactions. The method consists of immersing the solid structures in an extended fluid domain, and 

exchanging the coupling forces through a thin shell surrounding the solid structures. Lamb [13] 

presented FM approach and the extended finite element method for coupled deformation and fluid 

flow in fractured porous media. The difference between this paper and Lamb’s is that here discrete 

fracture model is used to avoid calculating cross flow and the model captures the change of fractures 

aperture during the simulation. 

The advantages of combination of discrete fracture model and extended finite element method over 

other methods are that discrete fracture model avoids the computation of shape factor and is more 

accurate than dual continuum model for simulating fluid flow with large fractures, meanwhile the 

extended finite element method avoids mesh refinement around the fracture and is well suited for 

mΩ fΩ



Computation 2015, 3 544 

 

 

discontinuity problems. Furthermore, the model is capable of capturing change of fractures aperture 

during the simulation. 

In this paper, the combination of discrete fracture model and extended finite element method is used 

to couple deformation and fluid flow in fractured porous media. The governing equations and initial 

and boundary conditions are presented in Section 2. The numerical solution is presented in Section 3. 

In the section, the extended finite element method and the discrete fracture model are briefly described 

to capture deformation and fluid flow respectively, and spatial and temporal discretization are 

conducted. Finally, numerical simulation and result analysis are performed in Section 4 and the 

conclusion are drawn in Section 5. 

2. Mathematical Model 

2.1. Governing Equations for Rock Deformation 

Under the assumptions of small-strain situation, isothermal equilibrium and negligible inertial 

forces, Biot’s theory describes the linear momentum balance equation for a two-phase medium, which 

is composed by rock and water. 
T 0s ρ∇ + =σ g  (1)

where σ  is total stress tensor, g  is gravity, ρ  is the averaged density of the multiphase system, and 
T
s∇  is the symmetric gradient operator matrix. 

(1 ) s wρ φ ρ φρ= − +  (2)

0

0s

x

y

y x

 ∂ ∂
 ∂∇ =  ∂
 ∂ ∂∂ ∂ 

 (3)

where φ  is porosity, sρ  is the density of solid, and wρ  is the density of water. 

The relationship between total stress and effective stress is given by 
e wpα= −σ σ m  (4)

where eσ  is the effective stress, wp  is the water pore pressure in the porous matrix, α  is the Biot’s 

compressibility coefficient, and T[1 1 0]=m  in two dimensions. 

The constitutive stress-strain relationship of the solid phase is given by 

=σ εD  (5)

where D is the linear elastic material matrix and ε  is the strain of the system. 

The geometric equation between strain and displacement is given by 

s= ∇ε u  (6)

where u is the displacement of the system. 
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2.2. Governing Equations for Fluid Flow 

Fluid flow in fractured porous media is typically simulated using dual-porosity models, but  

dual-porosity models are not well suited for the modeling of a small number of large-scale fractures, 

which may dominate the flow. Discrete fracture model, in which the fractures are represented 

individually, has been broadly applied to simulate flow in fractured porous media. In this paper, 

discrete fracture model is used for flow simulation. 

The equation of motion for fluid flow in porous media is given by Darcy’ law as follows 

( )w w

w

k
p ρ

μ
= − ∇ −v g  (7)

where v  is velocity, k  is permeability, wμ  is viscosity of water. 

The continuity equation takes into consideration the grain and fluid volume variation resulting from 

pressure change (the first term) and total volume strain resulting from solid deformation (the second 

term), which is given by 

T( ) [ ( )] 0
w

w w

s w w

p k
p

K K t t

α φ φ α ρ
μ

− ∂ ∂+ + + ∇ ⋅ −∇ + =
∂ ∂

εm g  (8)

where sK  is the bulk modulus of the grain material, wK  is the bulk modulus of water. 

2.3. Initial and Boundary Conditions 

The initial conditions specify the displacement and water pressure fields at time 0t = . 

0 0,    in  and on w wp p= = Ω Γu u  (9)

where Ω  is the domain of interest and Γ  is the boundary. 

Boundary conditions of solid deformation include displacement condition and force condition, 

which can be given as follows 

T

  

 

u

t

on

on

= Γ


= Γ σ
u u
l t

 (10)

where l  is related to the unit outward normal vector T{ , }x yn n=n  by 

0

0
x

y

y x

n

n

n n

 
 =  
  

l  (11)

Boundary conditions of fluid flow include water pressure condition and flux condition, which can 

be given as follows 

T

  

( )  on 

w
p

w w w
q

w

p p on

k
p qρ

μ

 = Γ

 −∇ + = Γ


g
 (12)

where wq  is the imposed volume flux normal to the boundary. 
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3. Numerical Solution 

3.1. Application of the Extended Finite Element Method 

In the finite element framework, discontinuity modeling needs mesh refinement around the crack, 

which is computationally burdensome. The extended finite element method was introduced by 

Belytschko and Black, which had been widely used for discontinuous problem. The advantage of 

extended finite element method is avoiding mesh refinement around fractures (especially fracture tips) 

without reducing accuracy. The method is adopted to solve solid deformation in this study. 

The extended finite element method exploits the partition of unity property of finite element. The 

displacement field is decomposed into two parts: the continuous displacement field and the 

discontinuous part. The displacement approximation can be written as follows 
4

1

( ) ( ) ( )( ( ( )) ( ( ))) ( ) ( ( ) ( ))
cr tip

h k
I I I I I I I I

I N kI N I N

N N H H N γ γφ φ
∈ =∈ ∈

= + − + Φ − Φ   u x x u x x x a x x x b  (13)

where x  is the position vector; Iu  is the nodal displacements; IN  is the shape function for  

non-enriched and enriched nodes, respectively; Ia  and k
Ib  are degrees for enriched nodes; ( )H ξ  is 

Heaviside step function; ( )φ x  is signed distance function; ( )γΦ x  is enriched functions for tip 

elements; N  is the set of all nodes in discretized model; crN is the set of nodes of all elements 

containing cracks but not crack tips; tipN  is the set of nodes of all elements containing the crack tip. 

Heaviside step function is defined as 

1,    0

( ) 0,    0

1,  0

x

H x x

x

>
= =
− <

 (14)

From Equation (13), the opening between the two surfaces of the fracture can be given by 

1( ) 2 2
cr tip

I I I I
I N I N

N r N+ −

∈ ∈

= ⋅ − = ⋅ + ⋅ u n u u n a n b  (15)

where n  is the unit outward normal vector. 

3.2. Application of Discrete Fracture Model 

In discrete fracture model, fractures are simplified into 1D line element for 2D problem, and 2D 

surface area element for 3D problem, as shown in Figure 4. The whole fractured porous media is 

decomposed into two parts: matrix system and fracture system, which can be given as follows 

m faΩ = Ω + Ω  (16)

where m  represents matrix, f  represents fracture, and a  is the aperture of fracture. 

Assuming that representative element volumes of both matrix and fracture system exist, flow 

equations are applicable to the whole research region. Then for the discrete fracture model, the integral 

form of the flow equation can be given as follows. 
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m f
m fFd Fd aFd

Ω Ω Ω
Ω = Ω + Ω    (17)

In the Equations (16) and (17), the apertures of fractures are calculated from Equation (15). In the 

implementation of algorithm, fractures are discretized into small segments. Moreover, the aperture of 

each segment is set equal to average opening of its endpoints, which is easy to calculate from Equation (15). 

However, the initial aperture of fracture is given in the first time step and updated from the second 

time step. 

 

Figure 4. Schematic of a discrete fracture model. 

3.3. Discretization in Space 

According to strong form of solid deformation equation, the weak form can be expressed with 

weighted residual method 

T
0( ) : : ( )d ( ) d d d ,

t

wpα ρ
Ω Ω Ω Γ

Ω − ⋅ Ω = ⋅ Ω + ⋅ Γ ∀ ∈   ε ε εu D v v m g v t v v U  (18)

where 0
0 { | ( / ), | }

ucr Γ= ∈ Ω Γ = 0U v v C v  is the trial function space, and crΓ  is the fracture in the domain. 

The weighted residual method is applied to the continuity equation for water flow and to its natural 

boundary condition, which yields 

( ) ( ) d d 0
q

w
w w wm

s
w s w

k p
w p w w w q

t K K t

α φ φρ α
μΩ Γ

∂ − ∂∇ ⋅ ∇ − + ⋅ ∇ + + Ω + ⋅ Γ =
∂ ∂ 
ug m  (19)

where w  is the weight function, and Ω  is the region of integration expressed by Equation (16), which 

consists of matrix and fracture system. Equation (19) turns to 

( ) ( ) d

[ ( ) ( ) ]d d 0

m

f q

w
w wm
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w s w

w
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μ

Ω

Ω Γ

∂ − ∂∇ ⋅ ∇ − + ⋅ ∇ + + Ω +
∂ ∂

∂ − ∂⋅ ∇ ⋅ ∇ − + ⋅ ∇ + + Ω + ⋅ Γ =
∂ ∂



 

ug m

ug m
 (20)

where mk  is the permeability of matrix, and fk  is the permeability of fracture, which can be given by 

“cubic law” as follows 
  

f
(1D)

m
(2D)
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2

12f

a
k =  (21)

The expression for displacement is given by Equation (13), and the expression for water pressure is 

given as follows 
w w

pp = N p  (22)

where wp  is the vector of the nodal values of water pressure, and pN  is the shape function for  

water pressure. 

By integrating Equations (18) and (20), the weak form of the whole system is discretized into the 

following set of equations 

d

dt
+ =XAX B C  (23)

where 

0 0 0

uu ua ub

au aa ab a

bu ba bb b

m fa

− 
 − =
 −
 +  

uKe Ke Ke L
Ke Ke Ke L

A
Ke Ke Ke L

H H

 (24)

T T T

0 0 0 0

0 0 0 0

0 0 0 0

a b m fa

 
 
 =
 
 +  u

B

L L L S S

 (25)

T[ ]w=X u a b p  (26)

T[ ]= a bC F F F f  (27)

Elements of the aforementioned listed matrices are given in Appendix. 

3.4. Discretization in Time 

Using the fully implicit time discretization scheme, the approximation is given as follows 

1d

d d
n n

t t
+ −= X XX

 (28)

Then, the final discrete equation can be written as follows 

1(d ) dn nt t+⋅ + = + ⋅A B X BX C  (29)

The scheme is fully implicit and imposes no requirements of the time step size which is usually 

chosen for both stability and the elimination oscillatory effects in the solution. 

In the above equation, the unknown vector X  includes standard degrees of freedom of all nodes, 

enriched degrees of freedom of enriched nodes in two directions and water pressures of all nodes. The 
matrices are constructed according to Appendix A and the linear equation set is solved for 1n+X  (value 
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for n + 1 time step) providing that nX  (value for n time step) is given. Moreover, the initial value for 

X  is given with the initial conditions by setting nodal displacements and enriched degrees to zero and 
water pressures to 0

wp . The fracture apertures are calculated according to Equation (15) using the 

already solved displacements, then the matrix for flow in the fracture is updated. The loop continues 

until end time is reached. 

4. Numerical Example 

The DFM-XFEM model is applied to a 2D plain strain problem shown in Figure 5. The domain is 

fully saturated and allowed to freely drain at the top, that is, excess pore water pressure is equal to 

zero. The domain has an area of 10 m × 16 m. The fracture is 8 m long, is inclined at 45° and is 

centered in the middle of the domain. The right, left and bottom boundaries are assumed to be 

undrained. The lateral boundaries of the domain are constrained to vertical translation only, and the 

bottom boundary is constrained to be fixed. Static load is applied at the top boundary and maintained 

throughout the duration of the simulation. The input parameters are given in Table 1. 

The discrete fracture model has been widely used for simulating flow in fractured porous media, 

and the extended finite element method has been broadly applied to the discontinuity problem. The 

combination DFM-XFEM model gives full play to their advantages for simulating flow solid coupling 

in fractured porous media. The solid module shares the same mesh configuration with the fluid flow 

module. The numerical method is implemented using Matlab. 

Lamb presented fracture mapping approach and the extended finite element method to couple 

deformation and fluid flow in fractured porous media, denoted by FM-XFEM model. Moreover, the 

model proposed in this paper is denoted by DFM-XFEM model. Because the fracture geometry 

remains constant throughout the simulation for the FM-XFEM model, that is, the fracture does not 

close or open during the simulation, the assumption is applied to the DFM-XFEM model for model 

verification by comparison with FM-XFEM model. The assumption is done by fixing fracture aperture 

in the fluid flow module during the simulation. The comparison results of the two models are shown in 

Figures 6 and 7. 

 

Figure 5. Two-dimensional fractured domain with assigned boundary conditions. 
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Table 1. Input parameters for the models. 

Parameter Definition Magnitude Units 

E Young’s modulus 40 MPa 
v  Poisson’s ratio 0.3 - 
μ  Fluid viscosity 0.001 Pa.s 
φm Matrix porosity 0.1 - 
φf Fracture porosity 0.05 - 
km Matrix permeability 4 × 10−3 Darcy 
kf Fracture permeability 3 × 102 Darcy 
Kw Bulk modulus of fluid 2.0 × 105 MPa 
Ks Bulk modulus of solid 5.0 × 105 MPa 

yt  Static load 1.0 × 104 Pa 

(a) (b) 

Figure 6. Displacement distribution (m) after 100 days. (a) Fracture mapping extended 

finite element method (FM-XFEM) model; (b) Discrete fracture model (DFM)-XFEM model. 

 
(a) (b) 

Figure 7. Excess pore pressure distribution (Pa) after 100 days. (a) FM-XFEM model;  

(b) DFM-XFEM model. 

The displacement fields along y direction of the model are shown in Figure 6. The results of two 

different models are very close, and they are qualitatively identical. The displacement field is 
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discontinuous due to the pre-existing fracture, and the extended finite element method captures 

discontinuity without mesh refinement around the fracture, which is a great improvement over the 

standard finite element method. 

The excess pore water pressure distributions are shown in Figure 7. The results of two different 

models are very close, and they are also qualitatively identical. The discrete fracture model represents 

fracture explicitly, and it does not need to calculate shape factor, which is not easy to determine in the 

dual porosity model. Because the top boundary is a zero pressure boundary, fluid can freely flow out 

and the pressure is becoming lower and lower. 

The displacement fields along y direction at point A (located at the top shown in Figure 5 and 

excess pore pressure at point B (located at the bottom shown in Figure 5 for the FM-XFEM model and 

DFM-XFEM model at varying mesh resolutions during 100 days are shown in Figures 8a and 9a 

respectively. The plots are zoomed in for 10 days to clarify the discrepancies between the various 

curves and shown in Figure 8b and Figure 9b. These two figures indicate that the results of  

DFM-XFEM model show great coincidence with the result of FM-XFEM, which validates the 

correctness of DFM-XFEM model. Moreover, as the mesh resolutions become higher, the results of 

DFM-XFEM model show little difference, which validates the convergence of the proposed algorithm. 

(a) (b) 

Figure 8. Displacement at point A. (a) 100 days; (b) 10 days. 

(a) (b) 

Figure 9. Excess pore pressure at point B. (a) 100 days; (b) 10 days. 
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The computational cost of models is shown in Table 2. It can be shown that the computational time 

of DFM-XFEM is much less than that of FM-XFEM with approximately equal number of elements. 

The comparison shows the advantage of DFM-XFEM over FM-XFEM. 

Table 2. Computational cost of models. 

Models Computational Time/s 

FM-XFEM 50 × 50 Mesh 31.7 
FM-XFEM 70 × 70 Mesh 88.1 

DFM-XFEM 1492 Elements 8.8 
DFM-XFEM 2336 Elements 14.3 
DFM-XFEM 4238 Elements 27.5 

In the above example, the fracture remains constant during the simulation. However, the fracture 

could close or open during the simulation, so it needs to capture change of the fracture aperture in the 

fluid flow. The DFM-XFEM model is able to simulate the situation when fracture aperture changes as 

described in Section 3.2. The model parameters are the same as the above example. The comparison 

results for a model with changed and fixed fracture aperture are shown in Figures 10 and 11. Figure 10 

illustrates the displacement at point A for 100 days and indicates that the displacement for model with 

fixed fracture aperture is larger than that for model with changed fracture aperture after a short time 

and the displacements for these two models show little difference after 50 days. Figure 11 illustrates 

the excess pore pressure at point B for 100 days and indicates that excess pore pressure for a model 

with fixed fracture aperture is larger than that for model with changed fracture aperture after a short 

time and excess pore pressures for these two models show little difference after 50 days. These results 

are seen because the fracture aperture is becoming smaller, as shown in Figure 12. Figure 12 shows 

that the fracture aperture decreases quickly after a short time and slows down the decreasing rate after 

a longer time. As the fracture aperture decreases, the fracture conductivity decreases, which results in 

pore pressure decreasing more slowly. 

 

Figure 10. Displacement at point A for 100 days. 
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Figure 11. Excess pore pressure at point B for 100 days. 

 

Figure 12. Fracture aperture distribution at different time. 

The method is applied to another case, which consists of two intersecting fractures. The domain has 

an area of 10 m × 10 m. The results of FM-XFEM model and DFM-XFEM are also compared, as 

shown in Figures 13 and 14. It can be shown from Figure 13 that the displacement fields along  

y direction are very close for two methods. The y displacements in the area above the fractures are 

much larger than that below the fractures. It can be shown from Figure 14 that the excess pore pressure 

distributions of two methods are identical. The pressure around the fracture is smaller than other area 

because of larger conductivities in the fractures. 

(a) (b) 

Figure 13. Displacement distribution (m) after 100 days. (a) FM-XFEM model; (b) DFM-XFEM model. 
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(a) (b) 

Figure 14. Excess pore pressure distribution (Pa) after 100 days. (a) FM-XFEM model;  

(b) DFM-XFEM model. 

The water pressures at point (located at the right bottom) are shown in Figure 15a at varying mesh 

resolutions during 100 days. The plot is zoomed in for 10 days to clarify the discrepancies between the 

various curves as shown in Figure 15b. Also, the results of FM-XFEM model are shown in the figures. 

It can be shown that as the mesh resolutions become higher, the results converge to that of FM-XFEM. 

The differences between them are very small. 

With regard to computational cost, the results are shown in Table 3. It can be shown that the 

computational cost of DFM-XFEM model is much less than that of FM-XFEM model. The results 

prove that the proposed method is better than FM-XFEM model. 

(a) (b) 

Figure 15. Excess pore pressure at right bottom point. (a) 100 days; (b) 10 days. 

Table 3. Computational cost of models. 

Models Computational Time/s 

FM-XFEM 50 × 50 Mesh 44.2 
FM-XFEM 70 × 70 Mesh 101.3 

DFM-XFEM 1500 Elements 11.4 
DFM-XFEM 2684 Elements 22.1 
DFM-XFEM 5926 Elements 50.1 
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5. Conclusions 

In this paper, the combination of discrete fracture model and extended finite element method is 

proposed to simulate fluid-solid coupling in fractured porous media. The discrete fracture model is 

able to capture fluid flow accurately without accessing cross flow between matrix and fracture. The 

extended finite element method is capable of solving solid deformation without mesh refinement 

around fractures tips. The model captures change of fracture aperture during the simulation. The 

results of numerical example show that the proposed method is well suited for simulating fluid-solid 

coupling in fractured porous media. 
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Appendix 

The elements of the aforementioned listed matrices are given as follows 

( ) d   , , ,i T j
ij i j

Ω
= Ω =Ke B DB u a b  (A1)

( ) d     , ,
i T

i p i
Ω

= Ω =L B mN u a b  (A2)

d d
t

T T
I Iρ

Ω Γ
= Ω + Γ F N g N t  (A3)

d d
t

T T
I IH Hρ

Ω Γ

= Ω + Γ aF N g N t  
(A4)

d d
t

T T
I Iγ γρ

Ω Γ
= Φ Ω + Φ Γ bF N g N t  (A5)

( ) d
m

T
m

m p p m
w

K

μΩ
= ∇ ∇ ΩH N N  (A6)

( ) d
f

T f
f p p f

w

K

μΩ
= ∇ ∇ ΩH N N  (A7)

d
m

T m
m p p m

wK

φ
Ω

= ΩS N N  (A8)
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d
f

fT
f p p f

wK

φ
Ω

= ΩS N N  (A9)

( )d
q

T w wm
p

w

K
n qρ

μΓ
= ⋅ − Γf N g  (A10)

s I= ∇uB N  (A11)

( ( ( )) ( ( )))s I kH x H xφ φ= ∇ −aB N  (A12)

( ( ) ( ))s I kx xγ γ= ∇ Φ − ΦbB N  (A13)
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