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Abstract: Characterizing the mechanisms of duplicate gene retention using phylogenetic 

methods requires models that are consistent with different biological processes. The 

interplay between complex biological processes and necessarily simpler statistical models 

leads to a complex modeling problem. A discussion of the relationship between  

biological processes, existing models for duplicate gene retention and data is presented. 

Existing models are then extended in deriving two new birth/death models for phylogenetic 

application in a gene tree/species tree reconciliation framework to enable probabilistic 

inference of the mechanisms from model parameterization. The goal of this work is to 

synthesize a detailed discussion of modeling duplicate genes to address biological 

questions, moving from previous work to future trajectories with the aim of generating 

better models and better inference. 

Keywords: gene duplication; gene loss; phylogeny; gene tree/species tree reconciliation; 

stochastic models; birth/death processes 
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1. Introduction 

Many processes lead to gene trees that differ from species trees. These processes include gene 

duplication and loss, lateral gene transfer and incomplete lineage sorting, in addition to phylogenetic 

errors in gene tree reconstruction [1,2]. Interest in identifying and understanding these processes by 

comparing gene trees with species trees is growing. Gene duplication and retention/loss after 

duplication is one area that has received particular attention in model development, both mechanistic 

and phenomenological. A general discussion of the use of mechanistic vs. phenomenological models 

for problems in genomics has recently been published [3], and this paper follows up with a more 

technical discussion on the development and interpretation of models for duplicate gene retention/loss. 

Dating back to Ohno [4], it was realized that gene evolution in the absence of gene duplication was 

conservative, with any functional shifts concurrent with negative (stabilizing) selection to retain 

existing gene functions. Gene duplication itself was thought to be important as a process that enabled 

amino acid substitution to explore protein function space under relaxed constraints with redundant 

copies in a genome to perform key functions. In bioinformatics analysis, this hypothesis led to the 

development of an entire field of orthology prediction, with the view that orthologs were more likely to 

have retained function, whereas paralogs (products of duplication) were more likely to have diverged 

in function. The process of gene tree/species tree reconciliation emerged as one of the leading methods 

for differentiating between orthology and paralogy, with explicit consideration of phylogenetic 

structure. With the acknowledgment of the possibility of functional shifts in orthologs, various types of 

rate shift analysis became common in evaluating lineage-specific functional change/conservation. 

Similarly, in the emerging gene duplication field, the relationship between duplication and function 

was analyzed in more detail. A more mechanistic trajectory for studying gene duplicates emerged with 

the seminal papers of Lynch and Force (for example, [5]). The development of tractable models that 

enable the probabilistic testing of mechanistic hypotheses emerged as a research trajectory. 

Several processes lead to the retention of genes with a decreased probability of loss. All of these 

retention processes play out against a neutral backdrop, leading to nonfunctionalization (the generation 

of nonfunctional gene copies from the process of amino acid substitution). In the substitution-based 

processes that are being modeled, there is a constant rate of accumulation of deleterious substitutions 

that lead to duplicate gene loss of functionally-redundant copies. This process occurs simultaneously 

with processes that lead to loss of redundancy and a higher rate of gene retention. The 

nonfunctionalization rate itself depends on the degree of redundancy and other selective forces. 

Neofunctionalization is one alternative process for retention that involves a new function emerging in 

one gene copy, while the other copy retains the ancestral function [4]. Subfunctionalization is another 

process that involves the neutral division of functions from a multifunctional ancestral state through 

substitutions that cause partial functional loss, but are neutral in the context of redundancy [5]. Dosage 

balance is a third process that leads to modified loss dynamics and involves the co-retention of 

duplicate genes that interact as proteins and are in stoichiometric balance, but become deleterious 

when out of stoichiometric balance [6]. There are other processes and many variations on these  

themes (see [7]).  

This manuscript presents three distinct modeling frameworks. The first framework models average 

retention properties as survival functions. The second framework extends this analysis, while treating 
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retention processes as distinct from the ongoing loss processes that occur simultaneously (whereas 

these are averaged together in the first modeling framework). A third framework also builds upon the 

first framework, towards a phylogenetic birth-death model. The first framework (in Sections 2–9) 

represents a clarification of published work, while the second (Section 10) and third (Section 11) 

frameworks are presented conceptually and mathematically, with an implementation in the process of 

being published elsewhere. 

2. Mechanistic Models for Describing Retention Probabilities as Average Survival Functions 

Initial and non-mechanistic or approximate characterizations of gene loss relied upon an 

exponential distribution of retention (where the retention probability is a one-loss probability), 

implying a constant rate of loss until all duplicates are lost [8,9]. This model is unintentionally 

consistent with the nonfunctionalization process. In Equation (1), the probability of survival of a gene 

to at least time t (denoted S(t)) depends upon the hazard rate d, which describes the constant 

instantaneous rate of loss. 

          (1) 

A first step towards mechanistic justification of a model was to enable loss rate decay with a 

Weibull distribution [10]. In this context, the Weibull distribution is mechanistically inspired by the 

need for a decaying loss rate associated with the neofunctionalization process occurring 

simultaneously with the nonfunctionalization process. A Weibull function does not present a 

generative model for the retention of genes that are neofunctionalizing, in the sense that it is a  

true biological description of the survival probability given the simultaneous action of  

nonfunctionalization and neofunctionalization. The relationship between the underlying biology and 

the waiting time for a single event is reflected in the dynamics of the waiting time for an adaptive 

substitution that drives retention through neofunctionalization. Averaging over such waiting times, 

while loss is occurring, due to the accumulation of nonfunctionalizing changes, leads to the Weibull 

function, as described in [10]. In Equation (2), S(t) depends upon parameters d1 and d2, where d2 

modulates the time-dependence of the loss process and values between zero and one are consistent 

with averaging across waiting times for a single event, such as a neofunctionalizing substitution. 

           
  

 (2) 

The hazard function of Equation (2) when d2 has a parameterization between zero and one shows 

concave decay. Another type of decay of the loss rate involves a convexly decaying hazard rate that is 

not parameterizable with a Weibull distribution, and that would be consistent with a waiting time for 

multiple deleterious, but non-lethal events, such as subfunctionalizing events, while nonfunctionalizing 

substitutions also occur as a background process. As shown in Figure 7 of [10], the convex decay 

originates from the waiting time for multiple events, as opposed to a single beneficial change in the 

neofunctionalization model, where the exact curve shape depends upon the number and type of 

elements to be subfunctionalized. The dosage balance mechanism was proposed to be consistent with a 

concavely increasing loss rate based upon the expectation of the stochastic deleterious loss of one 

partner, leading to the cooperative loss of the remaining duplicates [11]. Konrad et al. [12] then 

derived a more complex distribution that could accommodate curve shapes consistent with all of the 
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four mechanisms described above (nonfunctionalization (constant loss rate), neofunctionalization, 

dosage balance and subfunctionalization) and their proposed mathematical correlates.  

3. The Konrad Model and Its Implementation 

The hazard function for the Konrad et al. [12] model is described below together with its 

accompanying survival function. In the hazard function (and corresponding survival function), the b 

and c parameters describe the rate of change of the hazard rate, as well as its convexity/concavity, f + d 

describes the instantaneous hazard rate and d describes the asymptotic hazard rate. An exponential 

function will just require a d parameter, obtained when f = 0. The survival function is derived from the 

hazard function in relating the accumulation of instantaneous rates of loss until time t to the probability 

of surviving to at least time t. 

           
   (3) 

      
                

         
 
    (4) 

Building upon the Hughes and Liberles [10] study, in addition to the Konrad et al. [12] model,  

Denoeud et al. [13] described another modeling approach that was validated through goodness-of-fit 

tests. The approach in Denoeud et al. [13] generated a mixture of two Weibull distributions and a 

single discrete distribution to fit the data. These two modeling strategies will be discussed in 

consideration of the data and the inference of biological processes that are made. 

It should be noted that in these studies, bioinformatics pipelines were generated that fit dS (the rate 

of synonymous change that, if neutral, reflects mutational opportunity accumulating in a clocklike 

manner) histograms generated from intra-genomic analysis involving BLAST hits. This built upon an 

analysis framework that was designed by Lynch and Conery [8] and represented a logical step in 

model validation before extending models to a phylogenetic context. From the BLAST hits, a pipeline 

was introduced that collects genes present in an extant genome and results in pairwise dS values 

reflecting the time that the genes have survived since duplication. In the histogram plots, the genes are 

binned into collections of genes of similar age (dS value). While there has been some discussion of 

methodological choices in this framework, this will be briefly entertained without becoming the focus 

of the presentation. 

4. A Brief Technical Discussion of Data Fitting and Truncation 

In the Konrad et al. [12] analysis, survival functions were fit to the observed time-dependent 

survival of duplicates, either from comparative genomics or from simulations, with the assumption that 

counts of duplicates observed at each time point were independent of counts observed at each other 

time point. This assumption was met for the comparative genomic data, where the genes are samples 

(cohorts) of duplicates of different ages in present day genomes, but not the simulated data used in 

Konrad et al. [12], where this was an approximation. The fit to the data was based upon the least 

squares fit of the survival data (for each cohort) as the probability of being alive at time t (the median 

age of the cohort), given birth at t = 0. With an assumption of constant duplication rates, as described 

below, each cohort is expected to be of equal size. Correspondingly, S(0) = 1. If no loss occurs,  
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the size of each bin is expected to be the same, one (or scaled to N0, the parameterized estimate of the 

initial number of duplicate genes at t = 0). The various generations of S(t), including their use and 

equivalence, are shown in Figure 1. Extension of this model to a phylogenetic framework can be made 

in terms of likelihood statements of observations of retention and loss over species tree branch lengths 

or as a full phylogenetic birth-death model. 

Figure 1. (A) The probability density function (PDF) for a Weibull distribution is shown;  

(B) the PDF of the right truncated Weibull with the same parameters is shown, where data 

beyond dS = 0.3 is not collected; (C) The cumulative density function (CDF) for the PDF 

in (A) is shown, indicating the assumed loss associated with gene duplicates not observed 

at various ages; (D) Identical to the cdf in the lower left quadrant of (C) is the right 

truncated CDF derived from the PDF in (B), (E); The survival function associated with (A) 

and (C) is shown. The value at dS = 0 is defined and equal to one, indicating that at the 

point of birth, all duplicates still survive; (F) The survival function associated with the 

right truncated distributions in (B) and (D) is shown. This plot is identical to the upper left 

quadrant of (E). 
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In fitting the model, sub-model fit was performed independently across model parameterization 

ranges consistent with each biological mechanism, with likelihood scores compared using AIC to give 

a maximum likelihood identification of the parameter range (biological model). AIC was not corrected 

for differences in the effective number of parameters from the true number of parameters from 

restricting the allowable range of all parameters to values that had a biological interpretation.  

In statistics, models for the error between the expected number of counts and the observed number 

of counts can be important to proper inference and need attention together with the mechanistic model 

itself, both for dS data and ultimately in a phylogenetic context. The observed count xi of gene copies 

within time interval for genes with age i can be treated as a Poisson distribution with mean θi = N0S(ti) 

(Equation (5)). The Poisson error function is not right truncated and examines error in the y-axis 

between the predicted value of the model with parameterization and the observed data when fit with 

S(t), formulated as a likelihood. In the Equation (6) below, the chi-square statistic is the sum of 

squared errors between the observed number xi of gene duplicate counts at time ti and the expectation 

for that number of counts from the survival function as the parameter estimate of the starting number 

of genes at t = 0 (N0) and the probability of that number of genes surviving to at least ti, S(ti). Model 

parameterization can be generated with different error models using a differential evolution  

approach [14]. Genetic algorithms were found, as expected, to outperform hill climbing strategies in 

avoiding local optima on complex surfaces, like those associated with the General Death Model 

(GDM) model on survival data. 

   
                   

  

   

 

   

 (5) 

       

 

   

         
            (6) 

While the data are right truncated, given that S(t) was not a probability density function and 

integrated over the hazard of being lost between t = 0 and t, the expectation at t is independent of the 

measurement of time points beyond t, and no correction for right truncation is needed. With an 

assumption of a constant birth rate, the genes in Bin 1 reflect the equally-sized cohort of genes 

observed at Age 1 that were duplicated in a given constant time window in the past. The genes in Bin 2 

reflect the equally-sized cohort of genes observed at Age 2 today that were duplicated in that given 

constant window in the past. Truncation at bin x results in the absence of bins t > x, but does not affect 

the number of genes in any bin t < x for genes that are duplicated at time t and survived to at least  

the present.  

The mathematical relationship between the approaches is shown in Figure 1. Studies by Lynch and 

Conery [8], Lynch and Conery [15], Hughes and Liberles [10] and Konrad et al. [12], as suggested 

above, fit the survival function shown in Figure 1E, with the assumption of a constant birth rate, 

generating an equivalent number of duplicates, where loss over the period accounts for the declining 

numbers of genes. An alternative mechanism to fit the data is to use the right truncated probability 

density function shown in Figure 1B derived with the associated cumulative loss function in  

Figure 1D. The probability density function in Figure 1B, which was not used to fit data, does not 
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account for right truncation at t = 0.3 and assumes that no duplicates survive beyond t = 0.3.  

Figure 1C,E show the survival of duplicates beyond t = 0.3, associated with the different approaches, 

generating the equivalence of Figure 1E,F. The assumptions involved in extending this analysis to a 

phylogenetic context depend upon how the phylogenetic model is constructed, but in the simplest case, 

it can be directly applicable, where a gene that appears in the leaf set has survived for at least the  

time since the duplication event time. A fuller phylogenetic birth-death model is described later in  

this manuscript. 

5. The Bioinformatics Pipeline 

The data generated in Denoeud et al. [13] and used in Konrad et al. [12] included three additional 

data filtering steps that are important to the discussion of what the models are fitting. The goal of the 

bioinformatics data analysis pipeline is to produce data that is unbiased and as close to the assumptions 

of the model used for inference as possible, and these were made as a priori decisions before fitting 

models to data. The models reflect a specific set of a priori hypotheses dependent upon sets of 

assumptions for which the pipeline is designed to minimize the violation. The model selection and 

parameterization steps then enable biological interpretation based upon the best fit model. 

The genome scaffolds in Oikopleura dioica were evaluated for evidence of tandem duplication 

events that appeared on multiple scaffolds, filtering away a subset of the duplicates at dS = 0.  

The multiple sequence alignments that resulted from BLAST hits were evaluated with a non-gapped 

alignment length threshold to ensure that the duplicates were global matches, eliminating both artifacts 

and partial duplicates that likely have different dynamics. This step was introduced to prevent the 

introduction of BLAST hits that falsely appear to be recent duplicates, but that are not due to short 

ungapped alignments without synonymous substitution. Lastly, the hits were also subjected to a single 

linkage clustering step designed to (imperfectly) eliminate gene families that would violate the 

assumption of a constant birth process. Bursts of duplication can generate multiple copies in a genome 

that are not independent events or that are due to violations of the constant rate assumption as a local 

process. Introduction of a model that does not assume a constant birth process will necessitate a 

bioinformatics pipeline that does not include the last step.  

6. Model Selection and Model Expansion 

The Konrad et al. [12] model was originally fit with four distinct parameter ranges. Datasets 

involving two hybrid processes, dosage balance plus neofunctionalization and dosage balance plus 

subfunctionalization, were forced to fit one of the processes independently. These processes reflect  

a priori hypotheses about mechanism, and model selection is only among these a priori hypotheses. 

This should be reflected in the fit of the best model to the data. Testing a priori interpretable 

hypotheses through model selection is a valid scientific approach. Of course, there is always the caveat 

that none of the models being specified a priori reflects the true biological mechanism at the desired 

level of inference. 

In Konrad et al. [12], all of the datasets were fit to one of the processes that were consistent with  

the underlying simulation mechanism, and no problem was foreseen. Subsequently, it was realized  

that the prolonged retention through the dosage balance mechanism could cause dosage balance plus 
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either subfunctionalization or neofunctionalization to be misparameterized. The model needs 

expansion to incorporate those two processes (dosage plus subfunctionalization and dosage plus 

neofunctionalization) independently and to generate six total processes, the next step in the progression 

of models. These models are currently under development and will be described elsewhere. Additional 

testing of the identifiability of the model or a derivative model is necessary to ensure both statistical 

and biological identifiability (see [3]). The concept of biological identifiability is introduced in the use 

of biologically realistic simulation under unrelated models to validate the mechanistic predictions  

(for example, using an ROC curve) as a complement to goodness-of-fit tests. 

Ultimately, the modeling approach made a number of assumptions about the underlying biology 

that need to be evaluated. Effective population sizes (and fluctuating versions of them) were not 

incorporated into the model. One mechanism that can give a population size-dependent effect is failed 

fixation (loss due to population dynamics). In general, inter-specific modeling has treated substitution 

processes as a Markov process in sampling a single individual from multiple species. It has been noted 

that this experimental design includes a mix of segregating variation and fixed change, where the ratio 

between the two is dependent upon the branch length. Not accounting for segregating variation in 

Markov processes may be a problem in general in phylogenetics, including the modeling of gene 

duplication and loss. 

Similarly, the processes were simulated as initially fixed in a haploid organism rather than 

introduced to a single chromosome of a diploid organism, which might be more relevant to metazoan 

or embryophyte species, where duplication is commonly studied (see [16]). In fitting genomic data, 

birth rates were assumed constant, but this assumption is almost certainly violated [17]. Additionally, 

co-evolution of processes and levels of biological organization (concentration through gene expression 

and dosage, for example) were not considered as a possibility. Partial birth events that give rise to 

genes that are born neo- or sub-functionalized were not considered [18]. Lastly, how gene conversion 

events [19] are viewed in the context of this modeling framework as a process that might lead to 

simultaneous birth and loss, including hybrids of duplicates with newer and older pieces, should be 

considered. The effects of all of this biological realism are ultimately important to evaluate. Some of the 

biological realism was described in the early work of Lynch et al. [5]. However, the models described in 

that paper are even more complex than those used by Konrad et al. [12] without accounting for all of  

the processes.  

7. Interpreting Hazards from a Better Fitting Phenomenological Model 

The model presented in Denoeud et al. [13] was based upon the combination of two Weibull 

distributions and a discrete loss distribution at t = 0, where it is suggested that much of the support for 

a Weibull-like parameterization over an exponential-like parameterization may come from the rapid 

dropoff between data at t = 0 and t > 0 (see Figure 2). Of the two Weibull distributions, one appears to 

fit a feature in the data other than loss, and a second decays more slowly and may be the model for the 

loss process to directly compare. However, it is unclear exactly what is being fit by what [13]. The 

modeling of Hughes and Liberles [10] and Konrad et al. [12] find support for a rapid drop in the 

hazard, but not as rapid as the combined Weibull hazard. Neither Hughes and Liberles [10]  

nor Konrad et al. [12] evaluated model fit excluding the data at t = 0. This does raise an interesting 
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point about whether the modeling is capturing a fast biological process or if the large mass of data at  

t = 0 observed in all genomes to date is artifactual, due to errors in the genome assembly and 

annotation process (see, for example, [20]).  

Figure 2. The histogram of recent duplicates from the Oikopleura dioica genome together 

with a re-parameterization of the model that was originally fit (Denoeud et al. [13]), as 

well as the model fit from Konrad et al. [12] are shown. In the first case, the Weibull 

distribution mixture was fit as probability density functions, and in the second case, as a 

survival function.  

 

8. Inference of Instantaneous Duplication and Loss 

One assumption of the approach is that loss is described by the accumulation of non-synonymous 

substitutions that occur together with the faster accumulation of synonymous substitutions.  

This assumption would lead to negligible instantaneous loss at dS = 0 and suggests that dS as a 

measure of mutational opportunity is the appropriate clock in which to tick for the loss processes. 

Besides the genome annotation artifact [20], one distinct process that would lead to a distinct rapid loss 

process is failed fixation or fixed deletion events. This process was discussed by Konrad et al. [12] and 

evaluated with the assumption of an initially fixed duplication event. The process of fixation of a 

duplication event occurring in a single individual was not evaluated and is discussed below. However, 

inference of loss according to this process and data-fitting using a discrete process at dS = 0 and a 

mixture of Weibulls at dS > 0 that account for this process plus nonfunctionalization rather than a 

coalescent process that models population dynamics has not fully been evaluated for biological 

accuracy (would a discrete point process rather than a loss process based upon theoretical expectations 
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of failed fixation and fixed loss events properly count the number and rate of such events?). Loss 

events at dS = 0 are not directly observed, and the evidence for them comes from model fit. It is 

unclear if the inference would change by applying a third Weibull component to fit rapid loss or 

another combination of phenomenological distributions, rather than a discrete distribution at t = 0 in 

combination with two Weibull distributions. The application of the mixture implies a distinct or 

discontinuous process if the model is to be interpreted as a loss hazard that is not fit by a Weibull. 

Understanding this process and what is being fit is important to progress in the field. It is likely that 

much of the difference in parameterization of the Denoeud et al. [13] decay and the Konrad et al. [12] 

decay relates to the introduction of the discrete distribution at discontinuously fit loss at t = 0, and 

understanding what this is fitting will be critical to biological interpretation of the hazard  

function parameterization. 

In interpreting a mixture of Weibull distributions, one that decays and one that does not, it is not 

necessarily the case that one is fitting purely a loss process and the other the duplication rate (or loss rate) 

heterogeneity, although that is likely to be part of the fit. What is more controversial is the comparison of 

the product of the mixture modeling to describe the hazard function and comparing with a hazard that is 

constrained to fit loss. It is unclear what the hazard from the Weibull mixture model is fitting and, 

therefore, how to interpret it. The Weibull component that exhibits decay may be describing a loss process 

in the data, but it is also unclear what this means in combination with the second Weibull component.  

In Liberles et al. [3], a model is described where a non-constant birth process and a single Weibull 

are simulated. The generative parameterization of the Weibull loss function is not recovered through 

fitting with a mixture of Weibull components, not in the composite distribution or in any of the 

individual distributions. This has broad implications for data interpretation using mixtures of processes 

where the goal is the use of mechanistic parameter values to make inference, both because of the 

potential interplay of phenomenological and mechanistic parameters and because of problems in 

inference with misspecified models (for example, assuming a constant birth rate when there is none). It 

is likely the case that such models may still be biologically identifiable (recovering the correct 

biological mechanism) even when not fully statistically identifiable, but this statement will require 

more careful examination to support. 

9. The Future of Duplication and Loss Modeling 

Ultimately, duplicate gene retention or loss is complex and is only one part of the puzzle. The 

analysis introduced by Lynch and Conery [8] and extended by Hughes and Liberles [10] is 

approximate in several ways. Basing the analysis on pairwise dS values for duplicates rather than from 

phylogeny has the potential to miscount duplicate numbers with a bias that increases with the age of 

the pair and relates to the symmetry of the underlying tree. This is shown in Figure 3. Secondly, dS is 

used as a proxy for time or, more directly, mutational opportunity, with an assumption of dS neutrality. 

Recent work has suggested that dS is not neutral, but under selection for several mechanistic reasons [21]. 

While a neutral mutational clock would be appropriate, it is unclear that external sources of geological 

time would be appropriate clocks in which to tick for the loss rate. On the other hand, population 

genetic processes related to (for example) failed fixation should probably click in generation time as a 

scalar of geological time. 
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Figure 3. (A) A phylogenetic tree showing the relationship of and distances between 

duplicated genes in a gene family; (B) the corresponding histogram based upon the best 

BLAST hits for a duplicate is shown. The duplication event at dS = 0.5 would be missing 

from the data. The frequency of such missing data increases dependent on tree symmetry 

with increasing time, leading to the justification of right truncation at dS = 0.3 as a 

reasonably powerful, fast approximate analysis (Lynch and Conery [8]; Hughes and 

Liberles [10]). Branch lengths are drawn to scale, with branch lengths labeled in dS units 

(substitutions per site).  

 

(A) 

 

(B) 

This does not mean that the types of models being developed are useless. Phylogenies can be 

evaluated to provide duplicate gene survival and loss times and the probabilities for such events 

associated with alternative parameterizations of the model. Alternatively, full phylogenetic birth-death 

models with gene family sizes can be calculated with an appropriate distribution. This necessitates the 

development of gene tree-species tree reconciliation frameworks with biologically-realistic models, 

where the reconciliation and species tree branch lengths (or even topology) are also evaluated. More 

complexity in the duplication process, including rate variation, and the necessity of whole genome 

duplication events for the validity of the dosage balance model will be important developments. It also 

remains to be explored when complexity in both the duplication and loss scenarios will result in 

models that are not identifiable. The next part of the manuscript will extend current models, ultimately 

as birth-death models with time heterogeneous loss functions, as the next step in moving forward. 
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10. Towards a New Time Heterogeneous Markov Model for Gene Duplication 

The current modeling framework has resulted in a time-heterogeneous process that combines  

nonfunctionalization with retention processes. One strategy might be to generate a new Markov model 

that is a mix of time homogeneous and time heterogeneous processes. A scheme for doing this is 

presented in Figure 4A,B, focused on the loss and retention processes, where duplication can easily be 

added as a birth-death model. The model in Equations (3) and (4) is designed to treat an average of 

multiple genes based upon an expectation of nonfunctionalization as a constant process that always 

acts, with neofunctionalization and subfunctionalization modulating the rate of nonfunctionalization.  

An alternative is to treat neofunctionalization (the rate of fixed beneficial mutation) and 

subfunctionalization as individual processes that lead to a switch from a redundant hazard rate to an 

asymptotic (non-redundant) hazard rate. The subfunctionalization rate is still time heterogeneous, as it 

is dependent upon the accumulation of deleterious changes across two gene copies that is a function of 

the number of redundant copies, the degrees of asymmetry in redundancy and the number of functions 

per gene. This can be approximated as a time-dependent function that rapidly increases and then 

slowly decreases with a long tail [5,10]. 

At this stage, the Markov model described does not include dosage balance. Adding this to the 

Markov model would add the loss rates for dosage balanced duplicates, imbalanced duplicates and 

non-redundant genes, with transitions between them. Comparing just neofunctionalization and 

subfunctionalization, the model gives rise to a useful statistic as the time-dependent probability of a 

gene that has reached the non-redundant state, having done so through neofunctionalization. This is 

calculated as αneo/(αneo + αsub(t)). Such a statistic would be useful in identifying candidate genes for 

lineage-specific functional change based upon duplication age and gene family parameterization. The 

model itself is described in more detail below. 

A time-heterogeneous Markov model {X(t), t ≥ 0} with appropriately constructed state space S and 

generator matrix Q(t) is presented. The desired modeling feature introduced here is that the state  

X(t) = (n,m) of the process at time t records the number of copies n and the number of redundant copies 

m of a gene in the considered family. Therefore, we let the state space S of the process to be  

two-dimensional, with S={ (n,m): n = 0,1,2,…; m = 0,1,…,n}. Note that the m variable itself could be 

defined as two-dimensional if there are more than one independently redundant copies of a gene.  

Here, we assume that m is one-dimensional. We assume that each gene family evolves according to the 

same Markov model, which allows for the possibility of statistical analysis using the frequencies of 

gene duplicates that can be readily derived from the existing data.  

Now, in order to model the transitions between the various states of the process, we make the 

following assumptions about the relevant parameters. 

 The duplication rate, per copy of a gene, is given by some constant c > 0. 

 The loss rate, per redundant copy of a gene, is given by some constant a > 0. 

 The loss rate, per non-redundant copy of a gene, is given by some constant b > 0. 

 The neofunctionalization rate, per copy of a gene, is given by some constant g > 0. 
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 The subfunctionalization rate, per copy of a gene, is assumed to be time-dependent and given 

by function h(t), where t is the time elapsed since the last state transition in the process  

{X(t), t ≥ 0}. The function h(t) is assumed to be given by a gamma distribution Г(k, θ) with 

appropriate shape parameter k and scale parameter θ. A gamma distribution with appropriate 

parameterization is likely to be a good fit to the retention rates associated with the 

subfunctionalization hazard rates in Figure 7 of [10]. 

Consequently, we have the following transition rates that form the nonzero off-diagonal entries of 

the corresponding time-heterogeneous generator matrix Q(t) of such a defined model: 

 The rate of going from state (n,m) to state (n + 1,m + 2) equals (n − m)c. This is a total  

non-redundant duplication rate evaluated as the sum of all possible duplication rates c of the  

(n − m) non-redundant copies. 

 The rate of moving from (n,m) to (n + 1,m + 1) equals mc. This is a total redundant duplication 

rate evaluated as the sum of all possible duplication rates c of the m redundant copies. 

 The rate of moving from (n,m) to (n − 1,m − 1) equals ma, for all n,m ≥ 1. This is the total 

redundant-copy loss rate evaluated as the sum of all possible loss rates a of the m  

redundant copies. 

 The rate of moving from (n,m) to (n − 1,m) equals (n − m)b, for all n ≥ 1. This is a total  

non-redundant-copy loss rate evaluated as the sum of all possible loss rates b of the (n − m) 

non-redundant copies. 

 The rate of moving from (n,m) to (n,m − 1) equals m(g + h(t)), for all m ≥ 1. This is the total 

rate of one of the m redundant copies becoming non-redundant, which occurs due to 

neofunctionalization (term mg) or subfunctionalization (term mh(t)). 

All other off-diagonals in the generator matrix Q(t) are set to zero. The on-diagonals are evaluated 

accordingly as the negative sums of the off-diagonals in the corresponding rows. We illustrate the 

transitions of this model in Figure 4B. 

Implementation of this model is ongoing and will be reported elsewhere, building upon previous 

work on time-heterogeneous Markov processes (for example, [22,23]). 

11. Building a Phylogenetic Birth/Death Model for Mechanistic Gene Tree/Species  

Tree Reconciliation 

In extending the time heterogeneous gene retention model to a phylogenetic birth-death process, a 

simpler mathematical function than Equation (4) is desired. The instantaneous rates of loss under 

different gene fates are modeled here by a loss function associated with a generalized Weibull hazard 

function (Figure 5), in which different sets of parameterization generate hazard curves indicative of 

different gene fates after a duplication event, mimicking those from Equation (3), 

       
       

        
(7) 

The parameters u and a are positive, while b > 0 for subfunctionalization (a > 1) or 

neofunctionalization (a < 1), b < 0 for dosage compensation and b = 0 for nonfunctionalization. The 

constant u must satisfy   
       

       > 0 when b < 0, because the loss rate μ(t) must be positive.  
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Figure 4. (A) A scheme showing the transitions between different hazard rates based upon 

evolutionary processes is presented. Non-redundant and redundant hazard functions differ 

in that non-redundant genes are much less likely to be lost from a genome in any given 

time period. Neofunctionalization and subfunctionalization are processes that lead to the 

transition from a redundant rate to a non-redundant rate; (B) The same Markov process is 

described mathematically in terms of gene family size (n), sets of redundant genes (m),  

the duplication rate (c), the nonfunctionalization rate of redundant (a) and non-redundant 

(b) genes, the neofunctionalization rate (g) and the subfunctionalization rate (h(t)). In this 

formalization, αneo from (A) becomes g and αsub from (A) becomes h(t). 

 

(A) 

 

(B) 
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Figure 5. The hazard functions associated with the nonfunctionalization, neofunctionalization 

(plus nonfunctionalization), subfunctionalization (plus nonfunctionalization) and dosage 

balance (plus nonfunctionalization) processes, as described by sample parameterization 

from Equation (7), are shown. Equation (3) generates a similar set of curve shapes.  

A version of this figure also appears in Liberles et al. [3].  

 

The gene duplication/loss process is a non-homogeneous birth and death process with a  

time-dependent loss rate μ(t) and a constant birth rate λ [24]. With time since duplication, duplicates 

approach an asymptotic loss rate, and genes with no evidence of duplication are treated with a loss 

probability equivalent to this asymptotic rate that is parameterized as part of the model. The stochastic 

process of gene duplication and loss can be used to describe the evolutionary process of gene families 

within a single population. Let {xi; i = 1,…,n} be the gene copies of a family at the present time  

(note that the model presented here refers to the evolution of copies within a gene family, as opposed 

to duplicate counts at a similar age in different gene families within a genome in the earlier part of the 

manuscript). Two gene copies xi and xj may have a common ancestor at time t if a duplication event 

occurred at time t and generated two copies that later evolved to copies xi and xj. The history of gene 

copies is represented by a gene family tree, which consists of two sets of parameters; a labeled history 

of gene copies {xi; i = 1,…,n} and the node times {ti; i = 2,…,n} with t2 < t3 < ∙∙∙ < tn. The gene family 

tree follows a generalized birth process [25] with a birth rate λP(t,z) in which P(t,z) is the probability 

that a single lineage alive at time t has some descendants at a later time z [26], i.e.,  
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    (8) 

To calculate P(t, z) in practice, we only need to solve the integral part in Equation (8). A derivation 

can be found as follows: 

    
       

      
  

    
      

                  
  

 

 

 

                                       
 

 

                                             
 

 

 

 
                  

     
         

      

      
 

  

                             
 

 
                    

       
         

      

      
 

    

                   

              
  

where     is a generalized hypergeometric function that can be calculated with an R function, 

hypergeo [27]. A gene family tree involves two types of events: duplication events and survival events 

(n lineages are alive at the present time T). Thus, the likelihood function of the duplication times  

{ti; i = 2,…,n − 1} is the product of the likelihoods of duplication and survival events, i.e., [26]. 

                               
                      

 

   

 (9) 

Note that            
    is the likelihood of (n − 2) duplication events, and 1 − w(t) = P(0,t)e

ρ(t,0)
 is 

the survival probability, i.e., the probability that a lineage has exactly one progeny after an amount of 

time t [26]. Since there are 
         

     labeled histories for gene copies {xi; i = 1,…,n}, the likelihood 

function of a gene family tree G is: 

           
    

  
           

                     

 

   

 (10) 

The likelihood function in (10) can be used to estimate model parameters, including the duplication 

rate λ and parameters (u, a, b) in the loss rate function µ(t) from gene family sequence data. Moreover, 

this likelihood function can be generalized to describe the evolutionary process of gene families within 

a species tree, where gene duplication and loss follow a non-homogeneous birth and death process 

occurring along the lineages of the species tree. The parameters, including the duplication and loss 

rates, can be estimated under this stochastic model.  

Differentiation of loss and missing data or estimation of the species-lineage expectation of missing 

data will be necessary for the model to function properly. Additionally, the processes being modeled 

describe average processes and necessitate a large dataset of gene families to be simultaneously 

parameterized, with databases like The Adaptive Evolution Database (TAED) [28] as an example.  

In such databases, tens of thousands of gene families from multiple species reflecting multiple 
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duplication, loss and retention events per family can be evaluated together. In this type of analysis, it is 

envisioned that a mixture of parameterizations and mechanisms will be supported, with the number of 

independent parameterizations determined statistically. The support for each individual duplicate from 

each model/parameterization can also be evaluated probabilistically a posteriori. This modeling 

framework is generalizable to related time homogeneous and time heterogeneous models. 

12. Conclusions 

An overview of the complexities associated with modeling duplicate gene retention after 

duplication has been presented. This is meant to illustrate the considerations that have emerged in 

balancing biological realism and mathematical tractability to ultimately enable robust mechanistic 

inference that is hypothesis-driven. This modeling framework is a work in progress, and mechanistic 

modeling requires interdisciplinary knowledge in statistics and various areas of biology that must fit 

together, where there is a need for statistical thinking and biological thinking to converge. While 

mechanistic models are sensitive to the assumptions of the model and any misspecification, different 

modeling strategies with different sets of assumptions in this direction have the ability to make 

inferences that are not currently possible with alternative approaches. While extensive functional data 

generation and standard statistical methods may ultimately represent an alternative to characterizing 

retention mechanisms in duplicates, the modeling strategies described here rely upon expectations of 

retention signals that derive from an understanding of the underlying processes. While big data and 

data mining have become popular approaches in the life sciences, theoretical understandings of the 

systems being studied are not obsolete in scientific inference.  

To date, the modeling strategies employed have supported a conclusion of common 

neofunctionalization among retained duplicates when applied to genomic datasets. The models made 

simplifying assumptions about the underlying population genetic and other processes and were not 

implemented phylogenetically. The continued development and implementation of more realistic 

models with different sets of assumptions, applied to data in a phylogenetic context, will enable the 

evaluation of the robustness of conclusions from the analysis performed to date. 
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