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Abstract: The example of two families of finite-difference schemes shows that, in general, the
numerical solution of the Riemann problem for the generalized Hopf equation depends on the
finite-difference scheme. The numerical solution may differ both quantitatively and qualitatively. The
reason for this is the nonuniqueness of the solution to the Riemann problem for the generalized Hopf
equation. The numerical solution is unique in the case of a flow function with two inflection points if
artificial dissipation and dispersion are introduced, i.e., the generalized Korteweg–de Vries-Burgers
equation is considered. We propose a method for selecting coefficients of dissipation and dispersion.
The method makes it possible to obtain a physically justified unique numerical solution. This solution
is independent of the difference scheme.

Keywords: Hopf equation; generalized Korteweg–de Vries-Burgers equation; artificial viscosity;
artificial dispersion; non-classical discontinuities

1. Introduction

Propagation of nonlinear waves in continuous media can lead to the formation of
thin layers with high gradients of the main flow parameters. The flow parameters change
significantly only on large scales outside such thin layers. The appearance of high-gradient
zones is a property of the solution, which is embedded in the equations themselves and
is not related to the existence of high-gradient zones at the initial time. For example,
high-gradient zones appear in shock waves. The solution is continuous if the mathematical
model describes the flow both on small (inside the high-gradient zone) and large scales.
According to [1], we imply the solution, which represents a continuous change in values
corresponding to the discontinuity as a discontinuity structure (shock profile). In relevant
cases, numerical multiscale and multidimensional modeling of flows with shock waves
requires high-performance computing systems, which do not currently exist.

Detailed models take into account the physical mechanisms that provide continuous
changes in flow parameters in thin layers. In some cases, the detailed model is replaced by
a simplified one. If shockwave flows are considered, simplified equations are the nonlinear
hyperbolic equations. Hyperbolic equations arise as a limiting case if the scale of the thin
shock layer becomes much smaller than that of a significant parameter change outside the
thin layer.

Shock-capturing methods are based on the same algorithm in the entire calculation
area, including regions of discontinuities. In this case, the discontinuities are smeared
and have a structure. The effective width of the structure is determined by dissipation
and dispersion of the difference scheme. Thus, the discontinuity is replaced by a thin
layer of a few cells thick. The solution changes rapidly in this layer. The width of the
profile is determined by the choice of a particular numerical scheme, namely the terms
with higher-order derivatives in the differential approximation of the scheme.
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If the Hugoniot locus has inflection points, the numerical solution of the Riemann
problem depends on the difference scheme (see [2]). In [2], a model equation of state was
used for gas with the Hugoniot locus having several inflection points. Different numerical
solutions to the Riemann problem were obtained when the approximation order of the
difference scheme was decreased from the second to the first.

Examples of the Hugoniot locus with several inflection points for metals are given
in [3,4].

The paper [5] initiated the systematic elucidation of the notion of the generalized
(weak) solution of quasilinear hyperbolic systems. Since [5] was released, it has been
customary to primarily study solutions of the Hopf equation with complex nonlinearity.
The study of reduced models often allows us to infer fundamental properties of the solution
to the detailed problem. The generalized Hopf equation is a meaningful mathematical
model in the sense of nonlinearity. It is one of the simplest reduced equations, which
generates shock wave solutions that have been investigated for various flow functions.
In [5–7], convex and concave-convex flow functions were studied under the assumption
that only dissipative processes occur in the thin shock layer. Traveling-wave solutions in
the case of the flow function with one inflection point were classified in [8–10].

The Riemann problem for the generalized Hopf equation in the case of a flow function
with two inflection points was considered in [11]. It was shown [11] that there is a funda-
mental difference between the case when only dissipative processes are considered and
when dispersive terms are included in addition to dissipative ones. The solution to the
Riemann problem for the generalized Hopf equation is not unique when dissipation and
dispersion exist, even if all discontinuities with structure are used to obtain the solution. Ex-
amples of non-unique solutions of self-similar problems for the generalized Hopf equation,
considered to be a simplification of the generalized Korteweg–de Vries-Burgers (KdVB)
equation, are given in [12]. In [11,12], the nonuniqueness of solutions is a consequence of
the existence of special, or non-classical, discontinuities. The Lax condition [13] is violated
for undercompressive discontinuities.

An analytical solution for an undercompressive discontinuity in the case of a modified
KdVB equation with a cubic flow function was found in [14]. The interaction of dissipation-
dispersion waves corresponding to discontinuities with the interface of two media with
different dissipation and dispersion coefficients was considered in [15–17].

Traveling-wave solutions of the KdVB equation were considered in [17] for the case
when the dissipation coefficient µ is a function of the coordinate and time. Some external
influence causes the change in the dissipation coefficient. Linear instability of obtained
traveling-wave solutions was studied in [18].

Discontinuous solutions of the generalized Hopf equation with a flow function with
four inflection points were studied in [19] under the assumption that the continuous and
strong change in medium parameters in thin shock layers is described by the generalized
Korteweg–de Vries-Burgers equation.

The present paper shows why different numerical methods give different solutions
and why choosing the correct solution a priori is only possible with information about
the processes occurring inside the thin shock layer. The paper proposes a method for
adapting any convergent difference scheme. Due to this method, all numerical solutions
of the Riemann problem converge to the unique solution, which does not depend on the
difference scheme.

The paper is organized as follows. In Section 2, we formulate the Riemann
problem for Equation (1). Next, in Section 3, a family of nonconservative difference
schemes is constructed. Calculations are made for various scheme parameters. In
Section 4, the family of conservative schemes and obtained solutions are discussed. In
Sections 5 and 6, we analyze these obtained solutions. Conditions on artificial viscosity
and dispersion coefficients are formulated to obtain a unique and physically reasonable
solution to the Riemann problem. The main conclusions are formulated in Section 7.
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2. The Riemann Problem for the Generalized Hopf Equation

The generalized Hopf equation

∂v
∂t

+
∂ϕ(v)

∂x
= 0, v = v(x, t), (1)

is the scalar conservation law of the function v(x, t), where x and t are spatial and time
variables, respectively. The flow function ϕ(v) is twice continuously differentiable [20].

Integral form of Equation (1) ∮
v dx − ϕ(v) dt = 0 (2)

has generalized (weak) discontinuous solutions in the form of traveling (shock) waves

v(x, t) =

{
v1, x − Wt < 0,
v2, x − Wt > 0,

(3)

where W is the shock speed, v1, v2 are values of the function v behind and ahead of the dis-
continuity, respectively. The values of v1 and v2 in (3) satisfy the Rankine-Hugoniot condition

W =
ϕ(v2)− ϕ(v1)

v2 − v1
. (4)

Let us formulate the Riemann problem for Equation (1) as follows:

∂v
∂t

+
∂ϕ(v)

∂x
= 0, t > 0, x ∈ R,

v(x, 0) =

{
vl , x < 0,
vr, x > 0.

(5)

In the case of a strictly convex ϕ(v), the Problem (5) has a unique solution in the form
of a traveling (shock) or a Riemann wave. If ϕ(v) has inflection points, the Problem (5)
may have multiple solutions [7]. It is based on the fact that Equation (4) can have multiple
solutions for the same value of W. A detailed consideration of the Riemann problem
properties with non-convex flow functions is beyond the scope of this paper. The reader
can find a discussion of this issue in [14,21,22].

The initial conditions for the Riemann problem for Equation (1) are chosen as follows:

v(x, 0) =

{
vl = 0.9, x < 0,
vr = 0, x > 0.

(6)

We consider a flow function with two inflection points (Figure 1a):

ϕ(v) = (v − 1)2
(
(v − 1)2 − 1

)
+ 2.1 · v.

Using Galilean transformations,

x → x̃ + 2.1 · t,

we can reduce this function to the form (Figure 1b),

ϕ̃(v) = (v − 1)2
(
(v − 1)2 − 1

)
.

The graph of the function ϕ̃(v) shows more clearly the relative positions of the in-
flection points, the parameters of the Riemann problem, and the values of the dependent
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variable behind the undercompressive shock discussed in Section 3. The arrows show the
change in the dependent variable in shock waves when solving the Riemann problem.

Now, let us consider different approaches to the numerical solution of the Riemann
problem and analyze the dependence of the results on the scheme parameters.
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(a) ϕ(v)
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(b) ϕ̃(v)

Figure 1. Plot of the flow function in different coordinate systems with the inflection points marked
(red); vl and vr — the parameters of the Riemann Problem (5).

3. Nonconservative Difference Scheme
3.1. Numerical Method

First, we consider a one-parameter family of difference schemes that combine “upwind
scheme” and “Standard Leapfrog” schemes.

Let xj = j · ∆x (j = 0, . . . , N). We denote vn
j = v(xj, tn). We will further assume that

spatial grid step size ∆x = (xN − x0)/(N + 1) is fixed. The “upwind” difference scheme
(further denoted as R) is

R =


vn+1

j − vn
j

∆t + ϕ′(vn
j )

vn
j − vn

j−1
∆x , ϕ′(vn

j ) > 0,
vn+1

j − vn
j

∆t + ϕ′(vn
j )

vn
j+1− vn

j
∆x , ϕ′(vn

j ) < 0,
(7)

where ∆t is the time step of the scheme.
The upwind method is stable if

r =
∆t
∆x

<
1

max
j

∣∣∣ϕ′
(

vn
j

)∣∣∣ . (8)

To solve the problem, we use the hybrid scheme constructed using the “Standard
Leapfrog” scheme and R

(1 − σ) · R + σ ·
(

vn+1
j − vn−1

j

2∆t
+ ϕ′(vn

j ) ·
vn

j+1 − vn
j−1

2∆x

)
= 0, (9)

where σ ∈ [0, 1] is a weight coefficient of the “Standard Leapfrog” scheme. The value
σ = 0 corresponds to the R scheme, and σ = 1 corresponds to the “Standard Leapfrog”
scheme. Consideration of the accuracy and stability of the scheme (9) is contained in the
Appendix A. The stability condition (8) holds for this hybrid scheme.

3.2. Calculation Results

Calculations were performed for the rectangular domain

x ∈ [−20,000, 20,000], t ∈ [0, t̃], t̃ = 4000.
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using various difference-scheme parameters σ and r. We analyze the dependency of numerical
solutions on these parameters. The values of the parameters used for calculations are

σ = {0, 0.7, 0.8, 0.9, 0.99}, r = {0.0125, 0.025, 0.05, 0.1, 0.2}.

The numerical algorithm is set out in the Appendix A.
If the parameter r is fixed, the solution depends only on the parameter σ for given

initial conditions (6). The numerical solution is shown in Figure 2 for σ = 0 and r = 0.025.
This solution with a discontinuity in initial conditions “smears” over several cells after a
few time steps and then remains unchanged for σ = 0. The resulting wave has a monotone
profile. The dependent variable increases from vr = 0 to vl = 0.9 in a thin layer. The
solution is the shock wave, which is shown in Figure 1b by the arrow R → L.

Figure 2. Solution v(x, t̃) obtained by the R Scheme; t̃ = 4000, σ = 0, r = 0.025.

For σ ∈ {0.7, 0.8, 0.9, 0.99} (Figure 3), the decay of the initial discontinuity occurs with
the formation of two waves. These shocks are shown in Figure 1b by the arrows R → A
and A → L. The profile of the first wave increases in a thin layer. This corresponds to a
shock R → A with a monotonic structure. In this shock, the dependent variable v changes
its value from 0 to vA(σ), represented by the point A in Figure 3. The value of vA increases
together with σ from 1.24 for σ = 0.7 up to ≈ 1.58 for σ = 0.99. For σ = 0.7, 0.8, 0.9, 0.99
this shock does not satisfy the Lax condition [13],

ϕ′(vA) > W. (10)

Note that the Lax condition (10) is satisfied for the profile shown in Figure 2.
The shock wave A → L propagates behind the leading “smeared” shock (see Figure 3).

The dependent variable v decreases from vA to vl = 0.9 in the shock A → L. Unlike the
shock R → A, the structure of the shock is non-monotonic A → L, i.e., it corresponds to
the focus equilibrium point in the phase space.

The second shock A → L propagates slower than the leading shock R → A. This leads
to an increase in the width of the region of constant solution value vA between the shocks
A → L and R → A.

The effective width of the structure of both waves tends asymptotically to a fixed
value. Starting from a certain number of time steps, this width can be considered constant.
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(a) σ = 0.7 (b) σ = 0.8

(c) σ = 0.9 (d) σ = 0.99

Figure 3. Numerical solution v(x, t̃) for r = 0.025 and various σ obtained using the nonconservative
difference scheme; t̃ = 4000, r = 0.025.

To summarize the above consideration, a sequence of two waves is formed after the
initial discontinuity decays. In the first wave, the value of v(x, t) rapidly monotonically
increases to a value greater than the left value of the initial profile. In the second wave, the
value of v(x, t) decreases non-monotonically to the left value of the initial profile. Each of
the waves corresponds to a “smeared” shock. The width of each structure remains constant
and depends on the difference-scheme cell size. The second wave lags behind the first,
forming a region with a constant value of v(x, t).

Please note that only one “smeared” shock is formed for the case of σ = 0 (Figure 2).
The solution v(x, t) monotonically increases from the right value of the initial profile to
the left one. Numerical solutions shown in Figures 2 and 3 are obtained using difference
schemes of type (9). Although the chosen schemes are stable and approximate the same
Equation (1), the solutions differ quantitatively and qualitatively.

Now, we analyze the dependency of the solution v(x, t) on the parameter r for each
value of σ. Calculation results are shown in Figure 4.
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(c) σ = 0.9
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Figure 4. Numerical solution v(x, t̃) for various r and σ obtained using the nonconservative difference
scheme; t̃ = 4000.

The obtained numerical solutions demonstrate the dependence on the value r. The
difference between the calculation results is especially noticeable at a moderate value of σ
(see Figure 4a). Moreover, the speed of resulting waves also depends on the value of r.

4. Conservative Difference Scheme

We consider the following one-parameter family of conservative difference schemes

(1 − σ) ·

vn+1
j − vn

j

∆t
+

ϕ

(
vn

j+ 1
2

)
− ϕ

(
vn

j− 1
2

)
∆x

+

+ σ ·
(

vn+1
j − vn−1

j

2∆t
+

ϕ(vn
j+1)− ϕ(vn

j−1)

2∆x

)
= 0, (11)

where

ϕ
(

vn
j+1/2

)
=

{
ϕ(vn

j ), ϕ′(vn
j ) > 0,

ϕ(vn
j+1), ϕ′(vn

j ) < 0
,
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σ and (1 − σ) are weights of explicit “Leapfrog” and “upwind scheme” schemes, re-
spectively. The accuracy and stability of the scheme are discussed in the Appendix A.
Computation was performed with a similar algorithm as for the nonconservative scheme.

Calculation results for this family of schemes are shown in Figure 5. Parameters r and
σ take the values given above.
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(a) σ = 0.7
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(c) σ = 0.9
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Figure 5. Numerical solution v(x, t̃) for various r and σ obtained using the conservative difference
scheme; t̃ = 4000.

The results demonstrate the same qualitative dependence on r and σ as for the non-
conservative case. This dependence is further referred to as the parametric instability
of the scheme.

The consideration above leads to the conclusion that nonuniqueness is not related to
the conservativeness of the difference scheme but rather arises due to the properties of the
problem itself.

5. Occurrence of Parametric Instability

Next, we discuss the parametric instability shown in Figure 4. Let us consider the
differential approximation of the mixed scheme (9):
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∂v
∂t

+
∂ϕ(v)

∂x
− 1 − σ

2
(
∆x − |ϕ′(v)|∆t

)
|ϕ′(v)| ∂2v

∂x2 +

+
1
6

(
∆x2 −

(
ϕ′(v)

)2∆t2
)

ϕ′(v)
∂3v
∂x3 = 0. (12)

This expression corresponds to the generalized Korteveg-de Vries-Burgers (gKdVB)
equation:

∂v
∂t

+
∂ϕ(v)

∂x
= µ

∂2v
∂x2 − m

∂3v
∂x3 , µ > 0, m > 0. (13)

Equation (13) was derived from a class of diffusive-dispersive Euler equations in [23].
This equation was first considered to investigate the structure of shocks for the generalized
Hopf equation in Ref. [11] and later considered in Refs. [8,11,19,21,23–27]. The combination
of flux function ϕ(v) with dispersion yields a rich collection of wave solutions. For our
paper, the most important solutions from this collection are traveling undercompressive
shocks. The simplest example of a nonlinear equation in one spatial variable that has
solutions for undercompressed shock waves is the generalized Korteveg-de Vries-Burgers
equation with ϕ(v) = v3 (see [23]).

Coefficients µ and m describe small-scale dissipation and dispersion, respectively.
Comparing Equation (13) with the differential approximation (12) of the Scheme (9) yields
the following expressions:

µ(v) =
(1 − σ)

2
·
(
∆x − ∆t|ϕ′(v)|

)
· |ϕ′(v)| = (1 − σ)∆x

2
(
1 − r|ϕ′(v)|

)
· |ϕ′(v)|,

m(v) =
1
6

(
(∆x)2 − (∆t)2(ϕ′(v))2

)
· ϕ′(v) =

(∆x)2

6
(1 − r2(ϕ′(v))2) · ϕ′(v),

(14)

We consider the problem of the traveling-wave propagation for the gKdVB (13):

v = v(ξ), ξ = x − Wt,

d2v
dξ2 − 1

γ

dv
dξ

= Wv − ϕ(v),

lim
ξ→+∞

v(ξ) = vr ≡ 0,

(15)

where W is the speed of the traveling wave. The solution of this problem depends only on
the effective dissipation coefficient γ =

√
m/µ. The value v(ξ) for ξ → −∞ satisfies the

Hugoniot relation (4).
Equation (14) give the expression for γ:

γ =
1

(1 − σ)

√
2
3

(1 + |ϕ′(v)| · r)
(1 − |ϕ′(v)| · r)ϕ′(v)

. (16)

From (16), it follows that γ does not depend on ∆t and ∆x for a fixed r = ∆t/∆x and
inversely proportional to the weight coefficient 1 − σ. Any variation of r and σ leads to a
change in γ and, therefore, changes the numerical solution of the Riemann Problem (5).

For gKdVB (13), it was shown earlier [19,22] that if the decay of an initial disconti-
nuity occurs with the formation of two (or more) waves, then the leading wave always
corresponds to a non-classical (special) shock. Non-classical shocks do not satisfy the Lax
condition, i.e.,

W > ϕ′(vl).
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For this reason, a Riemann wave or a classic shock lags behind such an undercompres-
sive shock. Therefore, the width of the intermediate region increases over time. This type
of solution is shown in Figure 3.

For classical shocks, the Lax condition is satisfied, i.e.,

W < ϕ′(vl).

It means that any perturbation reaches such shock in a finite time interval. Hence,
there is no solution to the Riemann problem in the form of two subsequent classical shocks.

The occurrence of an undercompressive shock is associated with the existence of
inflection points of the flow function ϕ(v). The speed of the undercompressive shock W is
defined by the effective dissipation coefficient γ. The dissipative and dispersive properties
of the given difference scheme determine the latter. For the given family of difference
schemes (9), the dissipative effect is determined, in particular, by the value of 1 − σ. This
effect weakens with the increase of σ. On the other hand, the scheme dispersion weakens
with increasing r.

Let us summarize the results of this section and give a direct answer to the question
posed in the title. The numerical solution of the Riemann problem for the generalized
Hopf Equation (1) with the flow function having multiple inflection points depends on the
particular form of the difference scheme and its parameters. In this case, the exact solution
to the Riemann problem is not unique, and the numerical solution converges to one of an
infinite set of exact solutions. If value r = ∆t/∆x is not fixed when decreasing the size of
the cell ∆x, then the numerical solution can “switch” from one exact solution to another.
Since coefficients µ and m in the corresponding terms of differential approximation depend
on the particular choice of the scheme, numerical solutions will converge to different exact
solutions for different schemes. Dissipative and dispersive properties of the differential
approximation of the difference scheme determine the choice of the exact solution to which
the numerical solution converges. The exact solutions of gKdVB are (i) a classical shock
(with the Lax condition satisfied), (ii) a non-classical shock, or (iii) a sequence of a non-
classical shock, a classical shock, and a Riemann wave. Depending on the properties of the
ϕ(v), there can be several undercompressive shocks, but only one of them is stable (see
Ref. [19] for further details). The speed of the stable undercompressive shock depends on µ
and m, and this shock is the leading wave in Figures 2–5.

In the case of the convex flow function, there are no undercompressive shocks. If the
chosen difference scheme is stable and “smears” discontinuities, then numerical solutions
of the generalized Hopf equation converge to the same one.

Please note that the numerical solutions converge to the same solution for any differ-
ence scheme with strong dissipation (small γ).

In the next section, we discuss how to use this information to regularize the
difference method.

6. Recipe for a Proper Difference Scheme

The problem of the parametric instability of the difference scheme cannot be definitely
solved in the frame of the generalized Hopf equation. It means that it is impossible to
specify the only correct numerical solution of the Riemann problem without detailed
information on the real physical dissipative and dispersive properties of the medium in a
thin shock layer, namely coefficients µreal and mreal .

The dissipative and dispersive effects of the scheme itself can be suppressed by
artificial dissipation and dispersion. Let us consider the gKdVB equation with some
“effective” dissipation and dispersion coefficients:

∂v
∂t

+
∂ϕ(v)

∂x
= µ0

∂2v
∂x2 − m0

∂3v
∂x3 . (17)

Suppose that µ0 and m0 are constant and positive.
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The construction of a difference scheme for this equation is reduced to using one of
the schemes presented above for the left side of the equation and choosing the appropriate
difference approximations for the higher-order derivatives. We can write the P-form
for the right-hand side Approximation (12) without detailing a specific choice of such
approximations. The P-form gives

∂v
∂t

+
∂ϕ(v)

∂x
− (µ0 + µ)

∂2v
∂x2 + (m + m0)

∂3v
∂x3 ≈ 0. (18)

Expressions for µ and m are given in (14).
The specific choice of the difference approximation for this equation’s dissipative

term can lead to additional dispersive terms appearing in (17). For the sake of simplicity,
suppose that such approximation does not modify the total dispersion coefficient m0 + m.

The existence of artificial dissipation and dispersion can suppress the corresponding
effects of the difference scheme if µ0 and m0 satisfy the condition:

µ0 ≫ µ, m0 ≫ m.

Additionally, we should include the condition of numerical stability (8). We can
analyze expressions for coefficients (14) to obtain desired values of µ0 and m0.

The condition (8) guarantees that

r|ϕ′(v)| < 1.

Using this fact, we obtain the inequalities

µ <
(1 − σ)∆x

2
|ϕ′(v)|, m <

(∆x)2

6
ϕ′(v).

Now we denote
M = sup |ϕ′(v)|,

where the supremum is taken on the interval of v that includes inflection points of the
flow function.

Thus, we obtain the desired suppression conditions:

µ0 ≫ (1 − σ)∆x
2

M, m0 ≫ (∆x)2

6
M. (19)

The choice of coefficients µ0, m0 could not be made independently if real (physical)
dissipation and dispersion coefficients of the medium µreal and mreal are known. Let us
now consider the following property of the Riemann problem for Equation (17): the exact
solution is defined by the value γ =

√
m/µ. Therefore, we can choose µ0, m0 so that the

relation holds

γ0 =

√
m0

µ0
=

√
mreal

µreal
.

Let us set the initial condition as a smeared step:

v(x, 0) =


vl , x < 0,

vl − 140 · (vr − vl)
(

1
7
( x

b
)7 − 1

2
( x

b
)6

+ 3
5
( x

b
)5 − 1

4
( x

b
)4
)

,

vr, x > 0.

(20)

The function v(x, 0) with vr = 0, vl = 0.9 and b = 0.1 is shown in Figure 6a. Numerical
solutions of the Cauchy Problem (17) and (20) do not depend on the difference schemes
because the solution of the problem is unique. The numerical solutions are uniquely
defined by the parameters µ and m. Representations of the Cauchy problem solutions for
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the gKdVB Equation (17) with vr = 0, vl = 0.9 and b = 0.1 are shown in Figure 6b. The
left-hand side of Equation (17) is approximated by the “Leapfrog” scheme (σ = 0).

(a) v(x, t0), t0 = 0 (b) v(x, t̂), t̂ = 10

Figure 6. The gKdVB Cauchy problem solutions with diffusive-dispersive shock waves: (a) initial
distribution; (b) numerical solutions of the Cauchy problem for gKdVB with the same step-like
initial conditions with µ = 0.03535, m = 0.000065 (blue), µ = 0.003535, m = 0.000065 (green) and
µ = 0.003535, m = 0.00065 (purple).

Finally, assume there is no physical model of the medium, so the parameters µreal
and mreal are unknown. In this case, we can estimate the upper and lower bounds of the
Riemann problem solution v(x, t). This requires calculations for sufficiently large and small
values of γ0. This approach gives correct results for the cases of strong dissipation/weak
dispersion (γ0 ≪ 1) and weak dissipation/strong dispersion (γ0 ≫ 1).

7. Conclusions

We have considered various approaches to the numerical solution of the generalized
Hopf equation with a flow function having two inflection points to answer the question
in the title. Stable finite-difference schemes can converge to different solutions for the
generalized Hopf equation because the solution of the Riemann problem is not unique. In
this case, the numerical solution of the Riemann problem is not unique too, and we show
the dependence of the result on the parameters of the nonconservative and conservative
difference schemes. Numerical solutions can converge to different exact solutions. This
result depends on the weighting factor σ and the grid parameter r = ∆t/∆x not only
quantitatively but also qualitatively. This difference is explained by the dissipative and
dispersive effects due to the properties of the difference scheme.

Considering the peculiarities of the generalized Korteveg-de Vries-Burgers equation
with a flow function having multiple inflection points allows us to formulate an approach
to construct a “stable” difference scheme.

Within this approach, the correct choice of solution to the Riemann problem is based
on the physical properties of the medium.

Calculation using real (physical) dissipation and dispersion coefficients µreal , mreal
seems to be irrational because it requires multiscale calculation. Such a calculation is
usually expansive (or impossible). Instead, we propose to use artificial dissipation and
dispersion such that

1. the artificial coefficients µ0 and m0 are big enough, so the similar effects due to the
difference scheme are suppressed,

2. the coefficients should be chosen to hold the ratio
√

m0/µ0 =
√

mreal/µreal , which
gives a correct numerical solution of the Riemann problem.
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Appendix A

Appendix A.1. Properties of the Difference Schemes

The first differential approximation of the nonconservative scheme (9) is given by
Equation (12). Considering the generalized Hopf Equation (1), we obtain that the approxi-
mation error is of the order of O(∆x + ∆t) for σ ̸= 1 and O(∆x2 + ∆t2) for σ = 1.

We use the Von Neumann stability analysis [28] to study the stability of the schemes
under consideration. The linearized Hopf Equation (1) is

∂v
∂t

+
∂ϕ

∂v

∣∣∣∣
v=V0

· ∂v
∂x

= 0, v = v(x, t), (A1)

where v(x, t) ≡ V0 — any stationary solution. Therefore, the linearized analogue of the
Scheme (9) can be written as follows

(1 − σ) · R̃ + σ ·
(

vn+1
j − vn−1

j

2∆t
+ A ·

vn
j+1 − vn

j−1

2∆x

)
= 0, (A2)

where

R̃ =
vn+1

j − vn
j

∆t
+ A ·

vn
j − vn

j−1

∆x
, A = ϕ′(V0).

According to the Neumann analysis algorithm, we represent the grid function vn
j in the

form
vn

j = λn · eijk, k ∈ R. (A3)

Substituting (A3) into (A2), we obtain the quadratic equation for λ:(
1 − σ

2

)
· λ2 + (rA[(1 − σ)(1 − cos k) + i sin k] + σ − 1) · λ − σ

2
= 0, (A4)

where i2 = −1, r = ∆t/∆x. The stability condition

|λ|2 < 1

is satisfied if and only if (see Figure A1)

r <
1

|A(V0)|

so the scheme will be stable if we choose

∆t = min
j

∆x∣∣∣∣ϕ′
(

vn
j

)∣∣∣∣ . (A5)

https://rscf.ru/en/project/23-71-33002/
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0 π/2 π 3π/2 2π
k

0.2

0.4

0.6

0.8
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1.2

1.4
|λ+(k)|

0 π/2 π 3π/2 2π
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4
|λ−(k)|

Figure A1. Modules of the roots of Equation (A4). Left: first root |λ+(k)|; Right: second root |λ−(k)|.
Computation performed for σ = 0.5; r · A = 0.5 (red), 1.0 (green), 1.5 (blue).

The obtained criterion is similar to (8).
The linear approximation of the family of conservative schemes (11) coincides with (12),

so the analysis of its properties gives the same results.
According to the Lax equivalence theorem [29], the schemes under consideration

are convergent.

Appendix A.2. Numerical Algorithm

Let us outline the computation algorithm.

1. Set initial values for v0
j in the form (6).

2. Make one time step using the scheme (7) and evaluate v1
j .

3. Adjust ∆t so that condition (8) is restored using (A5).
4. Compute vn

j for n > 1 using scheme (9).

5. Repeat pp. 3, 4 until t < t̃.

On each time step for n > 0, we use boundary conditions

vn
0 = vn

1 , vn
N = vn

N−1.
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