
Citation: Dieva, N.; Aminev, D.;

Kravchenko, M.; Smirnov, N.

Overview of the Application of

Physically Informed Neural Networks

to the Problems of Nonlinear Fluid

Flow in Porous Media. Computation

2024, 12, 69. https://doi.org/

10.3390/computation12040069

Academic Editor: Ravi P. Agarwal

Received: 3 March 2024

Revised: 19 March 2024

Accepted: 24 March 2024

Published: 2 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Review

Overview of the Application of Physically Informed Neural
Networks to the Problems of Nonlinear Fluid Flow in
Porous Media
Nina Dieva 1,* , Damir Aminev 1 , Marina Kravchenko 1,2 and Nikolay Smirnov 2,3

1 Faculty of Oil and Gas Field Development, Gubkin State University, 119991 Moscow, Russia;
aminevdom@yandex.ru (D.A.); dep.ngipg@yandex.ru (M.K.)

2 Department of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
mech.math.msu@inbox.ru

3 Moscow Center for Fundamental and Applied Mathgematics, Lomonosov Moscow State University,
119991 Moscow, Russia

* Correspondence: ninadieva@bk.ru

Abstract: To describe unsteady multiphase flows in porous media, it is important to consider the
non-Newtonian properties of fluids by including rheological laws in the hydrodynamic model. This
leads to the formation of a nonlinear system of partial differential equations. To solve this direct
problem, it is necessary to linearize the equation system. Algorithm construction for inverse problem
solution is problematic since the numerical solution is unstable. The application of implicit methods
is reduced to matrix equations with a high rank of the coefficient matrix, which requires significant
computational resources. The authors of this paper investigated the possibility of parameterized
function (physics-informed neural networks) application to solve direct and inverse problems of
non-Newtonian fluid flows in porous media. The results of laboratory experiments to process core
samples and field data from a real oil field were selected as examples of application of this method.
Due to the lack of analytical solutions, the results obtained via the finite difference method and via
real experiments were proposed for validation.

Keywords: direct and inverse problems of filtration theory; nonlinear filtration law; numerical
methods; partial differential equations; physics-informed neural network

1. Introduction

A feature of unsteady flow problems is a description of hydrodynamic processes by a
system of partial differential equations (PDEs). The numerical solution of such systems
involves the application of complex integration methods, even for the one-dimensional
case [1,2]. Accounting for the flow multidimensionality, the multiphase nature of the
filtered fluids and the necessity of phase interaction considerations (taking into account the
ongoing phase transitions and chemical reactions) significantly complicates the system [3].
Paper [4] provides an extensive overview of modern approaches to integrating systems of
PDEs, including describing fluid flow in porous media with mass flows between phases. In
classical approaches to integrating nonlinear systems, the finite difference method, the finite
element method, the finite volume method and their various modifications are applied
to solve both direct and inverse problems. As a rule, high-resolution structured grids are
applied in calculations, which leads to a large amount of calculations. The construction of
non-structured grids, for example, based on Voronoy diagrams, allows for a more detailed
consideration of the flow geometry and increases the accuracy of calculations; however,
they require the construction of special algorithms and do not eliminate the problem of the
large amount of calculations [5,6].

Hydrodynamic modeling aims to solve the direct problem of non-steady fluid flow
with specified reservoir properties (porosity, permeability and the physical properties of
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saturated reservoir phases) based on the data obtained from geological studies and well
exploration analyses. The main goal is to obtain the time dependencies of the flow process
parameters (density, viscosity, pressure, temperature, etc.).

To predict further reserve recovery developments (which last for decades in some
fields), it is necessary to adjust the input data sets, determining the properties of the
simulated saturated reservoir system at all stages of deposit development. In practice,
this process is carried out by conducting well hydrodynamic studies and determining
the current reservoir properties by analyzing changes in the pressure and temperature
sensors obtained from sensors during start/stop of the well. Mathematically, the flow
theory inverse problem solution is considered, which could be carried out in three ways.
The classical (first) approach includes an iterative way to solve a conservation equation
system written in finite-difference form with the initial and boundary conditions [7,8].
The main disadvantage of this method is that it uses large amounts of computing resources,
especially for multidimensional flows.

The second approach applies basic machine learning (ML) algorithms. It is based on
the analysis of the variety of direct problem solutions. In fact, it is similar to the approach
of choosing a “suitable” solution within the hydrodynamic function domain based on
“expert” assessments of previous options. The problem is solved by minimizing the quality
functional between the defined and given parameters (hydrodynamic, filtration, capacitive),
for example, according to the least squares criterion [9]. The significant disadvantage of
ML algorithm implementation is the availability of a substantial “training” data set (actual
data or previously obtained solutions). This is impossible at the initial stage of a field
development or during modification of an already existing field development scheme.
Furthermore, when the details of the layer are not fully understood, error variance may
arise, and its magnitude is strongly influenced by the choice of the deviation functional,
the training data set content, and the choice of “expert” constraints.

The third method proposed in [4,10] is the physics-informed neural network (PINN),
which considers (opposite to ML) the physics of the process, since the loss function contains
a form of differential equations (for example, mass, momentum and energy conservation
laws). The advantage of PINN application to non-steady flow problems is the uniformity
of the algorithm when applied to numerical simulations of direct and inverse problems.

At the moment, there are many approaches based on the PINN concept. For example,
there are variational PINNs (hp-VPINNs) [11], which use a variational concept to construct
the loss functional, and conservative PINNs [12], where additional terms to the loss function
are included, “penalizing” for the failure of the basic conservation laws. A conservative
PINN is capable of increasing the accuracy of the solution, but it is only applicable to
certain types of systems (conservation laws). In [13], the X-PINN model was proposed,
which expands the applicability of conservative PINNs by overcoming the equation type
limitations. The authors of [14] propose applying an adaptable algorithm for generating a
training data set to improve the accuracy of such models. They consider the distribution of
errors (according to the loss function) and increase the data set size in the vicinity of large
errors. Since the initial data of the problem often contain some noise (a recognized fact in
oil and gas problems), it is proposed to apply a Bayesian physics-informed neural network
(B-PINN) to obtain more accurate solutions [15]. Improving the accuracy of the solution is
achieved due to their ability to avoid overtraining.

PINN algorithms have been successfully applied to solve practical problems in fluid
mechanics, including in porous media. For example, in [16], the problems of shock wave
propagation are considered, which are popular in computational mechanics. In [17], a PINN
is applied to consider the classical formulation of two-phase flow according to Darcy’s
law [18] with the application of convolutional physics-informed neural networks. It is
difficult to consistently solve a set of different equations using PINNs, as for each equation,
it is necessary to manually redefine various program blocks (for example, the loss function).
However, solvers for PINN automation are already being developed [19,20].
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In most of the current tasks for developing hard-to-recover hydrocarbon reserves, it is
important to consider the rheological properties of the fluids. Therefore, the PDE system
becomes nonlinear. In this paper, the possibility of using PINN-based methods to obtain
flow problem solutions which consider the description of the nonlinearities of the viscous
properties of fluids is analyzed.

This paper is organized as follows: In Section 2, the mathematical formulation of
the proposed algorithm for solving the considered equation system type is consistently
presented. Section 3 contains the results of the formulated error function application to
solving problems of nonlinear liquid filtration in a porous medium, validated by comparing
the calculations with data obtained from one-dimensional physical experiments of two
characteristic sizes of the analyzed object: several centimeters, using the example of core
samples (Section 3.1), and hundreds of meters, based on field measurements of indicators
at a well (Section 3.2).

2. Mathematical Approach

In parameterized model applications for solving differential equations, the solution
obtaining problem is reduced to the minimization problem. Consider a differential equation
depending on p independent variables x = (x1, x2, . . ., xp) ∈ Ω ⊂ Rp written in operator
mode and defined on domain Ω with boundaries ∂Ω:

Lu = f
∣∣∣
Ω

bu = g
∣∣∣
∂Ω

. (1)

In Equation (1), the differential operator L, boundary operator b and random functions
f and g are known and hence the boundary value problem is correct. The problem of
obtaining Equation (1)’s solution using the Cauchy–Schwarz equation is reduced to the
minimization problem [20]:

ũ = arg min
u

||Lu − f ||D. (2)

Here, D is the Sobolev space induced from the space of basis functions C∞(Ω) with
compact support.

In the next step, it is necessary to move from the analytical formulation of the mini-
mization problem to the numerical one. Most numerical methods assume that the solution
field is in a finite discrete subset of Ω in the form of a grid function (for simplicity and
without generality loss, consider the case of Ω ∈ R2). Further, for an equation depending
on two variables, the following functional representation is defined:

ū = {u(x(i), t(i)), i = 1, 2},
∀i (x(i), t(i)) ∈ Ω.

(3)

Without generality loss, we assume that the discretization of the field X = {x(i),
t(i)} ⊂ Ω is fixed in the process of solving the differential equation. The minimization
problem of finding the solution field of Equation (1) can be formulated as:

min
ū

λr||Lū − f ||2 + λb||bū − g||2. (4)

As a rule, l2 norms are applied in the implementation of this approach. However, it
can be assumed that the solution of the equation can be more accurate when the norms
associated with the original Sobolev space are applied. The parameters λr and λb act as
regularization coefficients, and can be both functions and constant coefficients. In [21], it is
proposed to use the neural tangent kernel (NTK) to ensure better algorithm convergence by
evaluating the parameters λr and λb in terms of their inverse contribution to the variance,
which is calculated using the NTK eigenvalues. The parameters λr and λb are considered
as constant and positive in this research. Since the solution of the equation is unknown,
numerical differentiation methods are applied. They are implemented in the deep learning
library Pytorch to obtain the values of Lū for the solution and approximation at a specific
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iterative step. In practice, the differential L̄ and boundary b̄ operators are also approxi-
mations of continuous L and b operators with some error. Therefore, the minimization
functional for solving a direct problem can be formulated as follows:

min
ū

[
λr||L̄ū − f ||2 + λb||b̄ū − g||2

]∣∣∣
X

. (5)

In Equation (5), the differential L̄ and boundary b̄ operators are numerical discretiza-
tions of differential operators, and the field X represents a grid covering the solution
domain Ω. When solving the inverse problem, the additive component responsible for the
convergence of the equation solution to the value set from physical observations should be
added to Equation (5); further, the functional for solving the direct and inverse problems
will be written as follows:

min
ū

[
λr||L̄ū − f ||2 + λb||b̄ū − g||2

]∣∣∣
X
+ λd||ū − data||2

∣∣∣
Z

. (6)

In Equation (6), the Z ⊂ Ω field represents a set of points where the values of the
desired function are measured. The parameter λd is the regularization coefficient responsi-
ble for the “degree of importance” of the last component for the optimization algorithm.
For the numerical implementation of the minimization algorithm, it is necessary to deter-
mine the parameterized model itself, which approximates the values of the desired solution.
In physical-based algorithms, neural networks are applied with different architectures.
The authors of this paper applied a multilayer neural network, where ū(x, t; Θ) was used
as a function, Rp → R and Θ = {θ1, . . .θN} is the set of neural network parameters, which
is determined from the minimization problem of the following functional:

min
Θ

[
λr||L̄ū(x, t; Θ)− f ||2 + λb||b̄ū(x, t; Θ)− g||2

]∣∣∣
X
+

λd||ū(x, t; Θ)− data||2
∣∣∣
Z

.
(7)

Figure 1 shows the schematic algorithm for solving the differential equation using a
parameterized model (neural network).

Figure 1. The diagram of the differential-equation-solving algorithm with application of a neural
network as a parameterized function n.



Computation 2024, 12, 69 5 of 14

3. Flow Theory Direct and Inverse Problem Solution Results

The flow velocities are low during fluid filtration through porous media, and the
velocity is often described by Darcy’s law (linear dependence of the velocity vector on
the pressure gradient) [22]. Nonlinear flow equations are used, as a rule, only for highly
viscous fluids, for which non-Newtonian properties are established in the laboratory via
rotary viscometers. It was noticed (in dynamic experiments on core samples) that the
nonlinear behavior of the fluid also occurs in non-stationary modes in the area of small
pressure gradients, including Newtonian liquids [23]. At the same time, it is important to
establish the type of dependence of viscosity on the pressure gradient, taking into account
the experimental results. To simulate a physical experiment on a real core [23], a system of
isothermal flow equations on a space-time grid (x, t) ∈ [0, L]× [0, T] ⊂ Ω was considered,
including the fluid mass conservation law (oil), the flow velocity equation with apparent
viscosity [8], the elastic matrix porosity change equation, and the fluid state equation:

∂(ρm)
∂t + div(ρ−→w ) = 0,

−→w = − k
µ∇p,

µ = µH−µL
1+exp B(|∇p|−G)

+ µL,

m = m0 + βs(p − p0),
ρ = ρ0(1 + β0(p − p0)).

(8)

Here, m and k are, respectively, the porosity of the sample and its permeability (k is set
according to the core study data and depends on porosity) and ρ is the density of the fluid
depending on the pressure p; the viscosity function µ depending on the pressure gradient
is used in the form proposed in [8]. The unknown constants B and G define the form of the
rheological curve of the drop in oil viscosity from the initial high value µH (also unknown)
to the final value µL recorded on a rotary viscometer; m0 and ρ0, respectively, are the
sample porosity and the oil density at initial pressure p0; β0 and βs are the compressibility
coefficients of the porous matrix and oil, respectively; and −→w is the flow velocity vector
(−→w = −→v m) of the oil phase.

Due to the small size of the core sample, the flow can be simulated in a one-dimensional
formulation. Further, after substituting the flow velocity law into the mass conservation
equation and non-dimensioning (x̄ = x

L , t̄ = t
T , p̄ = p

p0
) the system is written as follows:

β∗
T

∂ p̄
∂t̄ −

1
L2

∂
∂x̄ (

k
µ

∂ p̄
∂x̄ ) = 0,

µ = µH−µL

1+exp BP0
L (| ∂ p̄

∂x |−G)
+ µL.

(x̄, t̄) ∈ [0, 1]× [0, 1] ⊂ Ω̄

(9)

The coefficient β∗ = β0 + βsm0 sets the compressibility properties of the core sample and
fluid in a complex way. System 9 is solved considering the initial and boundary conditions:

∂ p̄
∂x̄

∣∣∣
(0,t̄)

= qµL
kp0

,

p̄(x̄, 0) = 1,
p̄(1, t̄) = 1.

(10)

where q is the oil flow rate related to the area of the inlet area.

3.1. Laboratory Experiment Interpretation

To assess the quality of solutions obtained via the proposed method, a direct test task
(a series of launches) was initially solved and compared with solutions obtained by the

finite difference method. The expression rRMSE =

√
||p f d−ppinn ||22

||p f d ||22
was chosen as a quality
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assessment metric, where p f d and ppinn are solutions obtained by the finite difference
method and using a PINN, respectively. The loss function, defined in this case based on
Equation (7) (for λd = 0), is represented as:

min
Θ

λr[||Lr||2 + λb||Lb||2]
∣∣∣
X

. (11)

This function is defined on a space-time grid X. Lb is defined by a vector with
components in the form of residuals according to initial and boundary conditions:

Lr =
β∗
T

∂ p̄
∂t̄ −

1
L2

∂
∂x̄ (

k
µ

∂ p̄
∂x̄ ),

Lb =

[
∂ p̄
∂x̄

∣∣∣
(0,t̄)

− qµL
kp0

, p̄(x̄, 0)− 1, p̄(1, t̄)− 1
]

.
(12)

A fully connected neural network with four hidden layers of 100 neurons and a
hyperbolic tangent as an activation function was applied; the weight coefficients in the
loss function were set by the constants λr = 10 and λb = 100. The Adam (Adaptive
Moment Estimation) [24] optimization algorithm was used in numerical experiments with
an optimization step of lr = 1 × 10−3, and the number of iterations was epoch = 35,000. Ω̄
was covered by the uniform square grid X, which consists of (Nx, Nt) = (50, 50) collocation
points. The input data of the problem are shown in Table 1.

Table 1. The input parameters for solving the direct problem.

p0 = 25 MPa β∗ = 10−9 Pa−1 k = 2.5 mD

q = 0.1 m
day µH = 13.6 mPa s µL = 4.62 mPa s

G = 0.025 MPa
m B = 0.8 × 10−3 m

Pa T = 1 day

Figures 2a and 3 show the direct problem solution quality using the PINN in the
form of a time–pressure profile according to the sample from the initial stage of injection
t = 175 s (upper line) to the moment of time E = 86,400 s (bottom line) compared with
the finite difference approach. Apparently the allocation of the PINN leads to a good
solution quality for the direct problem. The rRMSE score corresponds to a 95% confidence
interval for a set of 10 algorithms launches. From the series of experiments, it was obtained
that the confidence interval is rRMSE = (0.001099, 0.001602) rRMSE = (0.001099, 0.001602).
The reduction in loss function values during the training step is demonstrated in Figure A1
(for the forward and inverse tasks).

0.0 0.2 0.4 0.6 0.8 1.0
x/L, m/m

0.80

0.85

0.90

0.95

1.00

P/
P 0
, M

Pa
/M
Pa

a

PINN model Fi ite differe ce model

0.0 0.1 0.2 0.3 0.4 0.5 0.6
|∇p|, atm/m

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

vi
sc
os
ity
 μ
, m

Pμ
⋅s
ec

b

viscosity

0.00

0.05

0.10

0.15

0.20

0.25

ve
lo
cit
y 
w
, m

/s
ec
⋅1
0−

7

velocity PINN velocity data

Figure 2. (a) Pressure changes over time. (b) The dependence of oil viscosity (left scale) and flow
velocity (right scale) on the modulus of the pressure gradient.
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Figure 3. (left) Equation (9)’s solution via the PINN approach. (center) Equation (9)’s solution via the
finite difference approach. (right) The difference (MSE) between the solutions obtained via the PINN
and finite difference approaches.

A series of experiments was conducted to investigate the algorithm’s stability to
changes in input parameters. Figure 4 illustrates the stability of the solution while the
input parameters are changed. Each box represents the variability of one parameter
while the others remain constant, as shown in Table 1. A grid of four values has been
defined for each parameter, as shown in Table 2. The distribution of error values (relative
MSE ∼ 10−5) indicates the algorithm’s stability to changes in the parameters responsible
for the flow nonlinearity.

Table 2. A table displaying the changes in parameter values for the series of experiments shown
in Figure 4.

Parameters Values

k, mD [0.1, 0.5, 1, 5]

G, MPa
m [0.25, 2.5, 25, 250]× 10−3

B, m
Pa [10−2, 10−3, 10−4, 10−5]

q, m
day [0.02, 0.1, 0.2, 0.3]

µH , mPa · s [10, 50, 100, 150]

k G B q μH
parameter type

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

re
la
tiv

e 
RM

SE

Figure 4. The distribution of solution errors occurring during input parameter changes. Each bar
represents the variability of one parameter while the others remain constant, as shown in Table 1.

The inverse problem solution is the determination of the rheological properties of the
fluid based on data obtained from laboratory experiments, where changes in the dynamics
of the flow velocity at various pressure gradients were observed [23]. The problem solution
results are shown in Figure 2b in the form of velocity dependencies on the pressure gradient
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modulus in comparison with experimental data, the values of which are reflected on the
right scale.

The loss function in the case of the inverse problem solution is identical to expression

(11), but contains an additional term λd||Ld||2
∣∣∣
Z

, where Ld = wdata − wpred. wpred is the

PINN-algorithm-calculated flow velocity, wdata is the experimentally measured velocity
value, Θ are neural network parameters, and Z is the set of dots (experimental data).
Further, the optimization problem solution result is a parameterized function (neural
network) corresponding to the solution of system (9), (10) and is in agreement with the
experimental data. Also, coefficients G, B, µH were assessed; they determine the function
of viscosity on pressure gradient from which the optimal (according to the optimization
algorithm) solution is obtained. The neural network applied to the direct problem solution
was applied to the inverse problem solution as well. Adam was also selected as an optimizer
with an optimization step of lr = 1 × 104, and the number of optimization steps was
epoch = 26,000, λr = 1, λb = 100, λd = 10. The initial guess and final values of the searched
parameters are demonstrated in Table 3.

Table 3. The initial and final values of the desired parameters obtained from solving the inverse problem.

Parameters Initial Guess Final Values

G, MPa
m 0.09 pk

L 0.007 pk
L = 0.0187

B, m
Pa 2 × 10−3 0.292 × 10−3

µH , mPa · s 30 24.8

Figure 2b also shows the viscosity change function with the determined parameters
(numerical viscosity values are displayed on the left scale).

3.2. Field Experiment Interpretation

As a second example, we considered the production task of hydrodynamic data
interpretation [7]. In an undisturbed circular reservoir (of thickness H with a given reservoir
radius Rk, where the pressure is close to the reservoir pressure P0), the well initially has a
constant flow rate Q and a depth sensor is located at the bottom hole and records pressure
values over time. According to hydrodynamic research, it is necessary to determine
the current parameters of the reservoir system (permeability, reservoir porosity, fluid
parameters). The mathematical formulation of the problem is represented by system (8),
but is written in a cylindrical symmetric formulation and supplemented with boundary
conditions for a well of radius r0, taking into account well imperfections, using a given
coefficient C [22]: 

2πHr k
µ

∂p
∂r

∣∣∣
(r=r0)

= Q + C ∂p
∂t

∣∣∣
(r=r0)

p(Rk, t) = P0

p(r, 0) = P0
(r, t) ∈ [r0, Rk]× [0, T] ⊂ Ω

(13)

By analogy with the transformation of system (8) to system (9) after non-dimensioning
(p̄ = p

P0
, r̄ = r

Rk
, t̄ = t

T ) a system including nonlinear flow equations, the initial and
boundary conditions on the reservoir radius and well bottom are obtained. To create a grid
condensing to r0, a transition to logarithmic coordinates u = ln r̄ was carried out:
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R2
k e2u β∗

kT
∂ p̄
∂t̄ −

∂
∂u (

1
µ

∂ p̄
∂u ) = 0,

µ = µH−µL

1+exp BP0
Rk

(| 1
eu

∂ p̄
∂u |−

Rk
P0

G)
+ µL,

∂ p̄
∂u

∣∣∣
(u=ln r0

Rk
)
= Qµ

2πkHP0
+ Cµ

2πkHT
∂ p̄
∂t̄ ,

p̄(u = ln r̄, 0) = 1,
p̄(u = ln(1), t̄) = 1.
(u, t̄) ∈ [ln( r0

Rk
), 0]× [0, 1] ⊂ Ω̄

(14)

To solve the direct problem, the loss function is based on Equation (11) on the space-
time grid X. Lb is defined as a vector with components:Lr =

R2
k e2u β∗

kT
∂ p̄
∂t̄ −

∂
∂u (

1
µ

∂ p̄
∂u )

Lb =
[

∂ p̄
∂u − Qµ

2πkHP0
− Cµ

2πkHT
∂ p̄
∂t̄ , p̄(u, 0)− 1, p̄(0, t̄)− 1

] (15)

A fully connected neural network with four hidden layers of 200 neurons and hyper-
bolic tangents as an activation function was applied. The weighting coefficient λr was set
as a function [25] of Lr, λb = 1000. Adam was used as an optimizer with an optimization
step of lr = 1 × 10−3, and the number of iterations was epoch = 20,000. Ω̄ was covered
by a discrete rectangular grid X = (Nx, Nt), which consisted of Nt̄ = 50 and Nu = 120
collocation points. The uniform grid along the u direction made it possible to reduce the
grid step for the r̄ direction in areas of large pressure gradients. The input data used to
solve the problem are given in Table 4.

Table 4. The input parameters to solve the direct problem.

rc = 0.1 m Rk = 100 m H = 10 m

m = 0.134 k = 50 mD β∗ = 10−10 Pa−1

µL = 25 mPa · s µH = 250 mPa · s G = 0.005 MPa
m

B = 2 × 10−3 m
Pa p0 = 25 MPa Q = 7.8 m3

day

T = 5 days L = 100 m C = 0.0671 MPa−1

Figures 5 and 6 show a comparison of the reservoir pressure distributions calculated
by the PINN and finite difference approaches. Figure 5 shows a comparison of reservoir
pressure distributions (a) and well pressure drops (b) at various points in time calcu-
lated by the PINN (pinned points) and the finite difference (dotted lines) approaches.
The rRMSE estimation was performed as a 95% confidence interval for a set of 10 algo-
rithm launches. From the experiments series, it was found that the confidence interval
rRMSE = (0.00687, 0.00779). The reduction in loss function values during the train step is
demonstrated in Figure A2 (for the forward and inverse tasks).

The pressure values obtained by the sensors at the well’s bottom hole were used
as experimental data for solving the inverse problem (determining reservoir parameters
based on log results). The loss function in the case of the inverse problem solution is

identical to Equation (11) with an additional term λd||Ld||2
∣∣∣
Z

, Ld = pdata − ppred. Here,

ppred is the calculated pressure values at the bottom hole, pdata is experimentally measured
downhole pressure value, Θ are neural network parameters and Z is the set of dots where
experimental data were changed. The numerical solution of the equation system (14) was
obtained, and the vector of coefficients G, C, k, µH is defined as the inverse problem solution
results. For the inverse problem, a fully connected neural network with nine hidden
layers of 100 neurons was applied, and a hyperbolic tangent was used as the activation
function. Adam was chosen as the optimizer with the optimization step of lr = 1 × 10−3,
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and the number of optimization steps was epoch = 24,000. λr = 1, λb = 104 and λd = 104.
The initial guess and final values of the searched parameters are demonstrated in Table 5.

0.0 0.2 0.4 0.6 0.8 1.0
x/L, m/m

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P/
P 0

, M
Pa

/M
Pa

a

PINN model
Finite difference model

0.0 0.2 0.4 0.6 0.8 1.0
t/T, sec/sec

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P/
P 0

, M
Pa

/M
Pa

b
PINN model
Finite difference model

Figure 5. (a) The pressure field plots around the well at different moments in time. (b) Pressure
changes at the bottom hole.
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Figure 6. (left) Equation (14)’s solution via the PINN approach. (center) Equation (14)’s solution via
the finite difference approach. (right) The difference (MSE) between the solutions obtained via the
PINN and finite difference approaches.

Table 5. The initial and final values of the desired parameters obtained from solving the inverse problem.

Parameters Initial Guess Final Values

C, m3

MPa 1 1.8768

G, MPa
m 0.02 0.013

µH , mPa s 25 38

Figure 7 shows that the inverse problem solution results in pressure changes at the
bottom hole at various optimizer steps in comparison with the experimental data (marked
with circles). The initial guess is indicated at Figure 7 as a horizontal dotted line (epoch = 0).
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Figure 7. Calculated bottom-hole pressure at various optimization steps from the initial (epoch = 0)
to the final (epoch = 24,000) epoch in comparison with experimental data.

4. Discussion

Considering the problems of increasing oil recovery, it is necessary to take into account
a whole range of phenomena that affect the displacement characteristics and appear during
the application of complex thermo-chemical methods to saturated reservoirs. Among these
are the heterogeneity, as the initial distribution of the filtration-capacitance properties of
the layers (porosity, permeability, pore distribution by size), as well as these properties’
changes over time, which occur mainly due to the pumped active agents’ interactions with
both the formation liquid and the porous skeleton (phase transitions, chemical reactions,
sorption/desorption processes) [3,26]. In addition, the unsteadiness of the development
processes in combination with changes in the fluid properties’ dynamics leads to the
necessity to modify the flow additive components (responsible for mass transfer and
energy inflow) in the conservation equations (mass, momentum, energy) which describe
the process, and also to modify the equation type, which leads to the necessity of changing
the calculation algorithm while modeling.

In this paper, considering the change in the reservoir fluid’s rheology during a non-
stationary process, which is expressed as a change in the equation of motion due to a
decrease in fluid viscosity with a pressure gradient increase (due to structural failure),
the solution of the filtration problem using the parameterized PINN function is shown.
Based on the generalization of the latest/newest experiences of using PINNs in various
tasks, the authors of this paper have formulated a deviation/error function that accounts
for the physical conservation equations and initial and boundary conditions based on the
data from laboratory and/or field experiments. The sensitivity of the parameterized model
to changes in the set of input parameters is analyzed.

Pseudoplastic liquid flow simulations applying a PINN in the processing of laboratory
experiments on real core samples in comparison with “classical” solving methods [1], a
similar “nonlinear” problem for PDEs, showed that PINN algorithms allowed for the
obtention of a stable solution to both the direct and inverse problems of pseudoplastic
filtration theory with lower resource costs.

Thus, the numerical studies carried out confirm the possibility of describing the
specifics of an unsteady filtration process of non-Newtonian liquids in a porous medium
with changing properties via the PINN approach. The results of laboratory experiments on
core processing and the data from hydrodynamic studies of a real field were considered,
and it was established that the convergence of the results obtained via the PINN and the
results obtained using finite difference methods is good, with an rRMSE metric on the order
of 1 × 10−3.
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It should also be noted that PINNs are universally applicable when changing both the
form of the equations and the type of initial boundary conditions. This makes it possible
to unify algorithms of filtration theory for direct and inverse solution investigations, in
contrast to finite-difference methods, where specification of the algorithm for each type
of PDE system is required. The results of the inverse problem solution showed that the
algorithm applied is stable to the choice of the initial approximation (for some parameters,
the initial conditions were different by orders of magnitude), which reduces the role of the
expert in the solution search process and improves the stability of the solution.

In the proposed formulation of the problem, the task of selecting hyperparameters
(coefficient of regularization, choice of optimizers, step of gradient descent, etc.) remains
relevant, which is typical for optimization problems. However, in recent studies, where
algorithms for adaptive parameter selection are proposed [27], it was shown that the
application of parameterized models with a PINN is highly efficient and can potentially
produce descriptions of the complex filtration processes of pseudoplastic liquids at the
proper level.

5. Conclusions

Based on the physical laws of non-Newtonian liquid flows in a porous medium
and considering the initial and boundary conditions and data from physical experiments,
a deviation function is formulated which is minimized during the search for solutions of
filtration problems via a PINN. The analysis of the proposed parameterized model revealed
a lack of sensitivity to changes in the set of input parameters. Validation of the model
under study, carried out on the data from one-dimensional physical experiments, showed
the convergence of the calculated and experimental data. Based on the results obtained,
further development of the model in two-dimensional and three-dimensional formulations
is possible.
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Appendix A
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Figure A1. Loss function reduction for both the forward and the inverse solutions of Equation (9).
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Figure A2. Loss function reduction for both the forward and the inverse solutions of Equation (14).
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