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Abstract: Driven by the emergence of Graphics Processing Units (GPUs), the solution of increasingly
large and intricate numerical problems has become feasible. Yet, the integration of GPUs into Com-
putational Fluid Dynamics (CFD) codes still presents a significant challenge. This study undertakes
an evaluation of the computational performance of GPUs for CFD applications. Two Compute
Unified Device Architecture (CUDA)-based implementations within the Open Field Operation and
Manipulation (OpenFOAM) environment were employed for the numerical solution of a 3D Kaplan
turbine draft tube workbench. A series of tests were conducted to assess the fixed-size grid problem
speedup in accordance with Amdahl’s Law. Additionally, tests were performed to identify the
optimal configuration utilizing various linear solvers, preconditioners, and smoothers, along with an
analysis of memory usage.

Keywords: GPU; CFD; turbomachinery; high-performance computing; speedup

1. Introduction

Computational Fluid Dynamics (CFD) is one of the most time-consuming activities
in High-Performance Computing (HPC). Recent research shows that heterogeneous archi-
tectures, with Graphics Processing Units (GPUs) as massively parallel co-processors to
the Central Processing Unit (CPU), can accelerate computation processes in various CFD
applications [1–7]. Developing a general-purpose CFD software to leverage this powerful
hardware is challenging and time-intensive, as evidenced by the cited references. However,
the capabilities and limitations of CFD codes applied to turbomachinery problem solving
have not been widely explored and thoroughly documented, even though it is a complex
task [8]. Exceptions in this field are relatively few [9–12].

Since scalability bottlenecks have been found on massively parallel clusters [13], recent
years have seen the implementation of open-source libraries within the OpenFOAM CFD
software developed by [14] to accelerate computations through GPUs [15]. Examples of
these libraries include Cuda For FOAM Link (cufflink), ofgpu, and speedIT. This imple-
mentation has been possible due to hardware architecture. GPUs’ numerous simple cores
enhance calculation output and mask memory latency through multithreading [16], while
CPU cores rely on less readily available cache memory for this purpose.

Without modifying the original CFD code and applied as a plug-in, these implemen-
tations were intended to improve the memory bandwidth, one of the main restrictions to
applying OpenFOAM in HPC [17]. However, reported issues with memory copies and
inconsistent speedups have raised concerns about the appropriateness of hardware invest-
ments [18]. Therefore, GPU-enabled libraries have been updated through RapidCFD [19],
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an open-source OpenFOAM 2.3.1 fork able to run almost entire simulations on NVIDIA
GPUs [20].

To address the computational challenges of simulating complex fluid flows in hydraulic
turbine draft tubes [21,22], this work explores the capabilities of RapidCFD and NVIDIA
Tesla GPUs (C1060, M2090, and K40) across three heterogeneous architectures within the
OpenFOAM environment. Specifically, we focus on the T-99 3D draft tube benchmark [23,24]
with different structured grid sizes to evaluate the performance and efficiency of these GPU-
powered simulations.

Despite the ongoing trend in HPC clusters towards high-density nodes with approxi-
mately 10 cores per node alongside accelerators, e.g., GPUs, FPGAs, Xeon PHI, RISCV, and
increased cache levels, the interconnected in clusters exceeding 100,000 nodes, encompass-
ing millions of available cores [17], solving Turbomachinery CFD problems using multiple
GPUs within a single node remains feasible. This approach reduces the need for massive
clusters or supercomputers, particularly because some grid sizes fall below 100 million
cells [25–28] and can be handled effectively by modern single-node heterogeneous configu-
rations. However, achieving a higher resolution through larger grid sizes, as advocated
by [29,30], would necessitate multi-node configurations, falling outside the scope of this
current research.

As computational speed is a highly desirable characteristic in these applications, the
determination of the most efficient hardware setup was deemed crucial. Following this,
tests were conducted on various combinations of linear solvers, preconditioners, and
smoothers available within OpenFOAM. Two set values for the convergence tolerance
parameter between time steps were then employed in a series of tests to identify the most
suitable option for solving the linear equation system. Subsequently, further computational
tests were carried out on different grid sizes to provide an estimation of the required
Random Access Memory (RAM), utilizing either one GPU in serial mode or two, three, and
four GPUs in parallel configurations. Finally, a comparison of the performance between
RapidCFD and cufflink, the available alternative implemented in foam-extend version 4.0,
was undertaken.

The results presented in this work offer valuable guidance for selecting the most
suitable CUDA-based software application to effectively harness GPU computational
power for CFD analysis.

2. Methodology

This section details the three massively heterogeneous architectures using NVIDIA
Tesla GPUs C1060, M2090, and K40, followed by the key features of the T-99 draft tube
benchmark and numerical setup, and concludes with an overview of available linear
solvers, preconditioners, and smoothers in OpenFOAM.

2.1. Hardware Architecture

Table 1 summarizes the main features of the heterogeneous architectures used in this
work. All three workstations, WSPAC, WSGAL, and WSMOL, respectively, are dual CPUs
platforms with four, six, and eight cores, the last two with multi-threading capabilities.

Table 1. Hardware features.

WSPAC WSGAL WSMOL

CPU

2 × Intel Xeon E5504, 2.0 GHz 2 × Intel Xeon L5639, 2.13 GHz 2 × Intel Xeon E5-2640 v2, 2.0 GHz
4 cores per processor/4 threads 6 cores per processor/12 threads 8 cores per processor/16 threads
12 GB Memory DDR3, 1060 Hz 24 GB Memory DDR3, 1060 Hz 64 GB Memory DDR3, 1600 Hz

GPU

4 x Nvidia Tesla C1060 2 x Nvidia Tesla M2090 4 x Nvidia Tesla K40
240 CUDA cores, 1.296 GHz 512 CUDA cores, 1.3 GHz 2880 CUDA cores, 745 MHz

4 GB Memory GDDR3, 800 MHz 6 GB Memory GDDR5, 1.85 GHz 12 GB Memory GDDR5, 3 GHz
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Despite WSPAC and WSMOL offering commercially available pre-configured options,
WSGAL presents a non-commercial alternative for assembling custom heterogeneous archi-
tectures. These configurations remain relevant in the current hardware landscape, even
with ongoing trends towards high-density nodes with accelerators [31]. While GPUs exhibit
slower memory and processing frequency compared to CPUs, their design philosophies
differ significantly. CPUs prioritize rapid execution of single-thread operations, capably
handling a few tens of operations concurrently. In contrast, GPUs optimize for parallel exe-
cution of thousands of threads, effectively mitigating their slower individual performance
through sheer throughput [32]. This contrast is reflected in peak performance: high-end
CPUs reach around 50–60 GFLOPS, while modern GPUs exceed 500 GFLOPS [31].

2.2. T-99 Draft Tube Benchmark and Numerical Setup

Located after the runner in a hydraulic turbine, the draft tube is tasked with converting
the kinetic energy of the fluid entering it into pressure energy, minimizing losses as much
as possible. The numerical model of the Hölleforsen Kaplan draft tube 1:11, previously
employed in three European Research Community on Flow Turbulence and Combus-
tion (ERCOFTAC) workshops [33–36], was studied. Figure 1 presents the computational
model of the turbine T-99, equipped with a hexahedral structured grid utilized for the
computations.

Figure 1. Structured mesh geometry of the ERCOFTAC turbine T-99 draft tube for simulations.

The computational domains were divided into a grid of interconnected cells and
solved with double precision and the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) algorithm, a general numerical procedure for calculating heat, mass, and mo-
mentum transfer in three-dimensional parabolic flows [37], to couple the p − U equation
system with incompressible flow. This algorithm iteratively adjusts pressure and velocity
values until a balanced solution is achieved, effectively simulating the fluid’s behavior
throughout the entire domain. The OpenFOAM environment implements the SIMPLE
algorithm through the solver known as simpleFoam.
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Since the general transport equation used in the Finite Volume Method (FVM) is
second order, it is recommended that the discretization schemes be at least second-order
accurate [38]. Therefore, the gradient and diffusive terms were discretized using a second-
order linear interpolation scheme (central differencing). However, a first-order interpolation
scheme (upwind differencing) was used for the convective terms to ensure stability and
convergence in the solution process.

While some fluid simulation studies on supercomputers and GPUs prioritize turbu-
lence modeling alone, neglecting complex geometries [39], this work explicitly addresses
both aspects. Consequently, the k − ϵ Standard turbulence model was chosen for all sim-
ulations due to its compatibility with available experimental data [33–35]. This model
calculates the magnitudes of two turbulence quantities, the turbulent kinetic energy k and
its dissipation rate ϵ from transport equations solved concurrently with those governing
the mean flow behavior [40].

Additionally, the radial velocity profile [41], detailed velocity measurements, and
turbulent quantities measurements [42] were employed as boundary conditions at the inlet.

To ensure a consistent basis for comparison, all simulations were conducted under
identical settings. These settings included the initial setup, boundary conditions, and dis-
cretization schemes. Additionally, constant-density water and steady-state operation were
implemented for each case. Convergence criteria for pressure, momentum, and turbulent
quantities were set at a conservative threshold of 10−3 for residuals. In CFD, convergence
refers to the state when a numerical solution has reached a stable and unchanging condi-
tion. This state indicates that the solution has adequately approximated the true physical
behavior of the underlying governing equations. Residuals, on the other hand, quantify
the discrepancy between the current numerical solution and the exact solution at each grid
point in the computational domain [43]. Monitoring the behavior of residuals is crucial for
identifying potential issues in the solution process and ensuring reliable convergence.

As stated above, convergence criteria are related to the predicted physical behavior of
the flow under the governing equations solved within the SIMPLE algorithm. However,
the sparse matrix solvers employed in the OpenFOAM environment are iterative in nature,
meaning they rely on successively reducing the equation residual to achieve internal
convergence in each solution step. The residual is essentially a measure of the error in
the current step’s solution, with smaller values indicating higher accuracy. Before solving
an equation for a specific field (U, p, k, or ϵ), the initial residual is assessed based on the
current field values. After each solver iteration, the residual is recalculated. The solver
terminates when either of the following conditions are met [38]:

• The residual falls below the pre-defined solver tolerance, indicating sufficient accuracy.
• The number of internal iterations surpasses a predetermined maximum value.

It is of paramount importance to select an appropriate solver tolerance that guarantees
the residual is reduced to a level deemed sufficiently accurate for the solution. Concomi-
tantly, an appropriate number of internal iterations should be chosen; in this instance, it
was set to 1000 for all cases.

2.3. Lineal Solvers along with Their Preconditioners and Smoothers

Within the OpenFOAM environment, two types of iterative linear solvers can harness
the computational power of GPUs to tackle the linear equation systems arising from the
numerical discretization of the Navier–Stokes partial differential equations:

• Preconditioned Conjugate Gradient (PCG) and Preconditioned Bi-Conjugate Gradi-
ent (PBiCG) solvers, preconditioned by diagonal or Approximate Inverse (AINV)
methods.

• Generalized Geometric-Algebraic Multi-Grid (GAMG) solvers utilizing Gauss–Seidel
or Jacobi smoothers.

As described in [44], the Conjugate Gradient (CG) method was initially developed to
solve symmetric, positively defined coefficient matrices. The coefficient matrix resulting
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from the discretization of the diffusion equation, such as the incompressible pressure
or pressure correction equation, is symmetric and can be solved via the CG method.
However, the matrix obtained from discretizing the general conservation momentum
equation that arises in fluid flow CFD applications is asymmetric. Thus, the Bi-Conjugate
Gradient method (BiCG) emerged, which requires multiplication by the coefficient matrix
and its transpose at each iteration, resulting in nearly double the computational effort of
the CG method. The convergence rate of CG/BiCG methods can be increased through
preconditioning; therefore, they should always be used with a preconditioner when solving
large systems of equations. However, the convergence rate of iterative methods tends to
deteriorate significantly as the algebraic system grows in size.

An alternative to overcome this drawback is multigrid methods. These methods can
be classified into two main types: Geometric Multigrid (GMG) and Algebraic Multigrid
(AMG). GMG was originally designed for structured meshes over regular domains, and it
also extends to semi-structured meshes over regular domains [45]. This is due to its ability
to leverage additional information from the geometric representation of the problem. For
applications involving complex geometries, however, unstructured meshes are often more
desirable. AMG aims to address the challenge of applying multigrid methods to domains
that are not rectangular, particularly in three dimensions [46].

In general, multigrid methods operate by first generating a rapid solution on a coarse
mesh. This solution is then projected onto a finer mesh, where it serves as an initial
approximation. The method iteratively refines the solution on the fine mesh until a high
level of precision is reached. GAMG, a specific type of multigrid method, typically employs
projection for transferring solutions between grids. GAMG often outperforms standard
methods when the speed gains achieved on coarser meshes outweigh the additional costs
associated with mesh refinement and projection [38]. Notably, GAMG utilizes a smoother
instead of a preconditioner to accelerate convergence rates.

3. Results

This section delves into various performance aspects related to solving the turbine
T-99 draft tube test case. The first subsection analyzes the speedup achieved under strong
scaling, while the second subsection considers how combinations of linear solvers and pre-
conditioners/smoothers impact the total computing time as strong scaling is implemented
across heterogeneous architectures and tolerance values. The third subsection focuses on
memory footprint variations across heterogeneous architectures, grid sizes, and different
linear solver configurations. Finally, the last subsection presents a comparison between two
open-source GPU-accelerated libraries, examining their impact on total computing time
and memory footprint for the Turbine T-99 draft tube case across different heterogeneous
architectures and grid sizes.

3.1. Arquitecture Speedup

Speedup is one of the most important metrics in HPC, as it actually measures how
much faster a parallel algorithm runs compared to the best sequential one. For a fixed-size
problem s, the speedup is calculated using the following formula [47]:

Sp =
Ts(s, 1)
T(s, n)

(1)

where Ts(s, 1) represents the execution time of the best sequential algorithm, and T(s, n)
denotes the execution time of the parallel algorithm utilizing n processors, both employed
to solve the same problem.

The local speedup, as calculated using Equation (1) and based on wall clock times
derived from CFD simulations across the three architectures, is depicted in Figure 2. The
experimental setup for this section was restricted to a PCG/PBiCG solver with a diagonal
preconditioner and a tolerance value of 10−12. A grid size of 981,424 cells was employed
for the simulations, see Table 2 for more details.
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Table 2. Main features of the mesh used for speedup analysis.

Parameter Value

Cells (s) 981,424
Cell type hexahedra

Max aspect ratio 85.2749
Max non-orthogonality 77.9564

Average non-orthogonality 19.0842
Max skewness 2.84655

Figure 2. Local speedup achieved with PCG/PBiCG solver across heterogeneous architectures using
RapidCFD to solve the ERCOFTAC Turbine T-99 draft tube.

In all three heterogeneous architectures, speedup suddenly declines when a second
GPU is used. Interestingly, the NVIDIA Tesla C1060 GPUs (in WSPAC) achieve the highest
speedup despite this trend. These results suggest that further domain decomposition
beyond two GPUs leads to diminishing speedup, at least for this fixed-size problem.
It seems that porting too much of the computational domain to multiple GPUs leads to
significant computational slowdown. This indicates that the GPU, despite being a massively
parallel device, requires a substantial number of threads and a large set of elements to
achieve efficient program execution.

An additional factor that must be considered, which could potentially reduce speedup,
is the method of parallel computing employed by OpenFOAM. It is based on domain
decomposition, whereby the geometry and associated fields are partitioned into subdo-
mains and distributed among separate processors for solution. Parallel computing is then
facilitated by the standard Message Passing Interface (MPI) [48]. In fact, RapidCFD also
leverages an MPI to manage parallel computing within the heterogeneous CPU+GPU
architecture. This domain decomposition approach leads to a significant exchange of cell
data between processors, as well as increased memory consumption. These aspects will
be further analyzed in subsequent sections. Additionally, it has been observed that efforts
to achieve strong scalability within homogeneous, single-node (CPU-only) environments
can place increasing pressure on the memory subsystem as the number of MPI processes
grows. This, in turn, ultimately restricts scalability [48].

However, if base speedup is calculated, i.e., a larger wall clock time in serial is placed
in the numerator of Equation (1) for all calculations, a higher speedup is obtained by the
NVIDIA Tesla K40 GPUs in WSMOL. This is because they are faster due to their greater
computing power per unit, as can be observed in Figure 3.
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Figure 3. Base speedup achieved with PCG/PBiCG solver across heterogeneous architectures using
RapidCFD to solve the ERCOFTAC Turbine T-99 draft tube.

This last result demonstrates how speedup could lead to misleading conclusions when
comparing different architectures under unequal conditions or unclear scenarios.

3.2. Performance of Linear Solvers on the Arquitectures

As a more comprehensive GPU-accelerated library, RapidCFD goes beyond being a
plugin for solving sparse matrices in the OpenFOAM environment. Both linear solvers,
PCG/PBiCG and GAMG, were ported to CUDA alongside discretization schemes and
solution algorithms for various phenomena, e.g., compressible and incompressible fluid
flows and heat transfer, to accelerate computations using GPUs. The performance of the
linear solvers was analyzed by solving the same grid detailed in Table 2 using one, two,
three, and four GPUs across three distinct heterogeneous architectures.

3.2.1. GPUs and Wall Clock Time

At first glance, Figures 4–6 might suggest that gradient solvers are the fastest option
for CFD calculations due to their superior performance. However, it would be premature
to assume this advantage remains constant across different parameter configurations, as
will be demonstrated later.

Figure 4. Comparison of wall clock time using different linear solvers, and preconditioners/smoothers
on WSMOL.
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Figure 5. Comparison of wall clock time using different linear solvers, and preconditioners/smoothers
on WSGAL.

Figure 6. Comparison of wall clock time using different linear solvers, and preconditioners/smoothers
on WSPAC.

The data presented were obtained from CFD calculations where a tolerance value
of 10−12 was used for the momentum, pressure, and turbulence scalar equations at each
time step. This can be considered a tight tolerance setting. The solver tolerance repre-
sents the point at which the residual becomes sufficiently small for the solution to be
deemed accurate.

Upon result comparison, the computation time required to solve the same-sized
problem using the GAMG linear solver was found to be nearly identical for both the Gauss–
Seidel and Jacobi smoothers. Additionally, it was observed that for K40 GPUs in WSMOL
and M2090 GPUs in WSGAL, the computation time increased alongside the number of
GPUs and parallel domains. Conversely, the C1060 GPUs in WSPAC exhibited an inverse
trend, with the computation time decreasing up to the use of four GPUs.

When employing the PCG/PBiCG linear solver with diagonal and AINV precondi-
tioners, it was found that AINV offers the fastest performance. Interestingly, while using
two GPUs reduces computation time, increasing the GPU count beyond that actually slows
down the process.
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3.2.2. Tolerance Value and Wall Clock Time

When the hardware–software combination was tested with a relaxed tolerance of 10−6,
the computation time with the GAMG solver exhibited similar behavior: Gauss–Seidel and
Jacobi smoothers showed negligible differences. Importantly, however, the multigrid solver
outperformed the gradient solver across all architectures, refer to Figures 7–9.

Figure 7. Comparison of wall clock time using different tolerance values, linear solvers, and precon-
ditioners/smoothers on WSMOL.

Figure 8. Comparison of wall clock time using different tolerance values, linear solvers, and precon-
ditioners/smoothers on WSGAL.
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Figure 9. Comparison of wall clock time using different tolerance values, linear solvers, and precon-
ditioners/smoothers on WSPAC.

An analysis of the plotted data reveals a clear speed advantage for multigrid linear
solvers over gradient solvers when a relaxed global tolerance of approximately 10−6 is used
within the iterative process for each time step. However, this preference reverses when
the global tolerance is tightened to smaller values, such as 10−12, as gradient solvers then
regain their speed advantage.

It is crucial to note that in all test cases, the convergence criteria value was consistently
maintained at 10−3 throughout the computational process from setup to completion. This
controlled setting bolsters the conclusion that the most efficient approach to achieve optimal
speedup in GPU-accelerated CFD solutions involves pairing relaxed tolerance values with
multigrid linear solvers, effectively minimizing computation time.

However, hardware limitations, which will be explored in the following section, can
also exert a significant influence on the optimal selection of a linear solver.

3.3. Grid Size and Random Access Memory

Having employed a fixed problem size for the initial performance evaluation, a series
of tests is now presented that is designed to identify the most significant problem size, i.e.,
the maximum number of cells, suitable for achieving both effective flow resolution and
affordability in CFD simulations.

Table 3 summarizes all the grids used in the evaluation. Although larger grids theoret-
ically lead to more accurate CFD solutions, as demonstrated by the convergence analysis,
determining the maximum solvable problem size for GPU-accelerated CFD with limited
resources remains an open question.

Table 3. Summary of CFD grids used in GPU acceleration evaluation for RAM analysis.

Mesh Cells (s) Cell Type Max Aspect Ratio Max
Non-Orthogonality

Average
Non-Orthogonality Max Skewness

1 446,820 hexahedra 130.19 85.9322 18.3519 1.12942
2 1,154,832 hexahedra 108.736 86.2163 17.3094 1.17965
3 2,051,712 hexahedra 128.456 86.4505 17.5097 1.41215
4 3,179,080 hexahedra 126.468 86.1913 17.0782 1.51821
5 4,215,904 hexahedra 128.673 86.2943 16.8987 1.56909
6 5,096,736 hexahedra 140.634 86.4107 16.7642 1.61848
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As HPC involves utilizing all available processing power, RapidCFD was used to
measure the RAM requirements for solving CFD problems across different computer
domains. These measurements were taken in both serial and parallel settings. In serial
mode, each domain was solved using only one CPU core/thread and one GPU. In parallel
mode, two, three, or four CPU cores/threads were used alongside an equal number of GPUs
in WSPAC and WSMOL architectures. WSGAL employed a slightly different configuration
with only two CPU cores and two GPUs. For each domain, both PCG/PBiCG with an AINV
preconditioner and GAMG with a GaussSeidel smoother were utilized, with a tolerance
value of 10−6, as this combination has been shown to be the fastest.

Building upon the previously mentioned domain decomposition approach favored
by OpenFOAM, the unstructured Scotch decomposition algorithm was employed. As
documented by [49], Scotch decomposition prioritizes minimizing the size of interprocessor
boundaries. However, it is prone to generating entirely new domains during redistribution,
leading to a significant amount of cell data exchange between processors and, consequently,
an increased memory consumption. Interestingly, inter-processor communication is inte-
grated as a boundary condition, ensuring each cell resides solely on a unique processor
via a zero-halo-layer approach, which eliminates the need for duplicated cell data near
processor boundaries. It is important to note that the impact of this method transcends
memory consumption and influences both computation time and speedup.

Figures 10–13 reveal a consistent pattern: regardless of grid size or whether com-
putations are performed in serial or parallel using either PCG/PBiCG or GAMG linear
solvers, the RAM requirements exhibit a straight linear behavior. This trend demonstrates
that parallelizing a computational domain necessitates more RAM compared to solving it
serially.

A linear regression analysis of the obtained data reveals that the memory requirements
for solving problems using either PCG/PBiCG or GAMG linear solvers can be fitted
and extrapolated based on hardware availability, the problem size, or alignment with
convergence analysis results. Notably, for each grid size, parallelizing the computational
domain consistently increases the intercept of the linear relationship while the slope remains
remarkably stable. This observation has led to the proposal of four predictive equations
for forecasting GPU memory requirements as a function of grid size and linear solver
choice (two equations for PCG/PBiCG and two for GAMG). Notably, these equations are
architecture-specific, as the results have shown a distinct influence of GPU architecture
(Fermi: C1060 and M2090; Kepler: K40).

Figure 10. Predictable memory growth: linear scaling of RAM use in GPU-accelerated CFD across
grid sizes and solvers using one GPU.
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Figure 11. Predictable memory growth: linear scaling of RAM use in GPU-accelerated CFD across
grid sizes, solvers, and parallelization using two GPUs.

Figure 12. Predictable memory growth: linear scaling of RAM use in GPU-accelerated CFD across
grid sizes, solvers, and parallelization using three GPUs.

Figure 13. Predictable memory growth: linear scaling of RAM use in GPU-accelerated CFD across
grid sizes, solvers, and parallelization using four GPUs.
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For the PCG/PBiCG gradient linear solver in a Fermi architecture:

M = 125n + 0.001165s (2)

For the PCG/PBiCG gradient linear solver in a Kepler architecture:

M = 225n + 0.001165s (3)

For the GAMG multigrid linear solver in a Fermi architecture:

M = 125n + 0.001469s (4)

Finally, for the GAMG multigrid linear solver in a Kepler architecture:

M = 225n + 0.001469s (5)

where M is the memory requirement in Mb, n is the number of GPUs used in the calculation
and s is the grid size (total number of cells).

As expected, memory requirements are found to vary with the linear solver chosen for
each grid size. More RAM is demonstrably required by the GAMG solver compared to the
PCG/PBiCG solver; however, as noted in the previous section, faster speeds are also offered
by the GAMG solver when tolerance values are relaxed. Additionally, a slight increase
in memory requirement has been observed when problem decomposition is parallelized
when compared to serial runs, which is independent of the grid size or linear solver type.
On average, 22% more RAM is required by the GAMG solver compared to the PCG/PBiCG
solver. Therefore, it is concluded that the trade-off for the reduced calculation time achieved
using the GAMG solver is a higher RAM usage penalty.

3.4. Open-Source GPU-Accelerated Codes: RapidCFD vs. Cufflink

The results from CFD simulations of the T-99 workbench test case, as described in
previous sections, have demonstrated the advantages of employing RapidCFD and GPUs
for solving CFD problems. The most significant findings pertain to memory usage and
wall clock time for each CUDA-accelerated linear solver deployed within the calculation
process. While only RapidCFD has been tested in multiple scenarios thus far, two reliable
alternatives exist for utilizing GPUs in general-purpose CFD codes. This section will
examine the cufflink plug-in for foam-extend, comparing its performance with results
obtained from RapidCFD.

Before delving into the results and code comparison, several clarifications are essential:

(i) cufflink is a plug-in for foam-extend, meaning only its linear solvers are coded in
CUDA, leaving the rest of the main code unmodified. In contrast, RapidCFD has
ported numerous other parts to CUDA.

(ii) RapidCFD offers PCG/PBiCG and GAMG solvers, whereas cufflink’s CUDA acceler-
ation is limited to gradient cudaCG and cudaPBiCGStab solvers.

(iii) The latest cufflink version for foam-extend lacks multi-GPU parallel execution capa-
bilities, unlike RapidCFD. Consequently, comparisons of wall clock time and memory
requirements were conducted by solving all cases on a single GPU of each previously
used architecture.

(iv) To ensure consistency, a diagonal preconditioner and a tolerance value of 10−6 were
uniformly applied to all simulations, both in RapidCFD and cufflink. The residual
target value was also held constant at 10−3.

The results, as visualized in Figure 14, reveal that RapidCFD consistently achieves
faster execution times compared to cufflink when solving problems of identical size. Con-
versely, Figure 15 demonstrates cufflink’s significantly lower memory consumption for
solving linear equation systems. Notably, this trade-off between solution time and memory
requirements persists even when problem sizes are scaled up.
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Figure 14. Wall clock time for different grid sizes: RapidCFD vs. cufflink.

Figure 15. Memory consumption for different grid sizes: RapidCFD vs. cufflink.

The faster execution time observed in RapidCFD compared to cufflink can be attributed
to their distinct implementation approaches. cufflink operates as a plug-in for foam-extend,
with only its linear solvers coded in CUDA. This means that only the linear equation system
matrices are transferred through the PCI Express port and allocated to the GPUs for solving,
after which the results are sent back to the CPU. This process iterates until the convergence
criteria are met. Although the information package might be relatively small compared to
the overall problem size (mesh information is not transferred), the transfer bus and memory
allocation speed within each time step act as bottlenecks, introducing delays.

RapidCFD offers an alternative approach to circumvent the bus speed bottleneck by
not only coding linear solvers in CUDA but also allocating a copy of the mesh data to
the GPUs’ memory at the outset of the computation process. This strategy minimizes the
amount of data transferred during each iteration, leading to a global reduction in latency,
albeit at the expense of increased memory requirements.

Concerning the memory requirements of cufflink on scaled problems, Figure 16
presents the data measured from CFD computations using different grid sizes for both
RapidCFD and cufflink, along with the linear regressions that fit the data.



Computation 2024, 12, 57 15 of 20

Figure 16. Memory use scaling in CFD across grid sizes: RapidCFD and cufflink.

Two equations are proposed to forecast the memory required by GPUs based on the
grid size and GPU architecture.

For the Fermi architecture, the following equation can be used:

M = 70n + 0.000230s (6)

And for the Kepler architecture:

M = 140n + 0.000230s (7)

A linear behavior of memory requirements is also observed for cufflink, suggesting its
potential to solve larger grid size problems compared to RapidCFD, albeit with a trade-off
of longer computation times.

4. Discussion

Figures 4–9 show that the AINV preconditioner exhibits faster convergence compared
to the diagonal preconditioner for the PCG/PBiCG linear solvers. This difference can be
attributed to the underlying formulation of the preconditioning techniques. As noted by
van der Vorst [50], CG methods project the original problem onto a smaller Krylov subspace
for solution approximation. Preconditioning plays a key role in improving the convergence
rate of these methods by transforming the system into one with better spectral properties.
This transformation allows for the achievement of an accurate solution with fewer iterations,
reducing the overall computational time. Consequently, the number of iterations needed for
convergence becomes the primary factor determining the computational cost. The diagonal
preconditioner, as described by Saad [46], utilizes the diagonal entries of the original matrix.
While its implementation is straightforward, it may not be effective for systems lacking
strong diagonal dominance. In contrast, the AINV preconditioner directly approximates
the matrix’s inverse, leading to excellent convergence properties for specific problems.

Multigrid methods employ a hierarchy of grids with varying levels of coarseness,
as explained by Wesseling [51]. Coarser grids address low-frequency errors, while finer
grids handle high-frequency errors, enabling efficient error reduction across different scales.
Within each multigrid cycle, smoothers are applied on the finer grids to reduce high-
frequency errors. The Jacobi smoother updates each solution point based on the values
of its immediate neighbors, while the Gauss–Seidel smoother iteratively updates solution
points using the most recently updated values of neighboring points during the current
iteration, potentially leading to faster convergence compared to Jacobi [52]. Figures 4–9
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illustrate that both smoothers exhibit similar performance in terms of solution time for the
same problem.

Multigrid methods generally exhibit optimal convergence rates, meaning the error
is reduced by a constant factor with each iteration. This characteristic can lead to fewer
iterations compared to CG methods, especially for well-structured problems [51]. However,
the overhead associated with grid transfers and hierarchy setup can contribute to a higher
cost per iteration. Figures 4–6 showcase this phenomenon, where using a tolerance of 10−12

results in a longer computation time for the GAMG linear solver compared to PCG/PBiCG.
Nonetheless, when a looser tolerance of 10−06 was used, as shown in Figures 7–9, the
GAMG linear solver became faster than PCG/PBiCG.

As expected due to the nature of CG and multigrid methods, Figures 10–13 demon-
strate that the memory requirement scales linearly with the problem size. Additionally,
multigrid methods require storing the solution on multiple grids and storing the data
structures for the grid hierarchy, resulting in higher memory requirements compared to CG
methods [51]. This observation is further supported by Figures 10–13, where PCG/PBiCG
exhibits lower memory requirements compared to GAMG linear solvers.

5. Implications

Segregated solvers encounter increased challenges when addressing transient prob-
lems, which require time-stepping and introduce additional iterations that can hinder
convergence. Furthermore, rapid changes in flow parameters over time can strengthen
the coupling between variables, potentially further slowing convergence. Compressible
flows necessitate the solution of additional equations, including those governing thermal
energy conservation and the relationship between density, temperature, and pressure.
While these algorithms can be adapted for heat transfer problems by solving the energy
equation alongside momentum and pressure correction, they are not inherently designed to
directly model buoyancy phenomena. Simulating multiphase flows (e.g., liquid–gas, solid–
liquid) introduces further complexity, requiring transport equations for phase fractions
and models for interfacial interactions. Additionally, cavitation, characterized by rapid
pressure changes and vapor bubble formation and collapse, presents even more equations
and numerical challenges. Both cavitation and multiphase flows necessitate the use of
specialized models, such as volume-of-fluid and level-set methods, which extend beyond
the capabilities of basic segregated solvers. Further details can be found in [44,52].

As mentioned earlier, the SIMPLE algorithm is a general numerical procedure for
calculating heat, mass, and momentum transfer in the steady state. The Pressure-Implicit
Splitting Operator (PISO) algorithm is used for transient problems and handles the pressure–
velocity coupling of implicitly discretized, time-dependent fluid flow equations. It utilizes
the splitting of operations in the solution process to achieve solutions close to the exact
difference equations [53,54]. The main differences between SIMPLE and PISO lie in the
included time derivation terms and the consistency of the pressure–velocity coupling
equation. Most of OpenFOAM’s fluid solver modules use SIMPLE. PIMPLE, a combination
of PISO and SIMPLE algorithms, couples mass and momentum conservation equations,
enabling larger time steps and higher Courant numbers [55]. Both PISO and PIMPLE are
suitable for transient problems, while SIMPLE is used for steady-state problems. Although
all three algorithms solve the same governing equations (continuity, momentum, and
energy), their key difference lies in how they iterate through equations [38,56].

Despite their differences in handling specific phenomena, SIMPLE, PISO, and PIMPLE
share the core principles of the segregated approach, potentially exhibiting similar per-
formance and computational costs. Factors like preconditioning, multigrid methods, and
solver selection all influence the computational cost. Therefore, results related to memory
bandwidth might be similar when using pressure-based solution algorithms like these.
However, the computation time would be the most affected, especially when simulating
complex phenomena like multiphase and cavitation flows due to the transient treatment
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and additional equations required in the solution. Nevertheless, findings from this work
can still be applied to similar problems in the turbomachinery field.

6. Limitations

Official OpenFOAM versions undergo constant development and maintenance by
Technical Committees and the OpenFOAM community, with new updates released twice a
year. RapidCFD, although derived from OpenFOAM 2.3.1, has remained largely unchanged
since its release. This means that new developments related to algorithms, linear solvers,
boundary conditions, and turbulence models, among others, are not ported from newer
OpenFOAM versions to RapidCFD. Currently, RapidCFD functions as a standalone solver,
requiring pre-processing and post-processing to be performed in OpenFOAM (official or
community versions) and ParaView, respectively. This can potentially create difficulties
if users wish to directly utilize new tools (boundary conditions, turbulence models, etc.).
In such cases, extra effort would be needed to port these features to RapidCFD. On the
other hand, foam-extend offers extensions and additional features. These features include
dynamic mesh and topological change support, turbomachinery extensions, implicitly
coupled conjugate heat transfer, and other physics coupling capabilities. However, its
GPU-accelerated library has been shown to be slower than the RapidCFD fork.

All available options remain open source and are supported by community devel-
opments, with some communities being larger than others. Therefore, modifications can
be made to better suit the problem under analysis. Ultimately, the decision of which
code to use depends on the problem’s complexity and, as it has been shown, available
hardware resources.

7. Conclusions

This study has investigated the acceleration of a turbomachinery numerical model us-
ing GPU-accelerated libraries for the OpenFOAM environment. Regarding the performance
of software/hardware combinations, it was shown that the optimal strategy employs the
GAMG solver with relaxed tolerance values. This configuration achieves reduced calcu-
lation times without compromising results compared to PCG/PBiCG. However, it was
also observed that the GAMG linear solver requires approximately 22% more RAM on the
GPUs compared to PCG/PBiCG. This increased memory demand can be considered as a
trade-off for the improved solution speed, as the GAMG solver is up to 70% faster than
PCG/PBiCG. Finally, it was observed that parallelizing a computational domain incurs a
memory cost in exchange for a reduced calculation time. To address this trade-off, a set of
equations was proposed to estimate the required RAM for each linear solver configuration.

The obtained results are highly promising. They suggest that porting larger portions of
CFD simulations to GPUs could lead to significant computation accelerations, particularly
for complex industrial flows like those encountered in a turbine testing laboratory.
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