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Abstract: The DNA virus responsible for monkeypox, transmitted from animals to humans, exhibits
two distinct genetic lineages in central and eastern Africa. Beyond the zoonotic transmission involving
direct contact with the infected animals’ bodily fluids and blood, the spread of monkeypox can
also occur through skin lesions and respiratory secretions among humans. Both monkeypox and
chickenpox involve skin lesions and can also be transmitted through respiratory secretions, but they
are caused by different viruses. The key difference is that monkeypox is caused by an orthopox-virus,
while chickenpox is caused by the varicella-zoster virus. In this study, the utilization of a patch-based
vision transformer (ViT) model for the identification of monkeypox and chickenpox disease from
human skin color images marks a significant advancement in medical diagnostics. Employing a
transfer learning approach, the research investigates the ViT model’s capability to discern subtle
patterns which are indicative of monkeypox and chickenpox. The dataset was enriched through
carefully selected image augmentation techniques, enhancing the model’s ability to generalize across
diverse scenarios. During the evaluation phase, the patch-based ViT model demonstrated substantial
proficiency, achieving an accuracy, precision, recall, and F1 rating of 93%. This positive outcome
underscores the practicality of employing sophisticated deep learning architectures, specifically vision
transformers, in the realm of medical image analysis. Through the integration of transfer learning and
image augmentation, not only is the model’s responsiveness to monkeypox- and chickenpox-related
features enhanced, but concerns regarding data scarcity are also effectively addressed. The model
outperformed the state-of-the-art studies and the CNN-based pre-trained models in terms of accuracy.

Keywords: monkeypox; chickenpox; patches; vision transformer; deep learning; skin color images;
global features extraction

1. Introduction

After the third wave of COVID-19, which started in January 2022, the condition of
the pandemic got progressively less severe in the first half of the year 2022. Sadly, a
new threat appeared in just a few weeks and quickly spread around the world, with the
risk of becoming a pandemic. This sickness, called human monkeypox, although not a
new one [1], was first found in 1970, and over the next ten years, more and more cases
were found. Notably, this is not the first time that human monkeypox has spread. The
2003 Midwest monkeypox outbreak and the 2017–2019 Nigeria monkeypox outbreak are
evidence of this [2]. There have also been rare cases of the disease in places like the UK,
Singapore, and different parts of the US [3]. On the other hand, over the past nine months,
the 2022 monkeypox outbreak has spread to more than 100 countries and regions [4].

Computation 2024, 12, 33. https://doi.org/10.3390/computation12020033 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12020033
https://doi.org/10.3390/computation12020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0001-6910-7613
https://orcid.org/0000-0002-1284-234X
https://orcid.org/0000-0003-0276-295X
https://doi.org/10.3390/computation12020033
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12020033?type=check_update&version=1


Computation 2024, 12, 33 2 of 14

Although this virus is comparatively less contagious due to its mode of transmission [5],
the imperative for the development of a cost-effective and expeditious detection system
remains paramount, given its continued spread. Understanding the genetic diversity and
transmission patterns of the monkeypox virus is crucial for public health efforts, outbreak
control, and vaccine development.

• Genetic Diversity: The monkeypox virus has genetic variety, similarly to other viruses.
Mutations that occur during viral replication and recombination activities give rise
to this variety. Various strains of MPXV with different genetic compositions have
been identified through genomic investigations. These variations may have an effect
on host range, transmissibility, and pathogenicity. Through genome sequencing and
analysis, researchers are able to follow the evolution of the virus, gaining insight into
its epidemiology.

• Transmission Patterns: Non-human primates, especially African rodents, are the main
reservoir hosts for monkeypox infections. Direct contact with diseased animals or
their body fluids, as well as contact with contaminated objects or surfaces, can result in
human diseases. Although it happens less frequently, human-to-human transmission
can happen when skin lesions or respiratory droplets come into contact with one
another. Human behavior, healthcare practices, vaccine coverage, and population
density are some of the factors that affect the spread of the disease.

• Globalization and Travel: Globalization and increased travel facilitate the spread of
infectious diseases, including monkeypox. The importation of infected animals or
humans can introduce the virus to new regions. Surveillance systems at ports of entry
help detect and contain imported cases, preventing local transmission.

Belonging to the Poxyviridae family [6], this virus finds its natural hosts among
mammalian species, including squirrels, rats, and various primates. The disease caused by
this virus exhibits an infectious course, lasting from two to four weeks, typically manifesting
its initial symptoms approximately five to twenty-one days after exposure. As of now, the
known symptoms include fever, muscle and joint pain, chills, swollen lymph nodes, and the
appearance of blistering spots. [7]. These rashes usually show up in three days, primarily
appearing on the face, hands, and bottoms of the feet. There is also potential for these
rashes to extend to other areas, such as the mouth, eyes, and genital region. Subsequently,
the disease progresses to a phase characterized by skin eruptions, which evolve through
four distinct stages. At first, lesions have flat bases and are called macules. Later, they get
raised, harden, and are then called papules. After that, these papules fill with pus and turn
into pustules, which then turn into solid crusts [8].

The duration of monkeypox symptoms typically spans a period of 2 to 4 weeks, and it
is noteworthy that severe cases can manifest. A study from the World Health Organization
(WHO) says that the latest case fatality rate is somewhere between 3% and 6%. Monkeypox
usually takes between 6 and 13 days to incubate, but it is important to know that it can take
anywhere from 5 to 21 days. The spread happens over two separate time periods. During
the first few weeks after the attack, patients often had back pain, fever, swollen lymph
nodes, severe headaches, muscle aches, and a general lack of energy. The next phase usually
starts one to three days after the fever starts, and this is when the familiar skin sores show
up. These skin lesions show up on the face in about 95% of the cases, on the palms and soles
of the feet in about 75% of the cases, on the inside of the mouth about 70% of the time, on
the external sexual organs in about 30% of the cases, and on the conjunctivae, including the
eyeball, in about 20% of the cases [9]. Transmitting the virus mostly happens through close
touch between people or through bedding and clothes that have been contaminated [9].
According to [10], it is anticipated that more cases will be detected. However, it is important
to note that the availability of polymerase chain reactions (PCR) and other biochemical
tests is currently limited in terms of sufficient quantities, as indicated by [11].

Multiplex polymerase chain reaction (PCR) testing is the most common way to detect
human monkeypox. However, the accuracy of the results obtained through this test can be
compromised, often yielding inconclusive outcomes due to the virus’s transient presence in
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the bloodstream, as highlighted by [12]. This method of diagnosis also needs extra details,
like the current stage of the rashes, the patient’s age, and the exact times when the fever
and rash started. Furthermore, PCR tests are not widely utilized because they require a
lot of resources, which causes them to be unavailable in most rural or remote places. In
light of these challenges, there is a compelling case for the development of an alternative
diagnostic system which operates independently of these metrics and leverages real-time
data while utilizing readily accessible devices. Such an approach holds the potential to
offer a near-perfect diagnostic solution for monkeypox, significantly enhancing both its
effectiveness and efficiency.

Utilizing artificial intelligence (AI) and its various parts has been used in healthcare
for a long time [12,13]. When it comes to healthcare, employing deep neural networks,
especially for computer vision tasks, opens up a whole new world of possibilities. This
method can harness the huge amount of healthcare data that is available to train convo-
lutional neural networks (CNNs). These networks can then use current devices to solve
new healthcare challenges [14]. A similar deep learning model based on patches has been
proposed to identify monkeypox and chickenpox using skin images. This model utilizes
RGB images of skin lesions captured using the cameras commonly found on smartphones.

2. Literature Review

The first recorded instance of monkeypox affecting humans was documented in 1970,
marking the inception of human monkeypox studies in the scientific literature [15,16]. Over
recent years, the research on human monkeypox has gained momentum, prompted by the
alarming global spread of monkeypox infections. In fact, some researchers [17,18] have
explicitly noted the pressing need for further investigation in this area.

Despite the historical presence of human monkeypox cases, the application of com-
puter vision for early disease diagnosis is a relatively recent development. Currently, there
is a dearth of comprehensive studies on this subject. Ahsan et al. [19], researchers collected
image data of monkeypox-infected cases from Google called “Monkeypox2022” and con-
ducted an in-depth analysis using advanced deep learning techniques. Specifically, they
harnessed a modified VGG16 network for this purpose. Their model had great performance
measures; its accuracy, sensitivity, recall, and f1-score all reached an amazing 97%. Ali
et al. [11] involved the creation of a dedicated database of human monkeypox images,
subsequently subjecting them to classification. In their classification efforts, the researchers
employed four distinct deep learning networks, namely VGG16, ResNet50, InceptionV3,
and Ensemble.

A lot of experts have used deep learning to figure out how to diagnose the monkeypox
(Mpox) virus. In a different study, Abdelhamid et al. [20] used the AI-Biruni Earth Radius
Optimization method, along with GoogLeNet, to pull out features for their Mpox diagnosis.
They got a maximum accuracy rate of 98.8% by using different deep learning methods. The
f1-score, sensitivity, and recall reached 62.5%, 99.8%, and 76%, respectively.

To make it easier for people to get medical help, a mobile app was made that can
diagnose Mpox from pictures of skin lesions [21]. The creation process used Java and
Android technologies, which led to an excellent maximum accuracy rate of 91.11%. The
sensitivity score was 85%, the memory score was 94%, and the f1-score was 89%. A study by
Islam et al. [22] used deep learning methods and a dataset with pictures of measles, mumps,
chickenpox, smallpox, cowpox, and typhus. They utilized seven different classifiers, and
the results were 83% for accuracy, 85% for sensitivity, 94% for recall, and 89% for the f1-
score. Finally, Sitaula et al. [23] used eight different deep learning models that had already
been trained to tell the difference between four groups and identify a case of mumps. They
got an f1-score of 85%, an accuracy rate of 87.13%, a sensitivity rate of 85%.

Alakus et al. [24] used wart DNA segments and deep learning models to tell the
difference between warts and monkeypox in a distinctive way. This classification process
involved three stages and achieved an impressive maximum accuracy of 96.08%. Given the
potential for monkeypox to emerge as a significant global health concern, efficient resource
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utilization is imperative. Disease diagnosis is one of the many areas in which artificial
intelligence (AI) is essential. This work advances our knowledge of and ability to treat
monkeypox by using a variety of transfer learning models to classify images of the illness.
The objectives of this research are as follows:

• The implementation of augmentation techniques was considered essential to ensure
the model proper and consistent training with balanced class representation.

• A state-of-the-art vision transformer model was employed, utilizing a transfer learning
approach to detect instances of monkeypox from skin images.

• An empirical exploration and adjustment of hyperparameters related to the proposed
model and its training process were carried out to optimize performance.

• The proposed model’s performance was systematically compared with that of other
deep learning models and relevant studies. This comparative analysis aimed to derive
insights into the significance of the proposed model within the broader research context.

3. Proposed Methodology

This section discusses the proposed methodology with the description of the dataset.
The augmentation technique and the splitting of the model is also part of this section.
Lastly, the model architecture is discussed with proper working of the model. The complete
architecture of the proposed work is presented in Figure 1.
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Figure 1. Illustrating the comprehensive design and process flow of the proposed method.

3.1. Dataset Description

The experiment for classifying monkeypox was conducted using the Monkeypox
Skin Image Dataset (MSID). This dataset, sourced from Kaggle (https://www.kaggle.
com/datasets/dipuiucse/monkeypoxskinimagedataset, (accessed on 1 December 2023)),
comprises images of human skin, representing four distinct skin diseases: monkeypox,
chickenpox, measles, and uninfected skin, as presented in Figure 2. Within the dataset, a
total of 279 instances of monkeypox were identified, along with 107, 91, and 293 instances
of chickenpox, measles, and uninfected skin, respectively. In total, the dataset comprises
770 images. Originally, the images in the dataset were in PNG format with a resolution size
of 224 × 224 pixels in RGB.

https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset
https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset
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Figure 2. Distribution of samples in datasets.

3.2. Data Pre-Processing

This section discusses the preprocessing of the splitting of the dataset before diving
into the training and testing of the proposed model for monkeypox identification. Initially,
the distribution of the samples across different classes was very diverse, and few classes
have a very limited number of samples as shown in Table 1. By analyzing this behavior of
the MSID dataset, 30 images of each class were split in a test set in order to evaluate the
model on unseen samples. Furthermore, the rest of the dataset (training set) contains very
few numbers of samples for some classes, like measles, that are not sufficient for the proper
training of the model.

Table 1. The distribution of samples in different subsets.

Class Split Total (before
Augmentation)

Train (before
Augmentation)

Total (after
Augmentation)

Train (after
Augmentation)

Monkeypox

Train 650

249

1836

498
Chickenpox 77 385
Measles 61 427
Normal 263 526
Monkeypox

Test 120

30

120

30
Chickenpox 30 30
Measles 30 30
Normal 30 30

In order to expand the number of dataset samples for each class, data augmentation is
performed on the training samples. Additionally, data augmentation keeps the model from
overfitting, and helps to make it more resilient. This popular method is used to expand the
number of samples that are automatically generated by using various image transformation
methods, including cropping, translation, rotation, shearing, mirroring, and vertical and
horizontal flipping. In order to partially balance the dataset samples for each class, four
data augmentation techniques, brightness, rotation, zooming, and shear, are applied to the
dataset in this study, as presented in Figure 3. The images in the monkeypox, chickenpox,
measles, and uninfected classes are augmented by factors of 2, 5, 7, and 2, respectively.
Since the measles class has the fewest images, it has undergone the most augmentation.
Table 1 also summarizes the total number of samples for each class in the training set before
and after the augmentation.

Lastly, the labels of the training and testing sets were encoded into 1, 2, 3, and 4 for
monkeypox, chickenpox, measles, and normal classes.
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3.3. Proposed Architecture

This section presents the ViT framework, emphasizing its key concepts, organization,
self-attention mechanism, multi-headed self-attention, and the mathematical foundations
that informed its development. In 2020, the ViT—a deep neural network architecture—was
first introduced, and was specifically designed for image recognition tasks [25]. It expands
the transformer architecture, which was initially developed for natural language processing
through the use of the innovative notion of viewing images as sequences of tokens, which
are frequently represented by image patches. ViT uses the transformer design’s capabilities
to handle these token sequences efficiently. Notably, ViT’s transformer design has proven
to be broadly applicable and effective, as shown by its successful application to a range of
tasks, such as object identification, image restoration and identification [26–28].

Important steps in the ViT architecture include tokenization and input image embed-
ding. To move the image to a higher-dimensional space, it is first divided into a grid of
non-overlapping patches, flattened, and then linearly converted and normalized. The ViT
model supports comprehensive learning by extracting both global and local information
from the image through tokenization and embedding.

Despite having the ability to handle sequences, the transformer design does not specif-
ically account for the location of each token inside the sequence. The ViT architecture uses
pre-defined positional embeddings to overcome this restriction. These embeddings, which
are extra vectors, encode the sequence positions of each token before being transmitted
into the transformer layers. Through this integration, the model is able to deduce spatial
information from the input image, comprehending the relative positions of the tokens.

The multi-head self-attention (MSA) mechanism is the central component of the ViT
architecture. The model may focus on many areas of the image simultaneously because of
this feature. The discrete “heads” that comprise MSA compute attention independently.
These attention heads can focus on different parts of the image, creating a variety of
representations that are then integrated in order to create the final image representation.
ViT records complex interactions between input items by continually monitoring several
sections. However, because it requires additional processing to aggregate the results from
all heads and to pay greater attention to the heads, this upgrade increases computational
costs and complexity. The mathematical expression for MSA is as follows:

MSA(Q,K,V) = Concat (H1, H2, . . ., Hn) (1)

Equation (1) defines Q, K, and V as the query, key, and value matrices. The H1, H2, . . .,
Hn denote the outputs of several attention heads. In neural networks, notably in transform-
ers, multi-head attention employs multiple sets of attention weights (attention heads) to
grasp various facets of relationships within the input data. Each output corresponds to the
i-th attention head. The self-attention mechanism is crucial in transformers, forming the
cornerstone for explicitly modeling interactions and relationships across all sequences in
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prediction tasks. Unlike CNNs, the self-attention layer aggregates insights and features
from the whole input sequence in order to gather both local and global knowledge. Self-
attention stands out from CNNs because of this characteristic, which encourages a more
thorough analysis and representation of the data.

The attention mechanism computes the dot product between the query and key vectors,
normalizes the attention scores using SoftMax activation function, and adjusts the value
vectors to produce better output representation. Cordonnier et al.’s study [29] investigated
the connection between convolution processes and self-attention. Their findings show
that when self-attention is given a wide range of factors, it develops into a very flexible
and adaptable mechanism that can extract both local and global features. This proves that
self-attention is a more adaptable and versatile approach than conventional convolutional
neural networks.

Figure 4 displays the abstract level ViT network diagram, which is based on the
following key elements of the ViT model:
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Patch Embedding: Within the ViT framework, the initial image input undergoes a
process wherein it is subdivided into non-overlapping patches of fixed sizes. Subsequently,
each patch undergoes linear projection, facilitated by a learned linear transformation matrix,
which operates to transform the 2D spatial characteristics of the image into a sequential
arrangement of embeddings.

Positional Embedding: Given the inherent lack of spatial understanding within
the transformer architecture, positional information becomes crucial. To address this,
positional embeddings are introduced. These embeddings are incorporated into the patch
embeddings, offering insights into the spatial positions of each patch within the overall
image structure.

Transformer Encoder: The positional embeddings (E_POS) pass through an encoder
transformer. This encoder consists of several layers, each using feedforward neural net-
works and self-attention processes. Each patch is able to consider other patches, due to
the self-attention process, capturing the image’s overall associations. This is followed by
feedforward neural networks, processing the attended representations further. As a result,
the encoder generates contextualized embeddings that capture local and global visual
information for every patch.

Classification Head: Finally, the transformer encoder yields final contextualized
embeddings that provide the basis for other tasks, most notably image classification.
Various approaches can be employed for processing these embeddings in classification tasks.
One widely used technique is calculating the mean of all embeddings or the embedding of
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a particular token (e.g., a classification token). After processing, the data is put through one
or more fully connected layers, creating class predictions as a result.

4. Experimental Results and Discussion

This section provides a thorough analysis of the assessment metrics used to determine
the efficacy of the suggested approach. It also explores the system and software prerequi-
sites that are necessary for model evaluation and training. Extensive details pertaining to
the diverse hyper-parameters and their associated values are meticulously outlined. Addi-
tionally, a comprehensive analysis of the outcomes attained using the suggested approach
is methodically provided in this section.

4.1. Evaluation Measures

Assessment metrics are quantitative measurements that are crucial for evaluating a
deep learning model’s efficacy. They are essential in the evaluation of how well different
models or algorithms perform on a given task, determining the performance of a model or
algorithm in solving a particular issue, and identifying possible areas for improvement. The
assessment metrics utilized in this study include recall/sensitivity, ROC curve, accuracy, f1-
score, precision, and confusion matrix. Together, these measures offer a thorough evaluation
of the model’s performance and offer insightful information about its advantages and
potential improvement areas.

Accuracy: The accuracy metric calculates the ratio of correctly categorized cases to
total samples, which assesses the overall correctness of the model’s predictions. However,
depending only on accuracy might not be sufficient enough to provide a thorough assess-
ment in instances where different types of errors carry different degrees of relevance, or in
cases where datasets are imbalanced.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Precision: The precision of a model refers to its ability to accurately identify positive
samples from the set of real positives. The ratio of genuine positives to the total of true
positives and false positives is measured by this metric. To put it simply, accuracy tells us
how well the model works when it makes a favorable prediction.

Precision = TP/(TP + FP) (3)

Recall: Recall, sometimes referred to as sensitivity or the true positive rate, is used to
assess how well the model distinguishes positive samples from the real positives pool. The
ratio of true positives to the total of true positives and false negatives is used to calculate
this measure. Recall essentially provides an evaluation of how comprehensive the model’s
positive predictions are.

Recall = TP/(TP + FN) (4)

F1-Score: The f1-score is a complete statistic that balances precision and recall. It is
computed as the harmonic mean of these two measurements. This is especially useful
when the distribution of errors between the classes is not equal, or when the importance of
the two categories of errors is the same. The f1-score is a consolidated evaluation of the
precision and recall capabilities of the model, using a range from 0 to 1. It performs best
at 1.

f1-score = (2 × (Precision × Recall))/(Precision + Recall) (5)

4.2. Environmental Setup

Different experiments, including the training and testing of the model, were carried
out in the Colab environment. The model was trained and evaluated using TensorFlow
and Keras, employing the Python programming language. The experiments made use



Computation 2024, 12, 33 9 of 14

of a NVIDIA Tesla T4 GPU with 15 GB of RAM on the free version of Google Colab
(https://colab.research.google.com/, (accessed on 3 December 2023)).

4.3. Hyper-Parameter Settings

To achieve optimal performance in model training for monkeypox classification, a
comprehensive process of empirical experimentation was undertaken to fine-tune various
hyperparameters. These critical factors include batch size, choice of optimizers, learning
rate, epochs, embedding size, patch size, and the selection of an appropriate loss function.
Through systematic iteration and testing, the aim was to identify the combination of
hyperparameter values that yields the best results in classifying monkeypox. This iterative
optimization process is crucial in ensuring that the model achieves the desired level of
accuracy and robustness in distinguishing monkeypox cases effectively. The details of the
parameters are given in Table 2.

Table 2. Hyperparameters settings.

LAYER TYPE Parameters

Architecture Patches and Global Feature Extraction-Based ViT

Optimizer Adam

Learning Rate 0.0001

Epochs 10

Batch Size 2 × 10−5

Patches (16,16)

Hidden Size for Embedding Dimension 768

Number of Channels 3

Number of Head Layers 12

Number of Layers 36

Dropout for Encoder 0.1

Image Size (224,224)

4.4. Results Analysis and Discussion

In the proposed study, a vision transformer model is used with transfer learning
technique for the classification of skin-related diseases, including monkeypox. The dataset
was originally based on 770 samples, and some of the classes have very insufficient samples
for the proper training of the model. Firstly, 30 samples were separated to form the test
set. Furthermore, the augmentation was performed on the rest of the samples in the
dataset. Finally, all the original samples, except for the test samples and the augmented
samples, collectively made the training set. The training of the vision transformer model
was completed using the training set. The 10% samples of the training set were used as the
validation set during the training of the model.

The model showed an accuracy of 0.992% and 0.967% for training and validation
during the training of the model, as presented in Figure 5. The model also showed a loss of
0.038% and 0.097% during the training and validation, respectively, as shown in Figure 5.

Overfitting was likely avoided in this study due to the consistency between the training
and validation accuracies and losses. The model exhibited a training accuracy of 0.992%
and a validation accuracy of 0.967%, indicating that it performed well not only on the
training data, but also on unseen validation data. Similarly, the training and validation
losses were low at 0.038% and 0.097%, respectively, suggesting that the model generalized
well to new data without overfitting to the training set. Furthermore, augmentation
samples contribute significantly to achieving both high scores and a well-generalized
model. By diversifying the training data through augmentation techniques, the model

https://colab.research.google.com/
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becomes exposed to a broader range of variations and scenarios, thus enhancing its ability
to generalize to unseen data. This helps prevent overfitting by ensuring that the model
learns robust features and patterns that are applicable across different instances of the data.
As a result, augmentation plays a crucial role in improving the performance and robustness
of machine learning models.
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A confusion matrix technique was used for the assessment of the trained model on the
unseen test data. Confusion matrix is an evaluation measure that shows the predicted label
of the model on the x-axis and the actual label of the samples on the y-axis. Furthermore, it
calculates the count of accurate matches when the predicted label is truly matched with the
actual label. The confusion matrix of the trained ViT model is presented in Figure 6. The
rest of the evaluation measures, including accuracy, precision, recall, and f1-score, were also
calculated as described in equations 2–5, using the confusion matrix. A detailed report of
the model for disease classification on unseen samples is given in Table 3. In Table 3, “Macro
AVG” refers to the unweighted average of metrics calculated independently for each class.
In other words, it treats all classes equally, regardless of their frequency or importance, and
computes the average of their individual performance metrics. This provides a balanced
assessment across all classes. On the other hand, “Weighted AVG” considers the class
imbalance by computing the average of the metrics weighted by the number of samples
in each class. This means that classes with more instances have a greater influence on the
overall average, compared to classes with fewer instances. “Weighted AVG” is particularly
useful when dealing with imbalanced datasets, as it gives more weight to the performance
of classes that are more representative of the overall distribution.

Table 3. The classification report of the model on test set.

Classification Report—Monkeypox Detection

Precision Recall F1 Score Support
0 0.93 0.90 0.92 30
1 0.90 0.93 0.92 30
2 0.90 0.93 0.92 30
3 1.00 0.97 0.98 30

accuracy 0.93 120
Macro Avg 0.93 0.93 0.93 120

Weighted Avg 0.93 0.93 0.93 120
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4.5. Comparative and Ablation Analysis

This part assessed the suggested model’s performance by contrasting it with the
pretrained models and the researchers’ proposed model. For this, numerous pretrained
models including the VGG16, ResNet50, and DenseNet-121 were trained on the training
data and evaluated on the test data. For the training of the pretrained model, an augmented
trained set was used. Furthermore, a similar setting for the model was used as for the
proposed model, allowing for a fair comparison of the model.

By following the training of the selected pretrained models, the test set used for the
assessment of the models (see Figures 7–9). During the assessment of the models, the
ResNet-50 model showed the highest accuracy score, but this was not higher than the
proposed ViT model, as shown in Table 4. The comparative performance of the model
reveals the significance of the ViT model for the identification of monkeypox, among other
skin diseases.
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Table 4. The comparative analysis of the proposed model.

Study Classes Method Accuracy

Ali et al. [11] 3 Ensemble 0.82%
Sahin et al. [21] 2 MobileNet V2 0.91%
Sitaula et al. [23] 4 Ensemble 0.87%
Uysal, 2023 [30] 4 LSTM 0.87%
Experiment 1 4 ResNet-50 0.37%
Experiment 2 4 VGG 16 0.30%
Experiment 3 4 DenseNet 201 0.28%
Proposed ViT 4 Vision Transformer 0.93%

Furthermore, the performance of the proposed model was evaluated by comparing
it with existing studies. The comparison with the existing studies also reveals that the
proposed model outperforms all the existing studies, as shown in Table 4. The main reason
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for the superior performance of the transformer model is the use of the global feature
extraction technique and patch-based learning.

5. Conclusions

As we come to the end of our research, the full review of our monkeypox and chick-
enpox detection model shows some interesting results. Through careful ablation and
comparison studies, we carefully looked at how our model worked internally to discover
its strengths and weaknesses. We carefully looked at how each part of the model affected
its success in the area of ablation studies. Through this process, we were able to pinpoint
the important factors, understanding how they interact with each other and affect our
ability to recognize things. Putting our patch-wise ViT model up against other methods
in a comparative study also gave us useful standards. Our model regularly did better
than competitors in accuracy tests, with a score of 93%, which supports the reliability of
the method. These results were passively added to our model, which shows both how
well it works, and where it could be improved and explored further in future studies. In
every case, our model did better than the others, showing that it could be a useful tool for
diagnosing monkeypox and chickenpox disease using images of human skin. Through the
combination of advanced deep learning techniques and healthcare problems, this journey
is a monumental step towards the improvement of medical diagnoses.
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