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Abstract: We compare the performance of two systems, ChatGPT 3.5 and GeoGebra 5, in a restricted,
but quite relevant, benchmark from the realm of classical geometry: the determination of geometric
loci, focusing, in particular, on the computation of envelopes of families of plane curves. In order
to study the loci calculation abilities of ChatGPT, we begin by entering an informal description of
a geometric construction involving a locus or an envelope and then we ask ChatGPT to compute
its equation. The chatbot fails in most situations, showing that it is not mature enough to deal with
the subject. Then, the same constructions are also approached through the automated reasoning
tools implemented in the dynamic geometry program, GeoGebra Discovery, which successfully
resolves most of them. Furthermore, although ChatGPT is able to write general computer code,
it cannot currently output that of GeoGebra. Thus, we consider describing a simple method for
ChatGPT to generate GeoGebra constructions. Finally, in case GeoGebra fails, or gives an incorrect
solution, we refer to the need for improved computer algebra algorithms to solve the loci/envelope
constructions. Other than exhibiting the current problematic performance of the involved programs
in this geometric context, our comparison aims to show the relevance and benefits of analyzing the
interaction between them.

Keywords: ChatGPT geometric abilities; GeoGebra; system comparison; geometric loci; envelopes

1. Introduction

Large Language Models (LLM) [1] have attracted a lot of attention in recent times. A
LLM known as ChatGPT [2] was released at the end of 2022, and its accuracy has been
rapidly tested in different fields of knowledge [3–9], given its question-and-answer dialogue
procedure. Mass media were primarily concerned with plagiarism and student cheating
(see, for instance, [10,11]). Concerning interaction mathematics and ChatGPT, various
studies have been reported. For instance, in [12] the authors investigate the mathematical
capabilities of ChatGPT on standard and ad hoc datasets; mathematical word problems are
considered in [13]; and an extensive list of ChatGPT failures, related to mathematics and
other issues, is given in [14], to mention just a few references on this interplay.

Some renowned authors [15] stated that these machine learning programs cannot
really replicate human understanding, and conclude that

ChatGPT and its brethren are constitutionally unable to balance creativity with
constraint. They either overgenerate (producing both truths and falsehoods,
endorsing ethical and unethical decisions alike) or undergenerate (exhibiting
noncommitment to any decisions and indifference to consequences). Given the
amorality, faux science and linguistic incompetence of these systems, we can only
laugh or cry at their popularity.

Moreover, although, at the time of writing issues, such as privacy and the need for
state regulations involving AI tools, are being discussed, no severe objections are posed
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regarding the use of ChatGPT in mathematics, to the best of our knowledge. Indeed, the
main developer of Mathematica wrote a laudatory welcome to the chatbot [16], announcing
a Wolfram|Alpha plugin for ChatGPT. It is highly arguable that we should rely on hidden
proprietary codes to perform computations in mathematics, as stated by J. Neubüser, the
developer of GAP (cited in [17]).

With this situation two of the most basic rules of conduct in mathematics are
violated: in mathematics, information is passed on free of charge, and everything
is laid open for checking.

ChatGPT has also attracted a lot of attention from the education field. A review [18]
found that fifty related scholarly articles written in English were published in January and
February of 2023 alone, and concludes that the chatbot’s performance is unsatisfactory in
mathematics education. A very commendable article [19] on ChatGPT and mathematical
education, although recognizing the existence of contrary opinions, states that “ChatGPT
lacks a deep understanding of geometry and cannot effectively correct misconceptions”.
We will not discuss the machine understanding issue, which would lead us to a philosophical
debate involving the Turing Imitation Game. Despite these negative precedents, we think—
and will exemplify in this paper—that exploring a specific geometric issue (and this should
be actually considered the key contribution of the program: to help humans to explore, not
to fully replace human inquiry) with ChatGPT will promote the expansion of our geometric
knowledge.

Indeed, this argument is not new. The emergence of chatbots in the field of mathemat-
ics can be seen as somewhat similar to the introduction of symbolic calculation programs.
It is worth noting a couple of works that dealt with the topic at the end of the 20th century.
In one of them, a founder and leader of this area, Buchberger, presents [20] a didactical
principle, the White-Box/Black-Box Principle for Using Symbolic Computation Software in Math
Education, stating that, when a mathematics topic is new to students, the use of symbolic
software should be prohibited; when it has been thoroughly studied and hand calculations
involving concepts from such topics have been made, “students should be allowed and
encouraged to use the respective algorithms available in the symbolic software systems”.
Similarly, the recommendation given in [21] is that, prior to using symbolic computation
software, students should thoroughly study the main theoretical issues in the topic under
consideration and resolve related problems by hand (in order to keep fundamental mathe-
matical operations and skills). They conclude with two rules of thumb that we summarize
as follows:

1. If you know how to do it, use computer algebra. If not, do not use it.
2. Caveat emptor!

It is from this educational perspective, and with the aim of contributing to the ex-
ploration of the mathematical abilities and shortcomings of ChatGPT, that we study its
performance in dealing with a few (but representative for their presence in the curriculum or
in some recent research papers (see references below)) plane geometric loci and envelopes
of families of plane curves, a popular topic both in the educational and mathematical re-
search contexts. We remark that the issue of loci and envelopes, while thoroughly studied
either from a theoretical point of view [22–24], or within the context of dynamic geometry
systems [25–28], has not been approached, as far as we know, with AI chatbots. It is true that
LLMs have been tested in relation to formal theorem proving in Euclidean geometry (see,
for instance [29,30]), but the topic of the algorithmic computation of loci/envelopes is not,
technically speaking, part of the theories addressing the automated deduction of theorems
in geometry. Computing loci/envelopes concerns, rather, finding some missing necessary
conditions (the description of the locus of a point as the result of establishing some given
constraints over that point).

In our experiment, we used the free 3.5 version of ChatGPT from 25 September 2023.
Some elementary, albeit non trivial, loci constructions were posed to the chatbot, and its
results are discussed and compared with those obtained with a fork version of the popular,
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free dynamic geometry program GeoGebra [31], called GeoGebra Discovery, which includes
rigorous automated reasoning tools based on computational algebraic geometry algorithms
implemented in Tarski 1.30 and Giac, two embedded computer algebra systems [32–35]. In the
case were GeoGebra Discovery does not give the right solution, we provide a specific analysis
of the situation, describing the need for implementing improved computer algebra algorithms.

We envisage two types of users when searching for geometric loci and envelopes
either with ChatGPT or GeoGebra, mainly the undergraduate, or even secondary education
student, faced with a proposed task in these issues. Secondarily, we envisage researchers
in other fields with collateral tasks involving these geometric problems. So, the need for
free access, either to ChatGPT (via its webpage) or to GeoGebra (downloading this free,
multi-platform program), is a prerequisite in this work.

It should be highlighted that only the web-accessible ChatGPT page, https://chat.
openai.com/ accessed on 6 December 2023, will be used throughout this paper. Thus, we
specifically exclude considering others LLMs, as well as, concerning ChatGPT, experiment-
ing with variations in temperature and top-p parameters. We also refrain from considering
related ChatGPT prompting techniques, such as few-shot learning, tuning, and chain-of-
thoughts, with the exception of the construction in Section 2.1. The rationale behind our
decision is two-fold: on the one hand, fine tuning the model would require accessing the
GPT-3 API, which might involve costs, thus losing the required characteristic of being free
of charge. On the other hand, while maintaining prolonged dialogues with the chatbot
could be illuminating, it could also be frustrating for a student, as well as a possible new
source of errors, as shown in the construction in Section 2.1.

Next, Section 2 describes some geometric loci with both systems and provides an
“ad hoc” ChatGPT-assisted procedure for suggesting how the user can input a GeoGebra
locus construction. Section 3 considers some envelopes and discusses their solutions using,
again, both systems. Finally, we conclude, analyzing the behavior of this collection of
representative cases, that ChatGPT is not mature enough for us to rely only on its use,
and we point to some ways teachers can guide learners when using the chatbot for these
geometric problems.

2. Geometric Loci

A classic problem in plane Euclidean geometry consists in finding the path of an
construction element that is subject to given constraints. In cases where the element is
a point, we call the problem a “geometric locus”. The usual difficulties when mentally
visualizing various objects with different movements lead to the use of computer software
allowing for the graphical visualization of loci, mainly dynamic geometry software. Besides
the graphical representation of loci, we obtain full knowledge of such loci when finding
their analytical description. Thus, although ChatGPT does not currently have sophisticated
graphic abilities, we study its competence when finding the analytic determination of loci.

2.1. Simple Geometric Loci

ChatGPT correctly identifies simple loci as circles and ellipses. For instance, when asked
“Find the locus of plane points equidistant, say 1, from one given, say A(0, 0)”, it finds the
equation x2 + y2 = 1 and states it is a circle centered at the origin with a radius of 1. Similarly,
when asked about “Find(ing) the locus of points which sum of distances to a pair of given points
is constant”, it returns “The locus of points in a plane such that the sum of their distances to two
fixed points (called foci) is constant forms an ellipse”, and, since no particular coordinates nor
distances are given, the found equation is

√
(x − x1)2 + (y − y1)2 +

√
(x − x2)2 + (y − y2)2 =

constant, with obvious coordinate assignments.
Nevertheless, ChatGPT does not give an accurate answer, at a first sight, to the

following simple construction (a graphical representation made with GeoGebra is shown
in Figure 1, suggesting that the sought locus is a circle):

https://chat.openai.com/
https://chat.openai.com/
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Figure 1: A simple constructions suggesting that the locus of D is a circle.

The distance formula between two points (x1, y1) and (x2, y2) is given by:
d =

√
(x2 − x1)2 + (y2 − y1)2 For A(2, 1) and C(x, y) on the circle, the

distance is equal to the radius of the circle. Let r be the radius:
r =

√
(x− 2)2 + (y − 1)2 Now, we want to find the midpoint D of the line

segment BC, where B(3, 2) is the other endpoint of BC. The midpoint D is
given by the average of the coordinates of B and C:

D((x+ 3)/2, (y + 2)/2)
Substitute the expression for r from the equation of the circle into the coor-

dinates of C to get the coordinates of D:
D((x+ 3)/2, (y + 2)/2)
r =

√
(x− 2)2 + (y − 1)2

Now, substitute the expression for r into the coordinates of D:
D((x+ 3)/2, (y + 2)/2)
= ((x+ 3)/2, (y + 2)/2)
Now, you have the coordinates of the midpoint D in terms of the variable x

and y. If you simplify further, you might find a specific geometric shape for the
locus of D, but the exact form depends on the simplification of the expression.

The computations are correct although the last substitution is fruitless. Fur-
thermore, eliminating the coordinates of C, x, y

xD = (x+ 3)/2, yD = (y + 2)/2,
√

(x− 2)2 + (y − 1)2 = 2

the chatbot would get the sought locus. Nevertheless, no clue about the locus
is given. Let us follow the advice on further simplification:

Question Simplify the expression.

ChatGPT Let’s simplify the expression for the coordinates of the midpoint D:
D((x+ 3)/2, (y + 2)/2)
Now, we know that r =

√
(x− 2)2 + (y − 1)2,

so substitute this into the coordinates of D:
D((x+ 3)/2, (y + 2)/2)

4

Figure 1. A simple construction suggesting that the locus of D is a circle.

Question Consider a circle centered at A(2, 1) and passing through B(3, 2). Place a moving
point in this circle, C, join it with B and compute the midpoint D of BC. What is the
geometric locus of D?
ChatGPT Let us denote the center of the circle as A(2, 1), and a point moving on the circle
as C(x, y). Since C lies on the circle passing through B(3, 2), the distance between A and C
is equal to the radius of the circle.

The distance formula between two points (x1, y1) and (x2, y2) is given by

d =
√
(x2 − x1)2 + (y2 − y1)2

For A(2, 1) and C(x, y) on the circle, the distance is equal to the radius of the circle.
Let r be the radius:

r =
√
(x − 2)2 + (y − 1)2

Now, we want to find the midpoint D of the line segment BC, where B(3, 2) is the other
endpoint of BC. The midpoint D is given by the average of the coordinates of B and C:

D((x + 3)/2, (y + 2)/2)

Substitute the expression for r from the equation of the circle into the coordinates of C
to obtain the coordinates of D:

D((x + 3)/2, (y + 2)/2)

r =
√
(x − 2)2 + (y − 1)2

Now, substitute the expression for r into the coordinates of D:

D((x + 3)/2, (y + 2)/2) = ((x + 3)/2, (y + 2)/2)

Now, you have the coordinates of the midpoint D in terms of the variables x and y. If
you simplify further, you might find a specific geometric shape for the locus of D, but the
exact form depends on the simplification of the expression.

The computations are correct, although the last substitution is fruitless. Furthermore,
eliminating the coordinates of C, x, y in the following equations,

xD = (x + 3)/2, yD = (y + 2)/2,
√
(x − 2)2 + (y − 1)2 = 2
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the chatbot would obtain the sought locus. Nevertheless, no clue about the locus is given.
Let us follow the advice on further simplification:
Question Simplify the expression.
ChatGPT Let us simplify the expression for the coordinates of the midpoint D:

D((x + 3)/2, (y + 2)/2)

Now, we know that r =
√
(x − 2)2 + (y − 1)2, so substitute this into the coordinates

of D:

D((x + 3)/2, (y + 2)/2)

r =
√
(x − 2)2 + (y − 1)2

(x + 3)/2 = 1/2
√
(x − 2)2 + (y − 1)2

Now, let us eliminate the denominators by multiplying both sides of the equation by 2:

(x + 3) =
√
(x − 2)2 + (y − 1)2

Square both sides to eliminate the square root:

(x + 3)2 = (x − 2)2 + (y − 1)2

Expand and simplify:

x2 + 6x + 9 = x2 − 4x + 4 + y2 − 2y + 1

Now, simplify further:

6x + 9 = −4x + y2 − 2y + 5

Move all terms to one side:

10x + 4y2 − 2y + 4 = 0

So, after simplifying, the geometric locus of the midpoint D is given by the following
equation:

10x + 4y2 − 2y + 4 = 0

This is the equation that describes the locus of the midpoint D as the point C moves
on the circle. The exact geometric shape of this locus might be evident with further analysis
or manipulation.

There is a bizarre mistake in line 7 of the answer, where it is stated that (x + 3)/2 =
1/2

√
(x − 2)2 + (y − 1)2, which is obviously wrong. So the locus is not the correct one.

Furthermore, it should be noted that is not identified as a parabola. We need a further
interaction to obtain the right result:
Question: Eliminate x and y in the equations xD = (x + 3)/2, yD = (y + 2)/2, (x − 2)2 +
(y − 1)2 = 2.

Finally, we obtain, after renaming the coordinates of D and suppressing the verbose
output of ChatGPT,

(2xD − 5)2 + (2yD − 3)2 = 2.

ChatGPT does not have direct access to external services or computational tools, but it
can help when describing GeoGebra procedural constructions. For instance,
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Question: Give a procedural description in GeoGebra’s input bar of the above construction,
using the LocusEquation Command. Use the Execute command in GeoGebra to provide
the description.
ChatGPT: Certainly! Below is a procedural description for the construction using GeoGe-
bra’s input bar. Note that GeoGebra does not have a direct Execute command, but you can
input commands directly into the input bar.

1. Open GeoGebra: Open the GeoGebra app on your device.
2. Create Points A and B: Input A = (2, 1) in the input bar and press Enter. Input

B = (3, 2) in the input bar and press Enter.
3. Create the Circle: Input c = Circle(A, B) in the input bar and press Enter.
4. Create a Moving Point C: Input C = PointOn[c] in the input bar and press Enter.
5. Join Points B and C: Input BC = Line(B, C) in the input bar and press Enter.
6. Compute Midpoint D: Input D = Midpoint[BC] in the input bar and press Enter.
7. Use the LocusEquation Command: Input LocusEquation(D, C, 1) in the input bar and

press Enter. This command tells GeoGebra to create a locus equation based on the
movement of point C with respect to the midpoint D, and 1 represents the constant
sum of distances.

8. Animate the Movement of Point C: Right-click on point C. Select “Animation Options”.
Choose “Rotate” or “Translate” to make point C move around the circle.

9. Observe the Locus: As point C moves around the circle, GeoGebra will dynamically
display the locus of the midpoint D.

By entering these commands into the input bar, you can construct and observe the
dynamic locus of the midpoint D as point C moves within the given circle in GeoGebra.

Thus, entering

Execute({"A= (2, 1)", "B = (3, 2)", "c = Circle(A, B)",
"C = Point[c]", "BC = Line(B, C)", "D = Midpoint[B,C]",
"LocusEquation(D,C)"})

in GeoGebra returns the locus graphic object and its equation (Figure 2). There are some
mistakes in ChatGPT’s translation: PointOn should be just Point, Midpoint[BC] shoul be
Midpoint(B,C), and LocusEquation should only accept one or two arguments. Moreover,
GeoGebra indeed has the Execute command.

Figure 2: The GeoGebra construction as suggested by ChatGPT.

6. Compute Midpoint D: Input D = Midpoint[BC] in the input bar and
press Enter.

7. Use the LocusEquation Command: Input LocusEquation(D,C, 1) in the
input bar and press Enter. This command tells GeoGebra to create a locus
equation based on the movement of point C with respect to the midpoint D,
and 1 represents the constant sum of distances.

8. Animate the Movement of Point C: Right–click on point C. Select ”Ani-
mation Options.” Choose ”Rotate” or ”Translate” to make point C move around
the circle.

9. Observe the Locus: As point C moves around the circle, GeoGebra will
dynamically display the locus of the midpoint D.

By entering these commands into the input bar, you can construct and
observe the dynamic locus of the midpoint D as point C moves within the given
circle in GeoGebra.

Thus, entering

Execute({"A= (2, 1)", "B = (3, 2)", "c = Circle(A, B)",

"C = Point[c]", "BC = Line(B, C)", "D = Midpoint[B,C]",

"LocusEquation(D,C)"})

in GeoGebra returns the locus graphic object and its equation (Fig. 2)2.

2.2 The Wallace–Simson theorem

Consider a triangle ABC. The Wallace–Simson theorem states that the locus
of all those points P in its plane such that the orthogonal projections of P on
the three sides of the triangle are collinear is the circumcircle of ABC.

2There are some mistakes in ChatGPT translation: PointOn should be just Point, Mid-
point[BC] be Midpoint(B,C), and LocusEquation only accepts one or two arguments. More-
over, GeoGebra has indeed the Execute command.

6

Figure 2. The GeoGebra construction as suggested by ChatGPT.

2.2. The Wallace–Simson Theorem

Consider a triangle ABC. The Wallace–Simson theorem states that the locus of all
those points P is in its plane, such that the orthogonal projections of P on the three sides of
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the triangle are collinear is the circumcircle of ABC. See [26] for an algorithmic, algebraic
geometry, approach, and generalizations.

Despite ChatGPT knowing this statement, we will investigate this result without
mentioning its name to ChatGPT. Posing the question “Consider a triangle A(0, 0), B(1, 0),
C(1, 1), and a point P. Trace the orthogonal projections from P to the sides of the triangle.
Find the locus of point P such that the orthogonal projections are collinear”, the chatbot
returns the equation of a parabola, −x2 − x − y = 0, instead of the circumcircle of the
triangle. ChatGPT adequately treats the problem, but there is a calculus mistake when
computing the determinant for the collinearity of points. In order to improve the readability
of this paper, the trace of ChatGPT interactions will appear in an appendix from now on.

As carried out above, ChatGPT can give a procedural description of the construction
(see Appendix A), which can guide a non-expert GeoGebra user to compute the locus in
the dynamic software. Yet, in the current state of the art, we think it is still not worth
designing a ChatGPT–GeoGebra interface for automating the translation of constructions,
given the impressibility of the chatbot when curating its answers, (thus making the interface
probably unuseful), and the fact that it commits frequent errors when writing GeoGebra
code. Finally, entering

Execute({"A = (0, 0)","B = (1, 0)","C = (1, 1)","P = (-1,-1)",
"f = Line(A, B)", "j = PerpendicularLine(P, f)",
"D = Intersect(f, j)", "g = Line(A, C)",
"k = PerpendicularLine(P, g)", "E = Intersect(g, k)",
"m = Line(B, C)", "n = PerpendicularLine(P, m)",
"F = Intersect(m, n)", "LocusEquation(AreCollinear(D, E, F), P)"})

into the GeoGebra input bar, we obtain the sought graphic locus and its equation (Figure 3).
Note that we could not use the Locus command; since P does not lie on any known object,
it is subject to an a posteriori condition.

Figure 3: The Wallace–Simson theorem in GeoGebra.

into GeoGebra we get the locus (shown in red in Fig. 4). But this conic is not
the searched locus: dragging point G to make line CG parallel to line a, makes
line BI change, approaching a limit position parallel to CG and a. Thus BI and
a do not intersect, I goes to infinity, and J is undefined. The point (1/2,−5/2)
is not in the locus! Things are analogous when dragging point G to make line
CG parallel to line b, thus causing point (7/2,−7/4) to be removed from the
locus. GeoGebra is unaware of this subtlety and returns the whole ellipse as the
locus4. See [6] for an in–depth discussion of this locus.

3 Envelopes of families of plane curves

The informal idea of envelope involves of contact, tangency. A curve is the
envelope of a family of curves if it touches every curve in the family. Formally,
following [5], the envelope E1 of a family of plane curves in the real (x, y)-plane
F (x, y, t) = 0, parametrized by t ∈ R, is defined as the set

E1 = {(x, y) ∈ R2 : ∃t ∈ R, F (x, y, t) =
∂F

∂t
(x, y, t) = 0}.

If the family of curves depends on a point moving on object, the family will
be parametrized by the coordinates of this point. In this case the family will
be described by F (x, y, t1, t2) = 0, where parameters t1 and t2 are constrained
by the restriction of point (t1, t2) to move along a one-dimensional path in the
plane, that is, by adding an extra equation g(t1, t2) = 0. In this case the defining

4GeoGebra locus internals just deal with polynomials, that is, algebraic varieties. In order
to correctly describe this locus, it would be necessary to manage difference of varieties, i.e.
locally closed closed sets

8

Figure 3. The Wallace–Simson theorem in GeoGebra.

2.3. Sketchpad Classic Locus Construction

We consider a locus studied by Sutherland in his report on Sketchpad [36]. This locus
is erroneously computed by ChatGPT, and GeoGebra returns an inaccurate answer. The
construction can be defined as follows:

Let A(0, 0), B(3, 0) and C(1, 3) be three fixed points, and let a and b be two lines
passing, respectively, through A and E(−1,−1), and B and D(5,−1). Let c be the circle
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with center C and radius 5. Consider a moving point G on the circle c. The line CG intersects
a in a point I and b in a point H. Find the locus of the intersection point J of lines AH
and BI.

ChatGPT correctly understands the task (see Appendix B), but finds that lines AH and
BI are parallel, concluding that their intersection point I does not exist. When asked about
a GeoGebra procedural description, it gives a step-by-step list, assuming user familiarity
with GeoGebra. With a slight change, entering

Execute({"A = (0, 0)", "B = (3, 0)", "C = (1, 3)", "E = (-1, -1)",
"D = (5, -1)", "circleC = Circle(C, 5)", "G = Point(circleC)",
"a = Line(A, E)", "b = Line(B, D)", "I = Intersect(Line(C, G), a)",
"H = Intersect(Line(C, G), b)", "AH = Line(A, H)",
"BI = Line(B, I)","J = Intersect(AH, BI)", "LocusEquation(J, G)"})

into GeoGebra, we obtain the locus (shown in red in Figure 4). But this conic is not the
searched locus; dragging point G to make line CG parallel to line a, makes line BI change,
approaching a limit position parallel to CG and a. Thus, BI and a do not intersect, I goes to
infinity and J is undefined. The point (1/2,−5/2) is not in the locus! Things are analogous
when dragging point G to make line CG parallel to line b, thus causing point (7/2,−7/4)
to be removed from the locus. GeoGebra is unaware of this subtlety and returns the whole
ellipse as the locus. GeoGebra locus internals only deal with polynomials, that is, algebraic
varieties. In order to correctly describe this locus, it would be necessary to manage different
varieties, i.e., locally closed sets (see [22] for an in–depth discussion of this locus).

Figure 4: The Sketchpad classic locus in GeoGebra.

condition in envelope E1 is to be replaced by

E1 = {(x, y) ∈ R2 : ∃t1, t2 ∈ R, F (x, y, t1, t2) =
∂F

∂t1

∂g

∂t2
− ∂F

∂t2

∂g

∂t1
= 0}.

For completeness, it should be highlighted that three other envelope defini-
tions are given in [5]. A second notion of envelope E2 is considered as the curve
tangent to Ft(x, y) = F (x, y, t), for each t. A new idea of envelope E3 is also
presented as the limit of intersection points of nearby curves Ft

5. Finally, the
notion of envelope E4 is outlined as the boundary of the region filled by curves
Ft. Furthermore, it can be shown that Ei ⊆ E1 for i = 2, 3, 4.

3.1 The envelope of kissing circles

Let A(0, 0) be the center of a circle passing through B(1, 0). Find the envelope
of the family of circles centered at a moving point C lying on the first circle and
with radius 1. Fig. 5 shows the GeoGebra construction of the family of circles.

It would be easy conjecturing the envelope as the circle centered at A and
with radius 2, following E2 or E4, but things are a bit more complicated. Chat-
GPT answers wrongly, again, stating that the envelope is the y-axis (see the
Appendix C). GeoGebra correctly finds the exact envelope. Entering

Envelope(D,C)

in the input bar of the construction shown in Fig. 5, we get in the Algebra
window a long equation in two variables with degree 12. Factoring it with any
computer algebra software or by inputting in GeoGebra

5ChatGPT uses sometimes this definition

9

Figure 4. The Sketchpad classic locus in GeoGebra.

Table 1 summarizes the behavior of ChatGPT and GeoGebra when dealing with the
loci in this section. ∼ means that the result is almost correct. Furthermore, given the
difficulties of computer algebra systems when plotting isolated points, we give a ✓even if
a finite number of points is not included in the graphic object.

Table 1. Behavior of ChatGTP and GeoGebra with the proposed loci.

ChatGPT GeoGebra

Example 1 ✓(needs user interaction) ✓equation, ✓plot

Wallace–Simson × ✓equation, ✓plot

Sketchpad × ∼ equation, ✓plot
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3. Envelopes of Families of Plane Curves

The informal idea of envelopes involves contact and tangency. A curve is the envelope
of a family of curves if it touches every curve in the family. Formally, following [24], the
envelope E1 of a family of plane curves in the real (x, y)-plane F(x, y, t) = 0, parametrized
by t ∈ R, is defined as the set

E1 = {(x, y) ∈ R2 : ∃t ∈ R, F(x, y, t) =
∂F
∂t

(x, y, t) = 0}.

If the family of curves depends on a point moving on an object, the family will be
parametrized by the coordinates of this point. In this case, the family will be described by
F(x, y, t1, t2) = 0, where parameters t1 and t2 are constrained by the restriction of point (t1, t2)
in moving along a one-dimensional path in the plane, that is, by adding an extra equation
g(t1, t2) = 0. In this case, the defining condition in envelope E1 is to be replaced by

E1 = {(x, y) ∈ R2 : ∃t1, t2 ∈ R, F(x, y, t1, t2) =
∂F
∂t1

∂g
∂t2

− ∂F
∂t2

∂g
∂t1

= 0}.

For completeness, it should be highlighted that three other envelope definitions are given
in [24]. A second notion of envelope E2 is considered as the curve tangent to Ft(x, y) = F(x, y, t),
for each t. A new idea of envelope E3 is also presented as the limit of intersection points of
nearby curves Ft. We noted that ChatGPT sometimes uses this definition. Finally, the notion of
envelope E4 is outlined as the boundary of the region filled by curves Ft. Furthermore, it can
be shown that Ei ⊆ E1 for i = 2, 3, 4 (see [37] for a detailed discussion).

3.1. The Envelope of Kissing Circles

Let A(0, 0) be the center of a circle passing through B(1, 0). Find the envelope of the
family of circles centered at a moving point C lying on the first circle and with radius 1.
Figure 5 shows the GeoGebra construction of the family of circles.

Figure 5: Tracing the circle d the envelope is suggested.

Factor(LeftSide(eq1)-RightSide(eq1))

we get

(x2 + y2)(x2 + y2 − 4)

(x2 + y2 − 4y + 4)(x2 + y2 + 4y + 4)(x2 + 4x+ y2 + 4)(x2 + 4x+ y2 + 4),

which corresponds to the point (0, 0), the circle centered at the origin with
radius 2, and points (±2, 0) and (0,±2), respectively. Note that the last four
points are included in the circle and they appear due to the Groebner bases
computations used in GeoGebra. Furthermore, the envelope graphic object
does not include the origin. Finally, moving point B to have both coordinates
non–integer, the equation is now a quartic, as expected, but GeoGebra cannot
factorize the expression and the graphic object does not contain the isolated
origin point. Thus, although GeoGebra behaves reasonably, some precautions
should be taken.

3.2 The deltoid of Steiner

In the preceding section we tested the Wallace–Simson theorem as a locus prob-
lem with ChatGPT, obtaining a wrong answer, and GeoGebra, which was suc-
cessfull. A derived result of this theorem studies the Simson lines of a triangle,
that is, the line containing the feet of the perpendicular projections to the sides
of the triangle. Considering a point moving along the circumcircle of the tri-
angle, we can find the envelope of the family of the Simson lines. As it is
well known, such envelope exists and is as a hypocycloid of three cusps, called
tricuspoid curve or Steiner curve, a plane algebraic curve of degree four.

10

Figure 5. Tracing the circle d, the envelope is suggested.

It seems easy to state that the envelope is the circle centered at A and with a radius of
2, following E2 or E4, but things are a bit more complicated. ChatGPT answers wrongly,
again, stating that the envelope is the y-axis (see the Appendix C). GeoGebra correctly finds
the exact envelope. Entering

Envelope(D,C)
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in the input bar of the construction, shown in Figure 6, we obtain a long equation in two
variables with a degree of 12 in the Algebra window. Factoring it with any computer
algebra software or by inputting

Factor(LeftSide(eq1)-RightSide(eq1))

in GeoGebra, we obtain

(x2 + y2)(x2 + y2 − 4)

(x2 + y2 − 4y + 4)(x2 + y2 + 4y + 4)(x2 + 4x + y2 + 4)(x2 + 4x + y2 + 4),

which corresponds to the point (0, 0), the circle centered at the origin with a radius of 2,
and points (±2, 0) and (0,±2), respectively. Note that the last four points are included
in the circle and they appear due to the ideal–theoretic computations used by GeoGebra.
Furthermore, the envelope graphic object does not include the origin. Finally, moving
point B to have both non-integer coordinates, the equation is now a quartic, as expected,
but GeoGebra cannot factorize the expression and the graphic object does not contain the
isolated origin point. Thus, although GeoGebra behaves reasonably, some precautions
should be taken.

3.2. The Deltoid of Steiner

In the preceding section, we tested the Wallace–Simson theorem as a locus problem
with ChatGPT, obtaining a wrong answer, and with GeoGebra, which was successful. A
result derived from this theorem studies the Simson lines of a triangle, that is, the lines
containing the feet of the perpendicular projections to the sides of the triangle. Considering
a point moving along the circumcircle of the triangle, we can find the envelope of the family
of the Simson lines. As is well known, such envelopes exist and are the hypocycloid of
three cusps, called the tricuspoid curve or Steiner curve, a plane algebraic curve of a degree
of four.

ChatGPT returns a correct guideline to solve the problem (see Appendix D), but
does not find the envelope. Instead, it recommends using computer algebra systems or
specialized software.

For its part, GeoGebra computes an envelope (Figure 6), graphs it and declares its
equation to be a quintic, against the expected quartic one. Note that x is a factor, so we
have x and a polynomial of a degree of four, which is the true envelope. Why does the
anomalous factor x appear? The Simson line l is defined as the line passing through E end
G, and, when D and C coincide, so do the feet E and G, leaving the Simson line undefined.
Despite the sophisticated algebraic geometry algorithms included in GeoGebra, it does not
include the one described in [22], which is the only one that could distinguish between the
two factors, thus allowing for the dropping of factor x.

Table 2 summarizes the behavior of both systems with the two proposed envelopes.
Despite the fact that GeoGebra deltoid results include the right answer, we give a × mark
since there is a non-trivial extra factor in the equation and, regarding the plot, there is an
infinite number of spurious points in the graphic object, the y-axis in Figure 6.

Table 2. Behavior of ChatGTP and GeoGebra with the proposed envelopes.

ChatGPT GeoGebra

Kissing circles × ✓equation, ✓plot

Steiner’s deltoid × × equation, × plot
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Figure 6: The deltoid of Steiner, with an extra linear factor.

ChatGPT returns a correct guideline to solve the problem (see the Appendix
D), but does not find the envelope. Instead, it recommends using computer
algebra systems or specialized software.

On its side, GeoGebra computes an envelope (Fig. 6), graphs it and declares
its equation to be a quintic, against the expected quartic one. Note that x is a
factor, so we have x and a polynomial of degree four, which is the true envelope.
Why does the anomalous factor x appear? The Simson line l is defined as the
line passing through E end G, and, when D and C coincide, so do the feet E
and G, leaving the Simson line undefined. Despite the sophisticated algebraic
geometry algorithms included in GeoGebra, it does not include the one described
in [6], which is the only one who could distinguish between the two factors, so
allowing to drop the factor x.

4 Conclusion

We tested, through some selected examples of plane geometric loci and families
of plane curves, the abilities of ChatGPT when dealing with such problems.
Except some simple cases, we showed that the chatbot is plausible, but not
reliable. Either by making arithmetic errors, or by simply sketching a general
guideline for solving the task, we cannot delegate in ChatGPT for automating
the field. We also compared ChatGPT results with those of GeoGebra, showing
that the latter clearly surpasses the former.

Nevertheless, using ChatGPT as a help for research or, even, teaching situ-
ations could be valuable, always with caution or under guidance.

11

Figure 6. The deltoid of Steiner with an extra linear factor.

4. Conclusions

We tested, through some selected (but relevant, i.e., appearing in different research
contexts and references) examples of plane geometric loci and families of plane curves, the
abilities of ChatGPT when dealing with the computation of such loci or envelopes. Except
in some simple cases, we showed that the chatbot is, at best, plausible, but not reliable.
Either due to its making arithmetic errors, or by simply sketching a general guideline for
solving the task, we cannot currently delegate ChatGPT for automating the search for loci.
We also compared the ChatGPT results with those of GeoGebra, showing that the latter
clearly surpasses the former for this particular task. However, we have also exhibited some
cases showing that neither system is fully reliable.

Although it might seem that this statement is too audacious, given the small number
of test cases we have analyzed, the failures we have observed are not due to unexpected
errors or bugs in the design of these systems, but due to the inherent limitations in their
algorithmic conception in addressing some subtle issues related to loci computations,
such as, for instance, not being programmed to address, with mathematical formalism,
the computation of loci or to output loci that are constructible (and not algebraic) sets.
The required additional work will consist of training LLMs refined in this topic, while
incorporating more powerful algorithms from algebraic geometry into GeoGebra. Until
now, only specialized human knowledge has seemed capable of solving general problems
in this field, with a reasonable success rate.

But this disappointing panorama can be also a source of interesting learning situations.
As we hope to have clearly exemplified in the previous sections of this study, the analysis
of ChatGPT’s answers and a comparison with those of GeoGebra Discovery in addressing
a similar task, requires a deep and precise understanding of the basic geometry (locus,
envelopes), computer algebra (e.g., Gröbner basis) and algebraic geometry (e.g., the inclu-
sion of degeneracies, constructible sets) concepts and tools that are involved in each of the
problems. And this understanding is predicated upon a previously untraveled path, as well
as a non-guided exploration of the surprising, and often contradictory, outputs, whether
contradictory or surprising when comparing ChatGPT and GeoGebra Discover results, or
with respect to the expectations of human intuition. In summary, we think that the dialog
between ChatGPT and GeoGebra Discovery can provide a rich context for developing
diverse kinds of mathematical skills: problem solving, creativity, geometry, algebra, etc.

Yet, as a final remark, in connection with the title of this paper, Caveat emptor!, we
would like to insist that, currently, using ChatGPT as a help for teaching situations, or even
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for doing mathematical research, could be valuable, but always under guidance and with
caution. We reformulate the above-mentioned White–Box/Black–Box Principle for using AI
chatbots in finding loci/envelopes as follows: users (students or researchers) should be
aware that any results are to be taken with skepticism.
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Appendix A. The Wallace–Simson Theorem

Question Consider a triangle A(0, 0), B(1, 0), C(1, 1), and a point P. Trace the orthogonal
projections from P to the sides of the triangle. Find the locus of point P such that the feet of
the orthogonal projections are collinear.
ChatGPT To find the locus of point P, such that the feet of the orthogonal projections are
collinear, let us consider the orthogonal projections of P onto the sides of the triangle ABC.

Let P(x, y) be any point in the plane. The coordinates of the feet of the perpendiculars
from P to the sides of the triangle are as follows:

1. Projection onto AB (the line segment connecting A and B):
The equation of line AB is y = 0. The foot of the perpendicular from P to AB will
have coordinates (x, 0).

2. Projection onto BC (the line segment connecting B and C):
The equation of line BC is x = 1. The foot of the perpendicular from P to BC will have
coordinates (1, y).

3. Projection onto AC (the line segment connecting A and C):
The equation of line AC is y = x. The foot of the perpendicular from P to AC will
have coordinates ((x + y)/2, (x + y)/2).

Now, to ensure that the feet of the orthogonal projections are collinear, we can use the
fact that the determinant of the matrix formed by these coordinates should be zero.

So, the determinant of the matrix formed by these coordinates should be zero:
∣∣∣∣∣∣

x 0 1
1 y 1

x+y
2

x+y
2 1

∣∣∣∣∣∣
= 0

Now, let us calculate this determinant:

x(y − x + y
2

)− 0 − 1(
x + y

2
− 0) = 0

Solving this equation will give the locus of point P, such that the feet of the orthogonal
projections are collinear. Let us simplify this:

x(y − x + y
2

)− x + y
2

= 0

x(
y
2
− x

2
)− x + y

2
= 0

xy − x2

2
− xy

2
− x + y

2
= 0
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Combine like terms:

xy − 1/2(3x2 + 3xy + x + y) = 0

Multiply both sides by 2 to get rid of the fraction:

2xy − 3x2 − 3xy − x − y = 0

Combine like terms again:

−x2 − x − y = 0

This is the equation of the locus of point P, such that the feet of the orthogonal
projections are collinear.
Question Give a procedural description in GeoGebra of the above construction.
ChatGPT Certainly! To create the construction in GeoGebra, follow these steps:

1. Open GeoGebra: Open GeoGebra on your device or use the online version at www.
geogebra.org.

2. Create Points: Define the points for vertices A, B, and C:
Click on the “Point” tool and create points A(0, 0), B(1, 0), and C(1, 1).

3. Define Point P: Click on the “Point” tool again and create a point P with coordinates
(x, y). You can use the “Input” bar to set the coordinates.

4. Create Projections:
To represent the projection onto AB (the x-axis): Click on the “Perpendicular Line”
tool. Select point P and line AB. This creates a perpendicular line from P to AB.
For the projection onto BC (vertical line at x = 1): Click on the “Perpendicular Line”
tool again. Select point P and line BC.
For the projection onto AC (line y = x): Click on the “Perpendicular Line” tool once
more. Select point P and line AC.

5. Intersect Perpendicular Lines: Create the intersection points between the perpendicu-
lar lines and the corresponding sides of the triangle.

6. Collinearity Check: Create a line through the three intersection points to check for
collinearity.

7. Locus Calculation: You can use the “Input” bar or the “Algebra” view to define the
locus equation. For the given construction, it is −x2 − x − y = 0.

8. Animate Point P (Optional): To see how the locus changes as P moves, you can use
the “Slider” tool or the “Animate” command to vary the coordinates of point P.

9. Explore and Analyze: Manipulate the position of point P and observe how the feet of
the orthogonal projections move and whether they remain collinear.

By following these steps, you can create an interactive GeoGebra construction that
visually demonstrates the locus of points, satisfying the collinearity condition for the feet
of the orthogonal projections.

Appendix B. Sketchpad Locus

Question Let A(0, 0), B(3, 0) and C(1, 3) be three fixed points. Let a be the line passing
through A and E(−1,−1). Let b be the line passing through B and D(5,−1). Let c be the
circle with center C and radius 5. Consider a moving point G on the circle c. The line CG
intersects line a in a point I, and line b in a point H. Find the locus of the intersection point
J of lines AH and BI.
ChatGPT To find the locus of the intersection point J of lines AH and BI, let us first find the
equations of lines a, b and c. Then, we can find the equations of lines AH and BI in terms
of the parameters of the moving point G on circle c. Afterward, we can find the equation of
the locus of J.

1. Equation of line a:

www.geogebra.org
www.geogebra.org
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The line passing through points A(0, 0) and E(−1,−1) can be represented as a : y =
mx + c, where m is the slope and c is the y-intercept.

The slope, m, can be found as (y2 − y1)/(x2 − x1)

m = (−1 − 0)/(−1 − 0) = −1

Now, we have the equation of line a:

a : y = −x + c

To find the value of c, plug in the coordinates of point A(0, 0):

0 = −0 + c

c = 0

So, the equation of line a is

a : y = −x

1. Equation of line b:
The line passing through points B(3, 0) and D(5,−1) can be represented as follows:

b : y = mx + c

The slope, m, can be found as (y2 − y1)/(x2 − x1)

m = (−1 − 0)/(5 − 3) = −1/2

Now, we have the equation of line b:

b : y = (−1/2)x + c

To find the value of c, plug in the coordinates of point B(3, 0):

0 = (−1/2)(3) + c

c = 3/2

So, the equation of line b is

b : y = (−1/2)x + 3/2

1. Equation of circle c:
The circle with center C(1, 3) and radius 5 can be represented as follows:

c : (x − 1)2 + (y − 3)2 = 52

c : (x − 1)2 + (y − 3)2 = 25

Now, let us find the equations of lines AH and BI in terms of the parameter θ, which
represents the angle that CG makes with the positive x-axis as G moves along circle c.

1. Equation of line AH:
Line AH passes through points A(0, 0) and H, where H is the intersection of line b

and line CG. The equation of line AH is given by

AH : y = mx
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Now, we need to express m in terms of θ. The slope m is equal to the tangent of the
angle θ. Since CG passes through the center C(1, 3) of circle c, we can write

m = tan(θ)

So, the equation of line AH becomes

AH : y = tan(θ)x

1. Equation of line BI:
Line BI passes through points B(3, 0) and I, where I is the intersection of line a and

line CG. The equation of line BI is given by

BI : y = mx + c

We already know the equation of line a : a : y = −x
So, the equation of line BI becomes

BI : y = mx − 3

Now, we need to express m in terms of θ, similar to the previous case:

m = tan(θ)

So, the equation of line BI becomes

BI : y = tan(θ)x − 3

1. Intersection point J:
Now, we need to find the intersection point J of lines AH and BI. To do that, we can

set the equations for AH and BI equal to each other and solve for x and y:

tan(θ)x = tan(θ)x − 3

This equation simplifies to

3 = 0

This equation has no solution for x, which means there is no single intersection point
J as G moves along circle c. In other words, the locus of J is empty or undefined.

The reason for this is that lines AH and BI are parallel to each other and will never
intersect, regardless of the position of point G on circle c. Therefore, the locus of point J
does not exist in this scenario.
Question Give a procedural description suitable for GeoGebra input bar of the construction.
ChatGPT Sure! Here is a procedural description suitable for GeoGebra’s input bar for
constructing the locus of the intersection point J of lines AH and BI:

1. Define the fixed points A(0, 0), B(3, 0), and C(1, 3).
2. Define the moving point G on the circle c with center C(1, 3) and radius 5:

G = (5 ∗ cos(t) + 1, 5 ∗ sin(t) + 3), where t is a parameter.
3. Define the coordinates of point E(−1,−1).
4. Define the coordinates of point D(5,−1).
5. Define the equation of line a passing through points A and E:

a : y = x.

6. Define the equation of line b passing through points B and D:

b : y = −0.5 ∗ x + 1.5.
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7. Find the intersection point I of line a and CG:
I = (xg, yg), where (xg, yg) satisfies the equation of circle c.

8. Find the intersection point H of line b and CG:
H = (xg,−0.5 ∗ yg + 1.5), where (xg, yg) satisfies the equation of circle c.

9. Define the equation of line AH passing through points A and H:

AH : y = ((−0.5 ∗ xg + 1.5)/xg) ∗ x.

10. Define the equation of line BI passing through points B and I:

BI : y = x.

11. Find the intersection point J of lines AH and BI:
J = (xint, yint), where (xint, yint) satisfies the system of equations formed by AH and BI.

12. Locus: Move the parameter t and observe the locus of point J as G moves along the
circle c.

Note: Use GeoGebra’s input bar to input these commands and visualize the construction.
Please note that this description assumes you are familiar with GeoGebra’s syntax and

the input bar for defining points, lines and performing geometric constructions. You may
need to adapt the commands based on GeoGebra’s specific syntax and conventions.

Appendix C. The Envelope of Kissing Circles

Question Compute the envelope of the family of circles with radius 1 centered at a point
lying on the circle centered at A(0,0) and radius 1.
ChatGPT The family of circles with radius 1 centered at points lying on the circle centered
at A(0, 0) and radius 1 forms a special case known as a “kissing circle” configuration. In
this case, each circle is at a tangent to the central circle at a point on its circumference.

Let us denote the central circle as C1 with center A(0, 0) and radius 1. Any circle in
the family can be represented by a point P on the circumference of C1. The center of the
corresponding circle will be the point P, and its radius will be 1.

Now, let us find the envelope of this family, which is the curve formed by the points
of tangency between the circles in the family and the central circle.

Consider a point P on the circumference of C1. The line passing through the center
A(0, 0) and the point P is a radius of C1. The tangent to C1 at point P is perpendicular to
this radius. Therefore, the tangent line at P has a slope equal to the negative reciprocal of
the slope of the radius.

The slope of the radius AP (where P is on the unit circle) is given by the slope formula:

mAP =
yP − yA
xP − xA

Since A is at the origin (0, 0), this simplifies to mAP = yP
xP

.
The slope of the tangent line at P is the negative reciprocal of mAP. Therefore, the

slope of the tangent line at P is − xP
yP

.
The equation of the tangent line passing through P is then given by the point-slope form:

y − yP = mtangent(x − xP)

Substitute mtangent = − xP
yP

:

y − yP = − xP
yP

(x − xP)

Now, this line is the tangent to the circle centered at P with radius 1. The envelope is
formed by the locus of points of tangency. To find the envelope, we need to eliminate the
parameter P.
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Let us denote the point of tangency as Q(x, y). Substituting Q into the equation above
gives

y − y = − xP
y
(x − x)

Simplifying, we obtain

0 = − x
y

Multiplying both sides by y to clear the fraction:

0 = −x

This implies that x = 0, which means the envelope is the y-axis.
Therefore, the envelope of the family of circles with radius 1 centered at points lying

on the circle centered at A(0, 0) and radius 1 is the y-axis.

Appendix D. The Deltoid of Steiner

Question Consider a triangle with vertices A(0, 0), B(1, 0) and C(0, 1). Let D be a point on
the circumcircle of the triangle. Compute the envelope of the Simson lines when D moves
along its path.
ChatGPT The Simson line associated with a point D on the circumcircle of a triangle is a
line that intersects the sides of the triangle at three points, one on each side. The envelope
of Simson lines for all possible positions of D is known as the Simson–Wallace or Simson
Envelope.

Given the triangle ABC with vertices A(0, 0), B(1, 0) and C(0, 1)), let us find the
equation of the circumcircle. The circumcircle of a triangle with vertices (x1, y1), (x2, y2),
and (x3, y3) has the following equation:

(x − x1)(x − x2) + (yy1)(y − y2) = (x − x3)(x − x1) + (y − y3)(y − y1)

In our case, the circumcircle equation is

(x − 0)(x − 1) + (y − 0)(y − 0) = (x − 0)(x − 0) + (y − 1)(y − 0)

Simplifying, we obtain x2 + y2 − x − y = 0.
Now, let D be a point on this circumcircle, so its coordinates satisfy the circumcircle

equation. Let D have coordinates (xD, yD).
Now, for a given D, the Simson line associated with D is formed by the feet of the

perpendiculars from D to the sides of the triangle. The equations of the sides of the triangle are:

1. Line AB: y = 0
2. Line BC: x + y − 1 = 0
3. Line CA: x = 0

For a point (xD, yD) on the circumcircle, the equations of the Simson lines can be
obtained by finding the feet of perpendiculars from D to these lines.

For example, for line AB, the foot of the perpendicular from D is (xD, 0). Similarly, for
line BC, the foot is the intersection of the perpendicular from D and line BC. You can find the
equation of the perpendicular from D and solve it with the equation of BC to find the foot.

Now, the envelope of the Simson lines is the locus of the feet of these perpendiculars
as D moves along its path on the circumcircle. This locus can be determined by eliminating
xD and yD from the equations of the feet of the perpendiculars.

The resulting equation will describe the envelope of the Simson lines as D moves along
its path on the circumcircle. Unfortunately, deriving the exact equation can be complex and
may involve symbolic manipulation. You may need to use a computer algebra system for
detailed calculations.
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