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Abstract: The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern,
especially for infants. The minimal treatments available for this aggressive type of leukemia has
been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL,
which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor
for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of
acute leukemias. In this study, we report results using the structure-based drug design (SBDD)
approach to discover potential novel MLL-mediated leukemia inhibitors from natural products
against menin. The three-dimensional (3D) protein model was derived from Protein Databank
(Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during
rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each),
one model was selected. The selected model demonstrated the most reasonable quality and had 75.5%
of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of
residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library
containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in
addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876,
ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048,
ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding
energies of −11.0, −10.7, −10.6, −10.2, −10.2, −9.9, −9.9, −9.9, −9.9, and −9.9 kcal/mol, respectively.
To confirm the stability of the menin–ligand complexes and the binding mechanisms, molecular
dynamics simulations including molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
computations were performed. The amino acid residues that were found to be potentially crucial in
ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183,
Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294
were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine
the activity of the identified compounds. The compounds identified herein were found to have
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good pharmacological profiles and had negligible toxicity. Additionally, these compounds were
predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural
compounds can be further explored as potential novel agents for the effective treatment of MLL-
mediated leukemia.

Keywords: menin; mixed-lineage leukemia; molecular dynamics; computer-aided drug design

1. Introduction

Chromosomal translocations that involve the KMT2A gene, which is also known as
the mixed-lineage leukemia 1 (MLL1) gene, are the source of a portion of cases of acute
leukemia [1]. This chromosomal rearrangement causes the production of MLL fusion
proteins, also known as MLL-FPs, and causes their proliferation [2]. These translocations
are found in around 10% of all acute leukemia cases [3]. Mixed-lineage leukemia (MLL)-
mediated leukemia affects both children and adults; however, it has a prevalence of 70 to
80% in infants [4,5]. The prognosis for this disease is poor for infants, especially those with
primarily acute lymphoblastic leukemias, which comprise approximately 10% of cases and
2.8% of acute myeloid leukemia cases [3,6]. New medicines are urgently needed for the
aggressive kind of leukemia caused by MLL1 gene translocation, which affects 5–10% of
patients with acute leukemia [7]. Higher rates of relapse and resistance to chemotherapy
are two additional effects of the MLL1 mutation [8]. As a result, the prospects for patients
with MLL1 rearrangements continue to be dismal compared to those for patients with other
types of leukemia.

Within the context of acute leukemia, the menin protein serves as an essential onco-
genic cofactor for MLL-FPs [9]. MLL-FPs are distinguished by an N-terminal of DNA-
interacting domains of MLL that, when in frame, fuses with the C-terminal of the fusion
partner. It has been found that the part of the MLL N-terminus that binds to menin is
very important for leukemogenic transformation [10]. Menin is required for the regulation
of MLL target genes including HOXA9 and MEIS1, and acts as a highly specific binding
partner of MLL-FPs [11]. These genes have been identified to operate in synergy to ensure
the maintenance and survival of leukemic cells [12,13]. In vitro and in vivo experiments
have shown that the oncogenic ability of MLL-FPs is abolished when they are unable
to bind menin. This has established menin as a critical oncogenic cofactor of MLL-FPs
necessary for their leukemogenic activity [7,14]. For MLL-FP leukemogenesis, it is crucial to
have the interaction between the MLL amino-terminal sequence and menin [9]. Therefore,
the discovery of menin inhibitors will provide an avenue for new therapies for MLL.

Currently, there are few therapies that have been identified for MLL-mediated leukemia
that are non-toxic [15]. Menin inhibitors are a promising novel therapy and have been
found to be most successful for KMT2Ar and NPM1-mutated acute leukemias. However,
it is possible that additional subsets of leukemia respond to these treatments as well [9].
The search for new therapies for acute leukemia is currently underway; no fewer than
four menin inhibitors are being used clinically after preclinical trials, two of which are
SNDX-5613 and KO-539. These inhibitors are currently being tested to determine the
tolerability and response rates in patients [9]. This shows that there is a need to identify
menin inhibitors as potential therapeutic solutions to MLL-mediated leukemia.

In an effort to identify natural compounds that can be turned into chemotherapies for
the treatment of MLL-mediated leukemia, this study aimed to identify menin inhibitors
from the Traditional Chinese Medicine (TCM) database [16] via docking. In a previous
study that also employed both in silico and in vitro methods, 5 out of 74 compounds tested
were found to be potential inhibitors of menin–MLL, with DCZ_M123 having the greatest
inhibitory efficacy with an IC50 of 4.71 ± 0.12 µM [8]. The literature has suggested that
menin is a promising target; therefore, research on finding novel drugs to fight against
MLL-mediated leukemia is still needed [17,18].
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Computer-aided drug design has become one of the most cost-effective and reliable
approaches to discovering novel therapies [19]. As previously mentioned, virtual screens
of known inhibitors targeting the menin–MLL interface have successfully been performed.
However, more research on novel leads is vital to combating MLL-mediated acute leukemia.
The purpose of this research is to use computational methods to shortlist potential menin
inhibitors derived from natural products. The natural product library of 25,131 compounds
was docked against menin using AutoDock Vina [20]. The potential lead compounds were
then evaluated to determine if they are anti-cancer drugs using Way2Drug [21]. Then,
molecular dynamics (MD) simulations were used to further evaluate the stability of top
compounds. In addition, the study compared the binding affinities of known inhibitors to
those of potential lead compounds.

2. Materials and Methods

This study employed several computational techniques including molecular docking,
molecular dynamics simulations, and molecular mechanics Poisson-Boltzmann surface
area calculations to identify potential menin inhibitors (Figure 1). Prior to the docking
stage, the ability of AutoDock Vina to effectively predict menin binders was evaluated. The
shortlisted compounds were further subjected to ADMET screening and biological activity
predictions (Figure 1).

Figure 1. Diagram depicting the methods used in this study to predict compounds with the ability
to inhibit the menin protein. Natural compounds from the TCM database, and three known menin
inhibitors from PubChem, were virtually screened against the menin protein.

2.1. Obtaining Protein Structure and Sequence

The Protein Data Bank (PDB) [22] has a three-dimensional (3D) structure of menin with
PDB ID 4GQ4 [11]; however, it has missing amino acid residues. Residues 1, 54–73, 387–398,
and 462–547 were observed to be missing in the 4GQ4 structure obtained from the PDB [11].
Therefore the sequence of menin was retrieved from UniProtKB [23] with ID O00255, and
the missing residues were fixed using EasyModeller [24–26] and I-TASSER [27].
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2.2. Rebuilding the Menin Structure

Two freely available protein structure modeling platforms comprising EasyModeller
and I-TASSER were employed to predict a reasonably good and complete structure of
menin. For each modeling platform, five structures were generated. EasyModeller 4.0 was
used to generate five models of menin using the 4GQ4 structure as a template. The five
structures were assessed based on their discrete optimized protein energy (DOPE) scores
and the structure with the lowest DOPE score was selected.

The complete amino acid sequence of menin retrieved from UniProt was used as input
for I-TASSER modeling. Using the 3U84 structure, I-TASSER also predicted five structures
of complete menin [27–29]. The best I-TASSER-generated structure was selected based
on the C-score. The C-score is the confidence quantitative measure for each model that
is produced from I-TASSER. The value is based on the significance of threading template
alignments and convergence parameters of structure assembly simulations [27–30]. A
higher value of the C-score usually indicates a more reliable protein model and it normally
ranges from −5 to 2 [31].

2.3. Model Quality Assessment

The quality of the top 2 models, 1 from each technique, was evaluated using SAVESv6.0
(https://servicesn.mbi.ucla.edu/SAVES/, accessed on 10 February 2023). SAVESv6.0 is
a meta-server that runs quality assessments on protein structures. SAVESv6.0 requires
the submission of a protein file exclusively in PDB format. Following the upload of the
protein structure, the user proceeds by selecting the “Run Programs” button, after which
the relevant evaluation programs are initiated by clicking the respective “Start” buttons.
Three programs, namely ERRAT [32], VERIFY [33,34], and PROCHECK [35], that can be
run by SAVES v6.0 were considered for the quality assessments. Ramachandran plots were
obtained via the PROCHECK program. The structure with the better evaluation outcome
was selected as reasonably the best model and used for the study.

2.4. Obtaining Compounds

The ligand library was obtained from the TCM database [16], which contained 35,161
traditional Chinese medicine natural products. Two known menin inhibitors (PubChem
CIDs: 71777742 and 36294) were obtained via PubChem. Another known menin inhibitor,
MI-2-2, was extracted from the co-crystallized menin structure in the PDB database (Protein
ID: 4GQ4) [11]. The aim was to perform molecular docking studies on these known
inhibitors to compare the results to those from the TCM ligand library to aid in prioritizing
compounds as potential treatment options for MLL-mediated leukemia.

2.5. Protein and Ligand Library Preparation

The 35,161 ligands obtained from the TCM library [16] were pre-filtered using OSIRIS
DataWarrior [36] to select only compounds that had molecular weights between 150 and
600 g/mol, as previously carried out [37–40]. It was also used to remove duplicates.
Following the filtering of the library with DataWarrior, the 25,196 compounds that were
left were subjected to an energy minimization procedure utilizing the universal force
field (UFF) [41,42] and conjugate gradient algorithm in 200 steps. The ligands were then
converted into PDBQT format, which is supported by AutoDock Vina [20].

The selected protein model was subjected to energy minimization using two different
force fields, the optimized potentials for liquid simulations (OPLS)/ all-atom (AA) and
CHARMM36 force fields. A short 20 ns MD simulation was also performed using the
2 force fields. This was performed in order to select the force field that would produce
a lower energy and a more stable menin structure. The Xmgrace plotting tool was used
to generate the graphs. Also, for the selected structure, clustering analysis via the “gmx
cluster” command was used to group conformations from the trajectory based on their
structural similarity, using the “gromos” method. The representative structure of the largest
cluster was then selected.

https://servicesn.mbi.ucla.edu/SAVES/
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To eliminate potential docking simulation interferences, the energy-minimized protein
model was checked for the presence of water molecules and ions, and these were removed.
After that, PyMOL 1.7.4.5 [43] was used to save the protein structure as a pdb file. The
“make macromolecule” option in PyRx [44] was used to convert the protein structures into
AutoDock Vina’s pdbqt format, which was necessary for the virtual screening.

2.6. Virtual Screening

AutoDock Vina [20] via PyRx was used to run the virtual screening. A grid box dimen-
sion of 32.879 × 25.923 × 30.494 Å3 and the protein centered at x = 57.954 Å, y = 57.286 Å,
and z = 58.794 Å were used in order to cover the 0RT binding site. The protein was kept
in a rigid conformation during the docking process while the ligands were treated as
flexible entities during the docking simulations, allowing AutoDock Vina to generate up
to 9 conformations or poses for each compound. Prior to the screening, the quality of the
pose prediction conducted via AutoDock Vina was assessed by comparing the best-ranked
pose to that in the experimental situation, as previously carried out [37,45–48]. Four known
menin inhibitors comprising MI-2 (0RO), MI-2-2 (0RT), MI-89, and MIV-6 were extracted
from structures with the corresponding PDB IDs, 4GQ3, 4GQ4, 6E1A, and 4OG8, and
were docked against the menin protein. The top-ranked pose, characterized by the most
negative binding energy, was subsequently aligned structurally with the conformation in
the crystallographic structure using the rigid module of LS-Align [49]. The alignments
were then assessed using the RMSD values.

The three known inhibitors and the filtered ligand library were virtually screened
against menin. After virtual screening, compounds with binding energies of less than
−9.0 kcal/mol were chosen for further investigation. Previous studies have shown that
binding affinities that are −7.0 kcal/mol can distinguish between specific and non-specific
protein–ligand bonds [50]. All the compounds that passed the −9.0 kcal/mol threshold
were analyzed with PyMOL 1.7.4.5 [43] and the best potential ligands that docked deeply
in the binding site were studied further. The shortlisted compounds underwent re-docking
against the best structure from the clustering analysis to ascertain their binding affinity
to menin.

2.7. SwissADME Screening of Ligands

After a successful virtual screening, the pharmacological profiles of the selected ligands
were obtained through the use of SwissADME [51]. Lipinski and Veber’s rules were used
to ascertain whether or not these ligands with the highest binding affinities are drug-like.
Toxicity risks including the mutagenicity, tumorigenicity, reproductive effect, and irritancy
of these ligands were also analyzed using OSIRIS DataWarrior 5.5.0 [36].

2.8. Prediction of Biological Activity of Compounds

Prediction of activity spectra for substances (PASS) was utilized to ascertain the
biological activities of the shortlisted compounds [21,52]. Using a Bayesian approach, the
PASS system is able to predict the biological activity of each compound using its simplified
molecular line entry system (SMILES) format as input [21,52].

2.9. Determining Binding Interactions

LigPlot+ v.2.2 [53] was used to analyze the protein–ligand interactions using default
parameters. This program showed hydrogen bonding and hydrophobic interactions be-
tween the protein and ligands. The menin–ligand complexes post-docking were saved in
PDB format and uploaded to LigPlot+ v2.2. The ligands’ interactions with menin were then
visualized and analyzed.

2.10. MD Simulations of Protein–Ligand Complexes

For each system, three independent molecular dynamics (MD) runs were performed.
To prepare the ligands for the MD simulations, the topologies of each ligand were generated
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using the CHARMM General Force Field (CGenFF) server [54]. GROMACS version 5.1.5
was used to run the MD simulations for the unbound menin and the protein–ligand
complexes. Each system was solvated in a cubic box positioned 1.0 nm away from the
protein on all sides. Sodium or chlorine ions were used to neutralize each system. After
energy minimization, the complexes were equilibrated to achieve optimum conditions of
pressure and temperature, and then 100 ns MD simulations were carried out. After the MD
simulations, Xmgrace was used to generate graphs for analysis.

2.11. MM/PBSA Calculations of Protein–Ligand Complex

The molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) method was
utilized to analyze the binding free energies of the menin–ligand complexes [55–57]. This
system provides the thermodynamic cycle, which incorporates both the molecular mechan-
ical energies and the continuum solvent representation. The calculations for MM/PBSA
were conducted using g_mmpbsa [55]. This program computes the contributing energy
components for the complex and individual energies of the residues. Three MM/PBSA
calculations were performed on the outputs from the three independent MD runs using
the full menin structure in complex with the shortlisted ligands. To plot the computational
statistics, the R programing system [58] was employed.

3. Results
3.1. Primary Structure Analysis

The protein sequence of menin is composed of 615 amino acid residues with UniProtKB
ID O00255. ProtParam [59] was used to determine the physical and chemical parameters
of menin including its molecular weight and chemical formula. its molecular weight was
approximately 67,383.72 Da and its chemical formula is C3003H4709N831O898S16.

3.2. Remodeling Menin Structure
3.2.1. Protein Structure Identification

The crystal structure of human menin with bound inhibitor MI-2-2 (PDB ID: 4GQ4)
was solved using X-ray crystallography with a resolution of 1.27 Å [11]. The leukemogenic
effect of the MLL fusion protein can be inhibited using a menin inhibitor, which prevents
the menin protein from interacting with MLL [8]. MI-2 is the most potent inhibitor of the
menin protein with an IC50 of 446 nM. MI-2-2 was developed and the IC50 was refined
10-fold. This inhibitor, however, did not show promising results in vivo due to its cellular
activity and poor metabolic stability [60]. From the literature, 4GQ4 has been used in other
in silico studies with promising results [8]. Thus, the 4GQ4 structure was selected as the
main template for the menin protein.

3.2.2. Model Rebuilding Using EasyModeller

To fix missing residues, the protein required additional modeling. EasyModeller 4.0
is a tool used for protein homology modeling and the optimization of the protein models
generated [24]. The menin protein (Protein Databank ID: 4GQ4) was solved using X-ray
crystallography with a resolution of 1.27 Å. However, due to missing residues in the amino
acid sequence in the 4GQ4 structure, the EasyModeller 4.0 program was used to reconstruct
the protein structure. Five protein models were generated from EasyModeller with DOPE
scores of −68,135.84375, −68,138.74219, −67,765.52344, −68,097.15625, and −68,047.66406,
respectively. All five models had a genetic algorithm 341 (GA341) score of 1. The second
model (MOD2) with a DOPE score of −68,138.74219 was selected as the best structure
among the EasyModeller 4.0-generated models (Figure 2a).
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Figure 2. Structures of the remodeled menin protein using (a) EasyModeller (MOD2) and (b) I-
TASSER (ITAS1). Yellow-colored protein regions represent missing residues that were fixed during
remodeling while the green portions were solved using X-ray crystallography.

3.2.3. Structure Prediction Using I-TASSER

Another modeling platform, I-TASSER, was employed to predict reasonable models of
the complete menin structure. I-TASSER is a software that predicts protein structures based
on structural templates from the protein database [27,30]. I-TASSER [27–30] also predicted
five models for the complete structure of menin using PDB ID 3U84 as a template [61].
I-TASSER uses a template-based method to develop protein structures and a program
called SPICKER to refine the structural models. Briefly, 3U84 is a menin structure solved at
a resolution of 2.5 Å. Five models were predicted using I-TASSER with C-scores of −0.5,
−1.2, −0.89, −3.51, and −3.27. The protein structure with the highest C-score of −0.5
(ITAS1) was selected as the most reasonable I-TASSER model for menin (Figure 2b) [30].

3.2.4. Protein Model Quality Assessment

Aligning both MOD2 and ITAS1 using PyMOL yielded an RMSD of 0.545 Å, implying
that the two structures are not structurally diverse. The structural and stereochemical
qualities of ITAS1 and MOD2 were analyzed using SAVES v6.0. ITAS1 had an ERRAT
overall quality factor of 88.9447, VERIFY score of 82.44%, and six PROCHECK errors,
two warnings, and one pass. The ERRAT plot of ITAS1 demonstrated that amino acid
residues 70, 127–130, 133–135, and 202–207 were the most erroneous sections of the protein.
For MOD2, the ERRAT score was 70.5479, the VERIFY score was 80.65%, and it had three
PROCHECK errors, three warnings, and three passes.

The structured parts of MOD2 and ITAS1 were also analyzed since the disordered
regions could influence the quality metrics. It was observed that ITAS1 had an ERRAT
overall quality factor of 92.3237 and VERIFY score of 82.06% (pass) while MOD2 had
ERRAT and VERIFY scores of 85.1153 and 79.44%, respectively. This showed that the
structured regions of ITAS1 had better scores than those of MOD2. ITAS1 was selected as
the most reasonable complete menin structure and was used for the study. PROCHECK was
employed to compute the Ramachandran plot for ITAS1 to determine the stereochemistry
of the protein model based on overall geometry and residue-by-residue geometry [35].
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The quality of the protein is based on the percentage of residues in the most favorable,
additionally allowed, generously allowed, and disallowed regions, which is shown in the
Ramachandran plot [62]. ITAS1 had 391, 95, 17, and 15 residues representing 75.5, 18.3, 3.3,
and 2.9% of residues in the most favored regions, additionally allowed regions, generously
allowed regions, and disallowed regions, respectively (Figure 3).

Figure 3. Ramachandran plot of the selected menin model (ITAS1) obtained via PROCHECK. The
percentages of residues in the most favored regions (red colored; labelled “A”, “B”, and “L”),
additionally allowed regions (yellow colored; labelled “a”, “b”, “l”, and “p”), generously allowed
regions (pale yellow; labelled “~a”, “~b”, “~l”, and “~p”), and disallowed regions (white) are 75.5,
18.3, 3.3, and 2.9%, respectively.

3.3. Force Field Selection

The CHARMM36 force field was identified to be the optimal fit after subjecting the
menin protein to energy minimization and 20 ns MD simulation. OPLS demonstrated
a lower energy of −2,784,128.25 kJ/mol in 145 steps while CHARMM36 had a potential
energy of −2,706,664.50 kJ/mol in 1090 steps (Supplementary Material Figure S1). However,
after the 20 ns MD simulation, the OPLS entire menin structure had an average RMSD
of 0.511 ± 0.127 nm while the CHARMM36 entire structure had an average RMSD of
0.382 ± 0.58 nm (Figure S2a), implying that the CHARMM36 structure was more stable.
Also, the average Rg value of the CHARMM36 structure (2.829 ± 0.019 nm) was lower than
that of OPLS (2.874 ± 0.027 nm) [Figure S2c]. To ensure that the disordered regions did not
adversely influence these values, the analyses were also conducted on only the ordered
regions of menin. RMSD and Rg analyses specifically focused on the ordered parts of menin
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mirrored the trends observed in the analyses of the entire structure (Figure S2b,d). For the
ordered regions only, the OPLS and CHARMM36 simulations yielded average RMSDs of
0.47 ± 0.11 and 0.36 ± 0.05 nm, respectively. Correspondingly, the Rg values for the ordered
portions were 2.69 ± 0.02 and 2.64 ± 0.01 nm for OPLS and CHARMM36 simulations,
respectively. The difference in the Rg and RMSD values between the complete protein
and the ordered regions was significantly small, that is ~0.05 nm (0.5 Å) for RMSD and
~0.19 nm (1.9 Å) for Rg. Considering the results from the MD analyses, the CHARMM36
force field was selected for the study.

3.4. Preparation of Screening Library

A pre-filtered screening library of compounds was produced, which had 25,196 Chi-
nese natural molecules in total from the TCM database. Compounds that have been
shown to inhibit the menin–MLL interaction were also identified. MI-2-2 (PubChem CID:
72201086), developed subsequent to MI-2, a potent inhibitor of the menin (IC50 of 446 nM),
has been reported to exhibit a refined IC50 that is tenfold lower than that of MI-2, with
a value of 46 nM [63]. MI-2-2 [4-[4-(5,5-dimethyl-4,5-dihydro-1,3-thiazol-2-yl) piperazin-
1-yl]-6-(2,2,2-trifluoroethyl) thieno [2,3-d] pyrimidine inhibitor (Code: 0RT)] is shown to
inhibit the interaction of menin with MBM1 at an IC50 of 46 nM [63]. Due to its inhibitory
activity with the menin–MLL interaction, MI-2-2 was one of the known compounds chosen
to compare binding affinities against those in the compound library virtually screened.
It was extracted from the 4GQ4 complex and saved in sdf format. The compound MIV-
6 (PubChem CID: 71777742) is a hydroxy- and aminomethylpiperidine inhibitor which
has IC50 = 56 nM [8,63]. This class of inhibitors directly interferes with MLL–menin and
disrupts the protein–protein interaction. In addition, MIV-6 has been shown to induce
differentiation and selectively block the proliferation of MLL cells [64]. An aminoglyco-
side antibiotic, tobramycin (PubChem CID: 36294), was identified to have Ki = 59.9 µM.
Tobramycin has been shown to competitively occupy the active site of MLL-Fps [64]. All
ligands used in the study were energy minimized using the UFF under the conjugate
gradient algorithm. Prior to virtual screening, the ligands were converted into the pdbqt
format using Open Babel [65] in PyRx.

3.5. Virtual Screening against ITAS1

AutoDock Vina [20] was used to virtually screen the ligands against the re-modeled
menin protein. The program requires a grid box to be pre-calculated, which includes the
area of the protein that composes the target binding region. Prior to the docking run,
the ability of AutoDock Vina to produce identical poses to experimentally determined
conformations was evaluated using LS-Align [49]. The best-ranked poses of each of the four
known inhibitors were superimposed onto their co-crystallized poses and the RMSD was
determined. The best ranked poses were used for validation since the most energetically
favorable conformations of the TCM library will be used for further analysis. For MI-2
(0RO), an RMSD of 1.02 Å was obtained after rigid alignment was performed (Figure S3a).
For MI-2-2 (0RT), MI-89, and MIV-6, RMSDs of 2.59, 1.33, and 3.58 Å, respectively, were
obtained when the best pose was compared to that of the crystallographic or reference
structures (Figure S3b–d). An RMSD equal to or less than 2 Å is deemed very good,
while an RMSD between 2 Å and 3 Å is considered acceptable. Conversely, an RMSD
exceeding 3 Å is considered suboptimal [66]. Nevertheless, a cut-off value of RMSD < 2 Å
is generally recognized as the most effective threshold for validating accurately posed
molecules [45,67]. The RMSD values obtained for 0RO and MI-89 show that AutoDock
Vina is near-perfect for predicting menin inhibitors, while 0RT’s RMSD places AutoDock
Vina in the acceptable range. Only one compound’s (MIV-6) RMSD value indicates poor
pose prediction, suggesting a ~75% chance of AutoDock Vina predicting acceptable or
perfect poses for menin binders.

It is worth noting that the second to ninth ranked poses of MI-2-2 (0RT) had RMSD
values of 1.95, 2.07, 1.86, 2.41, 2.19, 1.9, 1.52, and 2.03 Å when superimposed onto co-
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crystallized MI-2-2 (0RT). This implies that the second to ninth pose predictions were
closer to that of the co-crystallized 0RT compared to the best pose. The binding energies of
the second to ninth best pose predictions of 0RT were −7.6, −7.4, −7.4, −7.1, −7.1, −7.1,
−7.1, and −6.9 kcal/mol. Also, for MIV-6, RMSD values of 3.43, 3.5, 3.1, 3.37, 3.64, 3.33,
3.34, and 3.09 Å were observed when the second to ninth ranked pose predictions were
superimposed onto co-crystallized MIV-6.

The protein–ligand interaction profiles of the best poses of MI-2 and MI-89 were also
compared to their corresponding complexes obtained from the protein databank. For the
4GQ3 complex, MI-2 interacted with Tyr276 (2.76 Å) and formed hydrophobic contacts
with Ser155, Ser178, Glu179, Asp180, His181, Phe238, Cys241, Met278, Tyr319, Met322,
Tyr323, and Glu363. It also formed three hydrophobic bonds with three unknown atoms or
ions (labeled “UNX”). For the re-docked complex, MI-2 interacted with the menin binding
site as though it was a mirror image (enantiomer) of the co-crystallized MI-2. Re-docked
MI-2 interacted with similar residues in the binding site, forming two hydrogen bonds with
Asp185 (3.07 Å) and Tyr281 (2.88 Å), and hydrogen bonds with Asp158, Ser159, Ser160,
Leu182, Ser183, Glu184, Phe243, Cys246, Met283, Asn287, and Tyr328. For the 4GQ3
structure, residues Ser155, Ser178, Glu179, Asp180, Phe238, Cys241, Tyr276, Met278, and
Tyr323 map to residues Ser160, Ser183, Glu184, Asp185, Phe243, Cys246, Tyr281, Met283,
and Tyr328, respectively, when compared to the canonical sequence of menin. Therefore, re-
docked MI-2 interacted with 9 out of the 13 interactions observed between menin and MI-2
in the 4GQ3 structure (Figure 4a). Similar observations were made for MI-89, interacting
with 11 common residues, namely Ser155 (Ser160), Glu179 (Glu184), Phe238 (Phe243),
Cys241 (Cys246), Ala242 (Ala247), Tyr276 (Tyr281), Tyr319 (Tyr324), Met322 (Met327),
Tyr323 (Tyr328), Glu363 (Glu368), and Val367 (Val372) [Figure 4b]. Residues from the 6E1A
structure are explicitly listed, with canonical residue information (ITAS1 residues) provided
in brackets for clarity. Residue Asp185 of menin has been shown to form an electrostatic
bond with Arg12 of MLL1 while residues Cys246, Ala247, and Glu260 of menin interact
with Ala11, Pro10, and Ala37 of MLL1 [68]. Also, mutating Glu260 to leucine was reported
to cause a loss of the hydrogen bond formed by Glu260 of menin and MLL1 [68]. These
results suggest that AutoDock Vina has a high degree of accuracy in predicting nearly
optimal poses and interactions of ligands with menin [68].

The compound library containing 25,131 compounds in total and three known menin–
MLL interaction inhibitors were successfully screened against the energy-minimized pro-
tein. The MI-2-2 (0RT) binding site on the 4GQ4 structure was selected for docking. MI-2-2
is located in a hydrophobic pocket and forms a hydrogen bond with Tyr323 [8,11]. For the
canonical menin sequence, Tyr323 on 4GQ4 maps to Tyr318 on the extracted sequence from
UniProt (ID: O00255).

Studies have shown that binding affinities that are −7.0 kcal/mol or lower can dis-
tinguish between specific and non-specific protein–ligand bonds [50]. Compounds with a
binding energy of −9.0 kcal/mol or less were chosen for additional study to further refine
the results. In total, 564 compounds passed the criteria. ZINC000103526876 had the highest
binding affinity with an energy of −11 kcal/mol (Table 1). Additionally, ZINC000103436976,
ZINC000070451007, and ZINC000095913861 had good binding energies of −10.9, −10.7,
and −10.7 kcal/mol, respectively (Table 1). The virtual screening results of the known
menin–MLL interaction inhibitors were also examined. Tobramycin (CID: 36294) demon-
strated a binding energy of −6.7 kcal/mol. MIV-6 (CID: 71777742) was shown to have a
binding energy of −6.5 kcal/mol and MI-2-2 (0RT) had a binding energy of −7.8 (Table 1).

The topmost compounds were re-docked against the representative structure of the
largest or best cluster after performing clustering analysis on the 20 ns MD system. All
the potential lead compounds demonstrated better binding affinity to the menin structure
than the known inhibitors (Table 1). The virtual screening results were reviewed using
PyMOL 1.7.4.5 [43]. All of the ligands docked deeply into the selected menin binding site.
This binding pocket plays a role in the binding of MI-2-2, a potent inhibitor of menin–MLL
interaction, and thus may play a pivotal role in developing novel classes of inhibitors.
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Disrupting the interaction between MLL-FPs and menin will be essential for the treatment
of MLL-mediated leukemia.

Figure 4. Superimposition of the “menin-inhibitor” complex and “menin-redocked ligand” complex
for (a) MI-2 and (b) MI-89. Conserved residue interactions are circled in red. The interaction profiles of
the crystallographic complexes are transparent while those of the re-docked complexes are rendered
clearer and brighter for enhanced visibility. Ligand is colored purple with black dots, red spoked arcs
represent hydrophobic bonds, while green dashed lines represent hydrogen bonds. To map residues
of the crystallographic structures to the canonical menin structures, add 5 to the residue number of
the experimentally determined structures.

Table 1. Comparative binding energies and profiles of menin residue interactions with the known
inhibitors and the potential lead compounds; docking scores against the representative structure
from the largest 20 ns MD cluster.

Compound
Binding Energy (kcal/mol) Interacting Residues

ITAS1 Best Cluster Hydrogen Bonds [Bond
Length (Å)] Hydrophobic Bonds

MI-2-2 −7.8 −7.5 Ser160 (2.84) and Ser183
(3.23)

Asp185, His186, Phe243, Cys246,
Ala247, Ile248, Asn249, Tyr281, and

Met283

36294 −6.7 −6.7

Asp158 (2.94), Ser160 (3.3),
Ser183 (2.79), His186 (2.95),

Cys246 (2.9), and Tyr328
(2.83)

Ser159, Leu182, Glu184, Asp185,
Phe243, Ala247, and Met283

71777742 −6.5 −6.9 - Gln141, Asp158, Ser183, Phe243,
Cys246, Ala247, Tyr281, and Met283

ZINC000103526876 −11.0 −9.8 Ser160 (2.92)

Gln141, Asp158, Leu182, Glu184,
Asp185, His186, Ala187, His204,
Phe243, Cys246, Ala247, Tyr281,

Met283, and Glu364
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Table 1. Cont.

Compound
Binding Energy (kcal/mol) Interacting Residues

ITAS1 Best Cluster Hydrogen Bonds [Bond
Length (Å)] Hydrophobic Bonds

ZINC000095913861 −10.7 −10.1 Ser160 (3.19) and Asn287
(2.7)

Leu182, Ser183, Phe243, Asn249,
Pro250, Ser251, Tyr281, Met283,

Leu291, and Leu294

ZINC000095912705 −10.6 −8.1 Asn287 (2.99)

Ser160, Leu182, Ser183, Asp185,
His186, Ala187, Met233, Phe243,
Cys246, Ala247, Ile248, Asn249,

Pro250, Tyr281, Met283, and Tyr328

ZINC000085530497 −10.2 −9.5 -
Asp158, Ser160, Phe243, Cys246,
Ala247, Ile248, Asn249, Gln265,

Tyr281, Met283, and Asn287

ZINC000095912718 −10.2 −9.5 -
Ser160, Phe243, Ala247, Cys246,
Pro250, Gln265, Tyr281, Met283,

Asn287, Asp290, and Tyr328

ZINC000070451048 −9.9 −8.1 Cys246 (3.02), Ile248 (2.9)
and Tyr328 (3.14)

Leu182, Ser183, Glu184, Asp185,
His186, Phe243, Ala247, Tyr281,

Asn287, Met283, and Asp290

ZINC000085530488 −9.9 −8.9 Ser160 (3.15) and Tyr328 (2.7)
Gln141, Asp158, Asp185, Phe243,
Cys246, Ala247, Tyr281, Met283,

Asn287, and Tyr324

ZINC000095912706 −9.9 −8.1
Ser160 (3.13 and 3.19),

Asn249 (2.97) and er251
(2.93)

Leu182, Ser183, Asp185, His186,
Ala187, Phe243, Cys246, Ala247,

Ile248, Pro250, Tyr281, Met283, and
Asn287

ZINC000103580868 −9.9 −9.5 -

Ser160, Glu184, Phe243, Cys246,
Ala247, Ile248, Asn249, Pro250,

Ser251, Asp257, Leu262, Gln265,
Tyr281, Met283, Asn287, Leu291,

and Tyr324

ZINC000103584057 −9.9 −8.7 Arg335 (2.94)
Phe243, Cys246, Tyr281, Met283,

Asn287, Asp290, Tyr324, Tyr328, and
Glu368

3.6. ADMET Prediction

Compounds with the highest binding affinity after screening with AutoDock Vina
were subjected to profiling using SwissADME [51]. SwissADME is a program that com-
putes pharmacokinetic properties and drug-like nature of compounds to guide drug discov-
ery [51]. The drug-likeness of the ligands with the highest binding affinities was determined
based on Lipinski’s [69] and Veber’s rules. Lipinski’s “rule of 5” requires a drug to have a
mass less of than 500 g/mol, no more than 10 H-bond acceptors, no more than 5 H-bond
donors, and less than 5 octanol–water partition coefficient (log P) values. Veber’s rule states
that a drug should have a topological polar surface area (TPSA) equal to or less than 140 Å2

and less than 11 rotatable bonds [70].
Although some natural compounds do not adhere to Lipisnki’s or Veber’s rules,

there are current chemotherapy treatments to suggest that they play an important role
in the treatment of human ailments [71,72]. Some examples are Taxol, vinblastine, and
camptothecin. Additionally, other cancer chemotherapeutic agents come from the marine
environment including dolastatins and microbes like bleomycin [71]. It is reasonable to
suggest that there are natural biological compounds that would be effective in targeting
the binding sites of therapeutic targets. For the TCM ligand library, 360 compounds passed
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the Lipinski rule and 375 compounds passed Veber’s rule. In total, 295 compounds passed
both the Lipinksi and Veber rules and were shortlisted.

OSIRIS DataWarrior 5.0.0 was used to determine the toxicity profiles of the 295 poten-
tial lead compounds. Compounds that were high or low in mutagenic and tumorigenic
effects were eliminated since the goal of this study was to discover anti-leukemia (anti-
cancer) drugs. In addition, any compounds that had both reproductive and irritancy
effects were eliminated. In total, 199 compounds were deemed to be safe and used for
further analysis.

3.7. Prediction of Biological Activity of Lead Compounds

Prediction of activity spectra of substances (PASS) determines the properties of biologi-
cally active substances [49]. The top 10 compounds, ZINC000103526876, ZINC000095913861,
ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC00
0085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057, all having
binding energies of −9.9 kcal/mol or lower, were further analyzed using PASS. PASS
uses the similarity between a query molecule and structures within its training dataset
to predict the activity of the query molecule. The probability of a compound to be active
(Pa) determines the likelihood of the query compound belonging to the subset of active
compounds, while the probability of it being inactive (Pi) suggests the similarity of the
query to the inactive subset of the PASS training dataset [73,74]. The probability values
(both Pa and Pi) range from 0 to 1, with a higher value suggesting a higher likelihood of
activity (Pi) or inactivity (Pi). Generally, compounds with Pa > Pi are deemed likely to
demonstrate the particular activity predicted.

Most of the compounds were predicted to have antineoplastic (leukemia, breast,
and lung cancer), apoptosis agonist, and chemopreventive properties. The compound
ZINC000103526876 with the highest binding affinity (−11 kcal/mol) was predicted as
antineoplastic (Pa: 0.864 and Pi: 0.006) and an apoptosis agonist (Pa: 0.655 and Pi: 0.020).
ZINC000095913861 with a binding energy of −10.7 kcal/mol was predicted to also have
antineoplastic properties (Pa: 0.928 and Pi: 0.005) and to be an apoptosis agonist (Pa:
0.731; Pi: 0.012). Similarly, compounds ZINC000095912705, ZINC000095912706, and
ZINC000103584057 were predicted to be antineoplastics (Pa values: 0.927, 0.896, and 0.977;
Pi values of 0.005, 0.005, and 0.004, respectively) and apoptosis agonists (Pa values of 0.755,
0.663, and 0.779; Pi values of 0.010, 0.019, and 0.009, respectively). Furthermore, compounds
ZINC000085530497, ZINC000095912718, ZINC000085530488, and ZINC000103580868 were
predicted to be antineoplastics with Pa values of 0.938, 0.959, 0.931, and 0.812, and cor-
responding Pi values of 0.004, 0.004, 0.005, and 0.01, respectively. ZINC000085530497
was predicted to be an apoptosis agent (Pa: 0.449 and Pi: 0.052). Antineoplastic agents,
also known as anticancer drugs, are a diverse class of drugs. They can be classified as
alkylating agents, antimetabolites, and natural products [75]. Cancerous cells, including
acute leukemia cells, avoid apoptosis in order to proliferate and resist chemotherapy treat-
ments [6]. Thus, apoptosis agonists are essential to developing novel treatments for acute
leukemias including MLL-mediated leukemia.

Multiple compounds were shown to have chemopreventive properties including
ZINC000103526876 (Pa: 0.403; Pi: 0.022) and ZINC000095913861 (Pa: 0.538; Pi: 0.011).
Chemopreventive medicines serve to prevent cancer by preventing DNA damage or in-
hibiting the proliferation of pre-cancerous cells that have DNA damage. [76]. Additionally,
these agents can induce apoptosis and angiogenesis [77]. There has been extensive research
on chemopreventive agents that can be derived from fruits and vegetables. It has been
shown that the regular consumption of certain fruits and vegetables can lower the risk
of obtaining specific cancers [77–79]. Some of these agents include diallyl sulfide, allicin,
capsaicin, and anethol [77]. They have also been discovered to reverse the resistance effects
of chemotherapy and radiation in patients who are on these treatments [77].

Some compounds were shown to have antileukemic properties including ZINC000085
530497 (Pa: 0.699; Pi: 0.005), ZINC000095912718 (Pa: 0.378; Pi: 0.029), ZINC000085530488
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(Pa: 0.562; Pi: 0.010), ZINC000103580868 (Pa: 0.564; Pi: 0.010), and ZINC000103584057 (Pa:
0.709; Pi: 0.005). Discovering new antileukemic drugs is essential to treatment efforts for the
subset of patients that harbor resistance to other antileukemic therapies and medications.
Thus, there is a growing interest in designing novel drugs that have low clinical toxicity [80].

In addition, most of the compounds were predicted to be antineoplastic agents for
other cancers including cervical, lung, and breast cancer. ZINC000103526876 was predicted
to be an antineoplastic for breast cancer (Pa: 0.574; Pi: 0.013) and lung cancer (Pa: 0.495;
Pi: 0.014) while ZINC000095912705 was predicted as an antineoplastic for lung cancer (Pa:
0.658; Pi: 0.007). ZINC000085530497 was predicted to be an antineoplastic for lung cancer
(Pa: 0.708;Pi: 0.010) and ZINC000095912718 was predicted to be so for cervical cancer
treatment (Pa: 0.636; Pi: 0.004). ZINC000085530488 was also predicted as an antineoplastic
for breast cancer (Pa: 0.734; 0.005) and lung cancer (Pa: 0.657; Pi: 0.007). Additionally,
ZINC000095912706 and ZINC000103580868 were predicted as antineoplastics for lung
cancer (Pa: 0.566 and 0.569; Pi: 0.010 and 0.01, respectively).

3.8. Visualization of the Protein–Ligand Interactions

The hydrogen bond and hydrophobic interactions between menin and the ligands
were visualized using LigPlot+ v.2.2 (Figure 5a–d and Figure S4a–i) [53]. A hydrogen bond
is formed when a hydrogen atom covalently bonded to an electronegative donor interacts
with the lone pair of electrons of an electronegative acceptor [81]. In addition, the shorter a
hydrogen bond is, the stronger the bond [82]. 0RT formed hydrogen bonds with Ser183 and
Ser160 (3.23 and 2.84 Å, respectively) and hydrophobic interactions with Phe243, Met283,
Cys246, Ala247, His186, Asp185, and Tyr281 (Figure 5a and Table 1). Compound 36294
formed six hydrogen bonds with Tyr328, Cys246, Ser183, Ser160, Asp158, and His186 (2.83,
2.90, 2.79, 3.30, 2.94, and 2.95 Å, respectively) and hydrophobic interactions with Met283,
Phe243, Leu182, Asp185, Glu184, Ser159, and Ala247 (Figure 5b). From the TCM library,
compound ZINC000095913861, with a binding energy of −10.7 kcal/mol, had hydrogen
bond interactions with Ser160 and Asn287 (3.19 and 2.70 Å, respectively) and hydrophobic
interactions with Pro250, Leu294, Leu291, Asn249, Ser251, Met283, Tyr281, Leu182, Ser183,
and Phe243 (Figure 5c). ZINC000095912705, with a binding energy of −10.6 kcal/mol,
formed a hydrogen bond with Asn287 (2.99 Å) and hydrophobic interactions with His186,
Leu182, Ser160, Asp185, Ala187, Met283, Ser183, Phe243, Met233, Cys246, Pro250, Ile248,
Asn249, Tyr328, Ala247, and Tyr281 (Figure 5d).

The amino acid residue Phe243 formed interactions with all of the compounds, making
it possibly an important residue. Additionally, Met283, Cys246, Tyr281, Ala247, Ser160,
Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250 were involved
in the majority of binding in the active site (Table 1 and Figure 5 and Figure S4a–i). Thus,
these residues are possibly essential amino acid residues needed for the binding and
stability of ligands. Furthermore, compound 36294 was discovered to have the maximum
hydrogen bonds among the known inhibitors with six bonds, and ZINC000095912706
formed three hydrogen bonds, making it the compound from the TCM database that has
maximum hydrogen bond interactions with menin.

3.9. Molecular Dynamics Simulations

Based on the virtual screening results and analysis, ten compounds were subjected to
three independent 100 ns MD simulations to analyze the protein–ligand interactions. Com-
pounds ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497,
ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000
103580868, and ZINC000103584057 were chosen for further analysis. The unbound menin
structure was also subjected to MD simulations. After the MD simulations, the radius
of gyration (Rg), root mean square deviation (RMSD), and root mean square fluctuation
(RMSF) of the ten compounds and unbound menin were analyzed (Table 2). After the MD
simulations, snapshots were generated in 25 ns intervals (0, 25, 50, 75, and 100 ns) for each
system to analyze ligand binding to menin. Throughout the 100 ns simulations, all three
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MD runs for menin–ligand complexes, excluding 36294, 71777742, and ZINC000070451048,
maintained stable binding to the 0RT binding site of menin. In the second MD run of the
menin–36294 complex, the ligand exhibited instability at the binding site at 75 and 100 ns.
In the case of the menin–71777742 complex (MD run 2), the ligand relocated to a different
region at 25 ns and dissociated from the protein at 50 ns. At 75 and 100 ns, 71777742 was
observed to bind to menin at a site other than the 0RT binding site. In the second MD run
of the menin–ZINC000070451048 complex, the ligand remained tightly bound to menin
until the end, where it eventually dissociated from the protein. The average RMSD, Rg,
RMSF, and number of hydrogen bonds were calculated using values from all three MD
runs, except for simulations in which the ligand dissociated (Table 2).

Figure 5. Protein–ligand interaction maps of menin in complex with (a) MI-2-2 (0RT), (b) CID 36294,
(c) ZINC000095913861, and (d) ZINC000095912705. Ligands are colored purple with black dots, red
spoked arcs represent hydrophobic bonds, while green dashed lines represent hydrogen bonds.
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Table 2. Average RMSD, Rg, RMSF, and number of H-Bond values for the unbound menin and menin–ligand complexes after 3 independent 100 ns MD runs. Values
are presented as “Value ± Standard deviation” (nm). * denotes values excluded from the average calculation due to an unstable MD run (or ligand dissociation).

System/Complex Run
RMSD Rg RMSF

H-Bonds
Complete Ordered Complete Ordered Complete Ordered

Menin

1 0.66 ± 0.11 0.52 ± 0.07 2.94 ± 0.02 2.71 ± 0.02 - - -
2 0.47 ± 0.08 0.45 ± 0.07 2.79 ± 0.03 2.64 ± 0.03 - - -
3 0.49 ± 0.08 0.45 ± 0.06 2.84 ± 0.03 2.66 ± 0.03 - - -

Avg 0.54 ± 0.09 0.47 ± 0.03 2.86 ± 0.06 2.67 ± 0.03 - - -

Menin–MI-2-2

1 0.8 ± 0.18 0.79 ± 0.2 2.87 ± 0.08 2.67 ± 0.08 0.32 ± 0.34 0.29 ± 0.34 0.61 ± 0.54
2 0.79 ± 0.16 0.72 ± 0.18 2.84 ± 0.05 2.63 ± 0.06 0.32 ± 0.31 0.26 ± 0.31 1.11 ± 0.76
3 0.57 ± 0.07 0.53 ± 0.07 2.8 ± 0.03 2.6 ± 0.04 0.26 ± 0.22 0.19 ± 0.17 0.16 ± 0.37

Avg 0.72 ± 0.1 0.68 ± 0.11 2.84 ± 0.03 2.63 ± 0.03 0.3 ± 0.03 0.25 ± 0.04 0.63 ± 0.39

Menin–36294

1 0.75 ± 0.13 0.7 ± 0.1 2.84 ± 0.06 2.59 ± 0.04 0.27 ± 0.22 0.2 ± 0.14 2.9 ± 1.53
2 * 0.56 ± 0.09 * 0.46 ± 0.09 * 2.82 ± 0.04 * 2.62 ± 0.03 * 0.26 ± 0.2 * 0.2 ± 0.16 * 0.95 ± 1.4 *
3 0.55 ± 0.07 0.46 ± 0.05 2.83 ± 0.04 2.65 ± 0.03 0.24 ± 0.2 0.19 ± 0.17 2.82 ± 1.33

Avg 0.65 ± 0.1 0.58 ± 0.12 2.84 ± 0.01 2.62 ± 0.03 0.255 ± 0.02 0.195 ± 0.01 2.86 ± 0.04

Menin–71777742

1 0.8 ± 0.23 0.8 ± 0.26 2.86 ± 0.07 2.66 ± 0.09 0.35 ± 0.44 0.33 ± 0.44 0.11 ± 0.31
2 * 0.65 ± 0.1 * 0.59 ± 0.1 * 2.77 ± 0.03 * 2.61 ± 0.04 * 0.25 ± 0.25 * 0.21 ± 0.24 * 0.15 ± 0.36 *
3 0.72 ± 0.1 0.72 ± 0.1 2.74 ± 0.04 2.57 ± 0.03 0.22 ± 0.19 0.18 ± 0.18 0.32 ± 0.53

Avg 0.76 ± 0.04 0.76 ± 0.04 2.8 ± 0.06 2.62 ± 0.05 0.29 ± 0.07 0.26 ± 0.08 0.22 ± 0.11

Menin–
ZINC000103526876

1 0.71 ± 0.12 0.55 ± 0.08 2.85 ± 0.04 2.63 ± 0.04 0.27 ± 0.22 0.19 ± 0.17 1.56 ± 0.76
2 0.58 ± 0.11 0.47 ± 0.09 2.84 ± 0.03 2.65 ± 0.04 0.3 ± 0.23 0.22 ± 0.2 1.75 ± 0.91
3 0.59 ± 0.07 0.49 ± 0.07 2.85 ± 0.05 2.64 ± 0.05 0.29 ± 0.25 0.22 ± 0.23 2.51 ± 0.73

Avg 0.63 ± 0.06 0.5 ± 0.03 2.85 2.64 ± 0.01 0.29 ± 0.01 0.21 ± 0.01 1.94 ± 0.41

Menin–
ZINC000095913861

1 0.6 ± 0.1 0.57 ± 0.1 2.82 ± 0.03 2.65 ± 0.03 0.25 ± 0.22 0.23 ± 0.22 1.1 ± 0.72
2 0.78 ± 0.29 0.81 ± 0.35 2.81 ± 0.03 2.61 ± 0.05 0.35 ± 0.47 0.35 ± 0.5 0.59 ± 0.72
3 0.68 ± 0.09 0.55 ± 0.07 2.86 ± 0.05 2.64 ± 0.03 0.26 ± 0.23 0.19 ± 0.18 0.91 ± 0.63

Avg 0.69 ± 0.07 0.64 ± 0.12 2.83 ± 0.02 2.63 ± 0.02 0.29 ± 0.04 0.26 ± 0.07 0.87 ± 0.21

Menin–
ZINC000095912705

1 0.54 ± 0.09 0.45 ± 0.06 2.89 ± 0.04 2.63 ± 0.03 0.24 ± 0.2 0.18 ± 0.16 1.51 ± 0.57
2 0.58 ± 0.09 0.52 ± 0.08 2.9 ± 0.02 2.69 ± 0.02 0.23 ± 0.18 0.18 ± 0.16 1.13 ± 0.36
3 0.74 ± 0.14 0.58 ± 0.08 2.8 ± 0.02 2.58 ± 0.02 0.26 ± 0.24 0.18 ± 0.15 1.09 ± 0.28

Avg 0.62 ± 0.09 0.52 ± 0.05 2.86 ± 0.04 2.63 ± 0.04 0.24 ± 0.01 0.18 ± 0 1.24 ± 0.19
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Table 2. Cont.

System/Complex Run
RMSD Rg RMSF

H-Bonds
Complete Ordered Complete Ordered Complete Ordered

Menin–
ZINC000085530497

1 0.5 ± 0.07 0.44 ± 0.07 2.84 ± 0.03 2.66 ± 0.03 0.21 ± 0.17 0.17 ± 0.15 0.24 ± 0.45
2 0.83 ± 0.17 0.72 ± 0.18 2.92 ± 0.05 2.62 ± 0.05 0.31 ± 0.32 0.25 ± 0.28 0.8 ± 0.7
3 0.75 ± 0.15 0.46 ± 0.08 2.9 ± 0.03 2.63 ± 0.03 0.26 ± 0.24 0.18 ± 0.18 1.51 ± 0.61

Avg 0.69 ± 0.14 0.54 ± 0.13 2.89 ± 0.03 2.64 ± 0.02 0.26 ± 0.04 0.2 ± 0.04 0.85 ± 0.52

Menin–
ZINC000095912718

1 0.65 ± 0.1 0.56 ± 0.08 2.9 ± 0.03 2.71 ± 0.03 0.26 ± 0.2 0.19 ± 0.17 0.81 ± 0.69
2 0.64 ± 0.15 0.63 ± 0.15 2.82 ± 0.03 2.62 ± 0.04 0.26 ± 0.28 0.22 ± 0.26 0.97 ± 0.26
3 0.64 ± 0.15 0.5 ± 0.08 2.96 ± 0.06 2.73 ± 0.04 0.31 ± 0.24 0.21 ± 0.18 1.43 ± 0.96

Avg 0.64 0.56 ± 0.05 2.89 2.69 ± 0.05 0.28 ± 0.02 0.21 ± 0.01 1.07 ± 0.26

Menin–
ZINC000070451048

1 0.67 ± 0.12 0.57 ± 0.09 2.75 ± 0.04 2.6 ± 0.03 0.29 ± 0.24 0.2 ± 0.2 1.15 ± 0.99
2 * 0.64 ± 0.12 * 0.52 ± 0.15 * 2.8 ± 0.06 * 2.65 ± 0.05 * 0.29 ± 0.27 * 0.24 ± 0.24 * 0.72 ± 0.73 *
3 0.7 ± 0.09 0.55 ± 0.07 2.86 ± 0.04 2.7 ± 0.03 0.28 ± 0.24 0.21 ± 0.2 1.11 ± 0.85

Avg 0.69 ± 0.02 0.56 ± 0.01 2.8 ± 0.06 2.65 ± 0.05 0.29 ± 0.01 0.21 ± 0.01 1.13 ± 0.02

Menin–
ZINC000085530488

1 0.87 ± 0.13 0.63 ± 0.12 2.9 ± 0.03 2.67 ± 0.03 0.27 ± 0.24 0.19 ± 0.2 0.15 ± 0.41
2 0.53 ± 0.1 0.5 ± 0.11 2.81 ± 0.05 2.66 ± 0.04 0.25 ± 0.24 0.2 ± 0.23 1.03 ± 0.78
3 0.63 ± 0.1 0.47 ± 0.06 2.93 ± 0.04 2.67 ± 0.02 0.26 ± 0.22 0.18 ± 0.16 1.01 ± 0.92

Avg 0.68 ± 0.14 0.53 ± 0.07 2.88 ± 0.05 2.67 0.26 ± 0.01 0.19 ± 0.01 0.73 ± 0.41

Menin–
ZINC000095912706

1 0.58 ± 0.12 0.5 ± 0.11 2.86 ± 0.06 2.7 ± 0.07 0.29 ± 0.28 0.24 ± 0.25 1.27 ± 0.49
2 0.61 ± 0.08 0.53 ± 0.07 2.81 ± 0.04 2.64 ± 0.04 0.23 ± 0.18 0.19 ± 0.15 1.78 ± 0.84
3 0.47 ± 0.05 0.41 ± 0.05 2.82 ± 0.03 2.67 ± 0.03 0.22 ± 0.18 0.18 ± 0.16 1.47 ± 0.57

Avg 0.55 ± 0.06 0.48 ± 0.05 2.83 ± 0.02 2.67 ± 0.02 0.25 ± 0.03 0.2 ± 0.03 1.51 ± 0.21

Menin–
ZINC000103580868

1 0.66 ± 0.11 0.49 ± 0.07 2.83 ± 0.06 2.65 ± 0.06 0.3 ± 0.28 0.21 ± 0.2 0.17 ± 0.37
2 0.69 ± 0.11 0.7 ± 0.12 2.79 ± 0.04 2.58 ± 0.04 0.27 ± 0.22 0.22 ± 0.19 0.01 ± 0.1
3 0.52 ± 0.07 0.44 ± 0.05 2.85 ± 0.04 2.67 ± 0.03 0.24 ± 0.17 0.18 ± 0.12 0.02 ± 0.14

Avg 0.62 ± 0.07 0.54 ± 0.11 2.82 ± 0.02 2.63 ± 0.04 0.27 ± 0.02 0.2 ± 0.02 0.07 ± 0.07

Menin–
ZINC000103584057

1 0.56 ± 0.09 0.45 ± 0.06 2.84 ± 0.04 2.64 ± 0.03 0.28 ± 0.21 0.21 ± 0.19 0.2 ± 0.42
2 0.56 ± 0.08 0.5 ± 0.08 2.79 ± 0.04 2.62 ± 0.03 0.25 ± 0.2 0.2 ± 0.17 0.19 ± 0.39
3 0.54 ± 0.1 0.45 ± 0.08 2.85 ± 0.03 2.62 ± 0.03 0.25 ± 0.19 0.19 ± 0.14 0.66 ± 0.63

Avg 0.55 ± 0.01 0.47 ± 0.02 2.83 ± 0.03 2.63 ± 0.01 0.26 ± 0.01 0.2 ± 0.01 0.35 ± 0.22
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The Rg plots of the unbound menin, three menin-inhibitor complexes, and the ten
menin–ligand complexes were generated to determine their relative stability (Figure 6 and
Figure S5). All systems including unbound menin were found to remain stable throughout
the course of the 100 ns MD simulations. The Rg values for the unbound menin were shown
to be the most stable throughout the 100 ns simulation course for all three independent
MD runs with averages of 2.86 ± 0.06 and 2.67 ± 0.03 nm for the complete protein and
only structured regions of menin, respectively. Generally, all the menin–ligand complexes
except ZINC000095912718 and ZINC000085530488 demonstrated overall Rg average values
that were less than those of menin, signifying a more compact fold during binding. The
radius of gyration of a protein determines the protein structure’s compactness [83]. The Rg
values of a stable protein will remain similar over time; however, if the protein unfolds,
then the values will increase or decrease [83]. The disordered regions contributed to higher
Rg values for analyses involving the full protein structure. For Rg analyses involving only
structured regions of menin, a ~0.2 nm decrease in the full protein’s Rg was observed
(Table 2).

Figure 6. Radius of gyration plots of only the structured regions of the unbound menin protein
and the menin–ligand complexes generated using GROMACS after 100 ns MD simulation run
1. The unbound protein is colored black while the known inhibitors, CID 71777742, CID 36294
and 0RT, are colored red, green, and blue, respectively. The unbound menin, and menin com-
plexed with CID 71777742, CID 36294, and 0RT are compared with menin- (a) ZINC000070451048,
ZINC000103584057, ZINC000085530488, ZINC000085530497, and ZINC000095912705 complexes;
and (b) ZINC000095912706, ZINC000095912718, ZINC000095913861, ZINC000103580868, and
ZINC000103526876 complexes.

To determine the stability of the complexes throughout the simulation compared to
that of their reference structure, RMSD plots were generated (Figure 7 and Figure S6) [84].
The RMSD graphs demonstrate how the protein structures of each of the complexes during
simulations differ from the reference protein structure over time [84]. For the ten menin–
ligand complexes and the unbound menin structure, the RMSD plots showed similar trends.
From 0 to 10 ns, the RMSD values rose for all ten menin–ligand complexes and the unbound
protein. The unbound menin structure had averages of 0.54 ± 0.09 and 0.47 ± 0.03 nm
when RMSDs were determined for the complete protein and only structured regions,
respectively (Table 2).
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Figure 7. Root mean square deviation of only the structured regions of the unbound menin pro-
tein and the menin–ligand complexes generated using GROMACS after 100 ns MD simulation run
1. The unbound protein is colored black while the known inhibitors, CID 71777742, CID 36294,
and 0RT, are colored red, green and blue, respectively. The unbound menin, and menin com-
plexed with CID 71777742, CID 36294, and 0RT are compared with menin- (a) ZINC000070451048,
ZINC000103584057, ZINC000085530488, ZINC000085530497, and ZINC000095912705 complexes;
and (b) ZINC000095912706, ZINC000095912718, ZINC000095913861, ZINC000103580868, and
ZINC000103526876 complexes.

To identify the menin residues that contribute to protein structure fluctuations, the
RMSF plots of the ten menin–ligand complexes and three menin-inhibitor complexes were
analyzed. The protein regions that are most flexible were analyzed using the RMSF plots
(Figure 8 and Figure S7a,b). The regions in the RMSF plots with lower values represent the
amino acids that are possibly involved in binding and catalysis. The thirteen menin–ligand
complexes demonstrated a similar degree of fluctuation in the same amino acid residues
in all three independent MD runs. Amino acid positions 260–375 demonstrated the least
fluctuations across all complexes in the three MD runs. This is not surprising as most of the
ligands interacted with several residues in that region, including Leu262, Gln265, Tyr281,
Met283, Asn287, Asp290, Leu291, Leu294, Tyr324, Tyr328, Glu364, and Glu368 (Table 1).
Regions with relatively high fluctuations were observed at menin residue indexes 55–60,
70–75, 105–110, 130–135, 150–155, 205–225, 255–260, 390–410, 475–540, implying that these
regions may not be involved in ligand binding. The missing residues (1, 54–73, 387–398,
and 462–547), which mostly appeared to be disordered in the remodeled structure, were
observed to be the regions with the highest fluctuations. The average RMSF values of all
the residues in each complex were also determined (Table 2).

3.10. MM/PBSA Computations
3.10.1. Binding Energies Involved in Menin–Ligand Binding

To compute the binding free energies of the ten menin–ligand complexes and the
three known inhibitor complexes, the molecular mechanics Poisson–Boltzmann surface
area (MM/PBSA) was used (Figure 9 and Table 3). The free energy-based simulation
that MM/PBSA provides has become increasingly better than other methods including
molecular docking to compute ligand–protein binding affinities [65]. The binding free
energy calculations determine the affinity to the active site of the protein, which is essential
for drug discovery [66]. Since the energy values were computed for all three independent
MD runs, overall averages of the energy values were determined for each complex. The
overall average energy values were calculated using values from all three MD runs, except
for simulations in which the ligand dissociated (36294, 71777742, and ZINC000070451048).
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To measure the consistency of or variability in the simulation results, the standard devi-
ations of energy values from the independent MD runs were determined (Figure 9 and
Table 3). For all experiments, known inhibitor 36294 demonstrated the highest binding
free energy of −55.4 kJ/mol while compound ZINC000095913861 demonstrated the lowest
binding free energy of −131.1 kJ/mol followed by ZINC000103580868 with −129.6 kJ/mol
(Table 3). ZINC000095912705 demonstrated the least variability in binding free energy with
a standard deviation of 1.2 kJ/mol, followed by ZINC000103584057 with 2.5 kJ/mol, while
ZINC000095912718 and MI-2-2 had the highest variabilities with standard deviations of
29.1 and 24.3 kJ/mol, respectively across all three runs (Figure 9 and Table 3).

Figure 8. Root mean square fluctuation plot for MD run 1 of the menin–ligand complexes generated
using GROMACS after 100 ns simulation. The known inhibitors, CID 71777742, CID 36294 and 0RT,
are colored purple, red, and green, respectively.

Table 3. Energetic insights: MM/PBSA calculations of menin–ligand complexes. The energy values
are presented in kJ/mol as “Energy value ± Standard deviation”. * denotes values excluded from the
average calculation due to an unstable MD run (or ligand dissociation).

Compound MD Run vdW Electrostatic Polar Solvation SASA Binding Energy

MI−2−2

1 −131.5 ± 1.2 −16.2 ± 1.3 82.4 ± 2 −16.8 ± 0.1 −82.1 ± 2
2 −123.5 ± 1.7 −20.7 ± 1.7 103.3 ± 3.9 −15.8 ± 0.2 −56.8 ± 2.9
3 −157 ± 1.3 −2.9 ± 0.6 62.2 ± 1.3 −18.5 ± 0.1 −116.2 ± 1.5

Avg −137.3 ± 14.3 −13.3 ± 7.6 82.6 ± 16.7 −17 ± 1.1 −85 ± 24.3

36294

1 −108.3 ± 1.5 −53.6 ± 2.5 129.1 ± 2.7 −16.3 ± 0.1 −49.3 ± 1.7
2 * −36.5 ± 3.9 * −19.4 ± 2.8 * 50.5 ± 7.5 * −6.1 ± 0.6 * −11.9 ± 5.9 *
3 −126 ± 1.6 −61 ± 2.3 143.3 ± 3.4 −17.7 ± 0.1 −61.4 ± 2.1

Avg −117.2 ± 8.9 −57.3 ± 3.7 136.2 ± 7.1 −17 ± 0.7 −55.4 ± 6.1

71777742

1 −169.6 ± 1.8 −12.9 ± 0.8 54.4 ± 1.6 −20 ± 0.2 −148.1 ± 1.7
2 * −75.6 ± 4.6 * −5.5 ± 0.8 * 46.1 ± 5.3 * −9.8 ± 0.6 * −45 ± 6.8 *
3 −168.9 ± 2.7 −20.6 ± 1 77.7 ± 2.1 −19.1 ± 0.2 −130.7 ± 2.1

Avg −169.3 ± 0.4 −16.8 ± 3.9 66.1 ± 11.7 −19.55 ± 0.5 −139.4 ± 8.7
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Table 3. Cont.

Compound MD Run vdW Electrostatic Polar Solvation SASA Binding Energy

ZINC000103526876

1 −131.4 ± 1.5 −37.4 ± 1.8 106.3 ± 3.6 −18.1 ± 0.2 −80.8 ± 2.7
2 −173.7 ± 2.5 −34.1 ± 2 110.1 ± 3.3 −22.4 ± 0.2 −120.1 ± 2.5
3 −149.3 ± 1.3 −25 ± 1.6 99.4 ± 2.2 −18.8 ± 0.1 −93.5 ± 1.8

Avg −151.5 ± 17.3 −32.2 ± 5.3 105.3 ± 4.4 −19.7 ± 1.9 −98.1 ± 16.4

ZINC000095913861

1 −172.8 ± 1.1 −53.3 ± 1.3 109.3 ± 2 −21.2 ± 0.1 −138 ± 1.7
2 −163.4 ± 2.6 −27.6 ± 2.2 95.4 ± 4.1 −19.7 ± 0.3 −115.5 ± 2.3
3 −170.3 ± 1.4 −37.8 ± 1.1 89 ± 1.3 −20.9 ± 0.1 −139.8 ± 1.7

Avg −168.8 ± 4 −39.6 ± 10.6 97.9 ± 8.5 −20.6 ± 0.6 −131.1 ± 11

ZINC000095912705

1 −149.9 ± 1.2 −21.1 ± 1 90.8 ± 1.8 −19.1 ± 0.1 −99.3 ± 1.5
2 −134 ± 1.2 −22.5 ± 1.1 77.8 ± 1.7 −17.8 ± 0.1 −96.5 ± 1.5
3 −151 ± 1.4 −18.4 ± 1 91.4 ± 2 −19.3 ± 0.1 −97.3 ± 1.6

Avg −145 ± 7.8 −20.7 ± 1.7 86.7 ± 6.3 −18.7 ± 0.7 −97.7 ± 1.2

ZINC000085530497

1 −171 ± 1 −2 ± 1 80 ± 1.9 −20.3 ± 0.1 −113.3 ± 1.5
2 −177.1 ± 1.9 −28.4 ± 1.8 103.1 ± 2.4 −20.1 ± 0.1 −122.4 ± 2.2
3 −140.7 ± 1.3 −46.3 ± 1.2 102.3± 2.4 −17.5 ± 0.1 −102.3 ± 2

Avg −162.9 ± 15.9 −25.6 ± 18.2 95.1 ± 10.7 −19.3 ± 1.2 −112.7 ± 8.2

ZINC000095912718

1 −163.1 ± 1.8 −19 ± 1.3 131.4 ± 2.3 −21.4 ± 0.2 −72.1 ± 1.7
2 −146.1 ± 1.6 −51.1 ± 1.1 72.5 ± 1.4 −18.5 ± 0.2 −143.2 ± 2.1
3 −147.2 ± 1.1 −59.9 ± 1.3 122.6 ± 1.8 −18.9 ± 0.1 −103.4 ± 1.8

Avg −152.1 ± 7.7 −43.4 ± 17.6 108.8 ± 25.9 −19.6 ± 1.3 −106.3 ± 29.1

ZINC000070451048

1 −123.1 ± 1.8 −123 ± 1.7 68.3 ± 2.6 −16.3 ± 0.2 −85.4 ± 1.9
2 * −95.4 ± 4.8 * −28.4 ± 2.2 * 85.4 ± 5.5 * −13.3 ± 0.6 * −51.6 ± 4.4 *
3 −165.9 ± 2.2 −18.5 ± 1.7 110.7 ± 3.4 −19.8 ± 0.2 −93.5 ± 1.6

Avg −144.5 ± 21.4 −70.8 ± 52.3 89.5 ± 21.2 −18.1 ± 1.8 −89.5 ± 4.1

ZINC000085530488

1 −154.9 ± 1 −34.2 ± 1.7 106.8 ± 2.3 −19.4 ± 0.1 −101.6 ± 1.8
2 −173.9 ± 1.3 −82.1 ± 1.2 170.4 ± 1.4 −19.8 ± 0.1 −105.3 ± 1.5
3 −147.8 ± 1.4 −29.1 ± 1.8 120.9 ± 2.8 −18 ± 0.1 −74 ± 2.3

Avg −158.9 ± 11 −48.4 ± 23.9 132.7 ± 27.3 −19.1 ± 0.8 −93.6 ± 14

ZINC000095912706

1 −152.8 ± 1.2 −40.6 ± 1.2 115.3 ± 2 −19.1 ± 0.1 −97.3 ± 1.5
2 −163.8 ± 1.4 −31.9 ± 1.3 127.3 ± 2.3 −20.5 ± 0.1 −88.9 ± 1.9
3 −165 ± 1.5 −30.4 ± 1.5 137.2 ± 3.8 −21 ± 0.2 −79 ± 2.1

Avg −160.5 ± 5.5 −34.3 ± 4.5 126.6 ± 9 −20.2 ± 0.8 −88.4 ± 7.4

ZINC000103580868

1 −172.4 ± 1.9 −8.6 ± 0.7 94.3 ± 3.4 −21.6 ± 0.2 −108.3 ± 3.2
2 −177.9 ± 1.6 −1.8 ± 0.4 56.3 ± 1.8 −21.1 ± 0.2 −144.6 ± 2
3 −153.6 ± 2.2 −2.2 ± 0.6 39.6 ± 2.3 −19.7 ± 0.2 −135.9 ± 2.8

Avg −168 ± 10.4 −4.2 ± 3.1 63.4 ± 22.9 −20.8 ± 0.8 −129.6 ± 15.5

ZINC000103584057

1 −128.6 ± 0.9 −1.8 ± 0.9 22.3 ± 2 −15.2 ± 0.1 −123.3 ± 1.7
2 −165.5 ± 1.5 −4.3 ± 0.9 70.6 ± 1.6 −18.2 ± 0.1 −117.4 ± 1.9
3 −175.6 ± 1.9 −9.8 ± 1.2 85.8 ± 1.7 −19.4 ± 0.1 −119 ± 1.7

Avg −156.6 ± 20.2 −5.3 ± 3.3 59.6 ± 27.1 −17.6 ± 1.8 −119.9 ± 2.5

Electrostatic and van der Waal’s forces are believed to play a role in binding free
energies, as determined from earlier studies [56,85]. Of all the complexes, 36294 demon-
strated the highest overall average van der Waal’s energy of −117.2 kJ/mol and 71777742
had the lowest van der Waal’s energy of −169.3 kJ/mol followed by ZINC000095913861,
ZINC000103580868, ZINC000085530497, and ZINC000095912706 with values of −168.8,
−168, −162.9, and −160.5 kJ/mol, respectively (Table 3).
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Figure 9. Bar plots representing the overall averages of the binding free energies from the 3 indepen-
dent MD runs computed using the MM/PBSA method. The error bars are the standard deviations
calculated from the three binding free energy values of each menin–ligand complex.

3.10.2. Per-Residue Energy Decomposition

To determine the energy contribution of each amino acid residue in the protein struc-
ture, the MM/PBSA method was used. This method may aid in the development of
inhibitors that target the active site of the protein [86]. A threshold of more than +5 kJ/mol
or less than −5 kJ/mol was used and residues with this threshold could be considered
critical binding residues [87]. Per-residue energy decomposition calculations were per-
formed for each of the protein–ligand complexes (Figure 10 and Figure S8a–l). The results
from the per-residue energy decomposition of only the first independent MD run are
discussed herein.

Based on the protein–ligand interaction studies, Phe243, Met283, Cys246, Tyr281,
Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250
were all considered potential critical binding residues. For the menin–71777742 complex,
Asp185 and Met283 were shown to have energies of less than −5 kJ/mol, which is favorable
for ligand binding (Figure S8c). Asp185 and Met283 contributed energies of −8.876 and
−5.605 kJ/mol, respectively. The menin–ZINC000070451048 complex had favorable ligand
binding to Asp185 (−8.114 kJ/mol) [Figure S8h]. For the menin–36294 complex, Met283
contributed a favorable energy value of −2.8866 kJ/mol (Figure S8b). For the menin–0RT
complex, Ser160 contributed a positive energy value of 3.314 and Phe243 contributed a
favorable energy value of −3.4485 kJ/mol (Figure S8a). For menin–ZINC000103584057
complex, residues Asp185, Met283, and Tyr328 had favorable energies of −6.123, −5.326,
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and −4.465 kJ/mol, respectively (Figure S8l). For menin–ZINC000085530488, a positive
energy of 5.075 kJ/mol was observed for Ser160 and negative energies of −5.568, −3.786,
and −2.931 kJ/mol were observed for Met283, Asp185, and Tyr328, respectively (Figure S8i).
For the menin–ZINC000085530497 complex, Ser160 contributed a positive binding energy
of 4.176 kJ/mol and Tyr281 contributed an energy of 3.593 kJ/mol. Asp185, Ala247, and
Met283 contributed favorable energies of −8.481, −4.266, and −3.996 kJ/mol, respectively
(Figure S8f).

Figure 10. Per-residue energy decomposition of the menin–ZINC000095913861 complex. Residues
that contributed energies beyond the ±5 kJ/mol threshold have been labeled.

For the menin–ZINC000095912705 complex, Ser160 contributed a positive energy of
3.208 kJ/mol. Asp185, Leu182, Asp185, Phe243, and Met283 contributed energies of −7.131,
−6.616, −3.646, −7.131, −3.522, and −6.616 kJ/mol, respectively (Figure S8d). For the
menin–ZINC000095912706 complex, Ser160 contributed a positive energy of 3.865 kJ/mol
while Asp185, Phe243, Leu182, and Ala247 had favorable energies of −6.842, −5.138, −3.590,
and −3.858 kJ/mol, respectively (Figure S8j). For the menin–ZINC000095912718 complex,
Met283, Leu182, and Ala247 had favorable energies of −5.350, −3.101, and −3.386 kJ/mol,
respectively (Figure S8g). Ser160 contributed a positive energy of 3.287 kJ/mol for the menin–
ZINC000095913861 complex (Figure 10). Asp185 and Phe243 also contributed favorable en-
ergies of −8.680 and −2.913 kJ/mol. Asn249 and Glu184 also contributed favorable energies
of −2.458 and −5.420 kJ/mol, respectively (Figure 10). For the menin–ZINC000103580868
complex, Tyr281 contributed a positive energy of 3.441 kJ/mol while Ala247 and Met283
contributed energies of −3.577 and −4.016 kJ/mol, respectively (Figure S8k). For the
menin–ZINC000103526876 complex, Asp185 and Tyr328 contributed favorable energies of
−5.600 and −4.4855 kJ/mol, respectively (Figure S8e).

3.11. Future Outlook and Implications

This study is one of the few studies that attempts to virtually screen small molecules
against the menin structure. The re-modeled protein structure used in this study provides
an avenue for the additional discovery of drug-like compounds and better understanding
of menin–ligand interactions and promotes catalytic site analysis. Natural products have
been under-explored; therefore, this study seeks to show evidence of effective natural
products as anti-menin molecules. This study accompanies current endeavors to target
the menin protein. These small compounds are crucial to the fight against MLL-mediated
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leukemia. An exhaustive pharmacoinformatics approach was used in this study that
focused on discovering menin inhibitors targeting the menin–MLL interface. Drug-like
molecules were predicted in this study and were fortified with computer system-based
antileukemic and antineoplastic activity predictions. MD simulations and MM/PBSA
calculations were also employed in this study. For additional depictions of effective future
inhibitors, the compounds predicted in the study are recommended to be tested in vivo and
in vitro to determine their antineoplastic biological activity. Additionally, this study further
calls attention to the repurposing of current molecules as potential inhibitors to the menin
protein in a bid to assist the discovery of novel therapies for MLL-mediated leukemia.

4. Conclusions

The menin protein is an important oncogenic cofactor for MLL-FPs and a target for
MLL-mediated leukemia. Leveraging a multifaceted approach, we employed molecu-
lar docking, and in silico physicochemical and pharmacological property predictions to
unveil ten potential inhibitors against menin, including noteworthy candidates such as
ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC0000
95912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868,
and ZINC000103584057. Novel insights into the binding mechanisms and the critical
residues of menin were obtained via MD simulations and MM/PSBA calculations. The
natural compounds predicted to be potential menin inhibitors were predicted via PASS to
have antileukemic, antineoplastic, chemopreventive, and apoptosis agent activities. Ad-
ditionally, the compounds were predicted to be good drug-like compounds, have good
pharmacokinetic properties, and imperceptible toxicity properties. Thus, these lead com-
pounds have the potential to exhibit anti-menin properties during experimental testing. In
essence, our comprehensive computational analyses not only contribute to a deeper un-
derstanding of menin inhibition but also propose a set of lead compounds with significant
potential for anti-menin therapeutic interventions. We anticipate that further experimental
investigations will validate and propel these findings toward the development of targeted
therapies for MLL-mediated leukemia.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/computation12010003/s1. Figure S1: Potential energy plot of
menin after energy minimization using OPLS and CHARMM36 force fields. Figure S2: Root mean
squared deviation (RMSD) [(a) and (b)] and Radius of gyration (Rg) [(c) and (d)] plots after 20 ns MD
simulation of menin using OPLS and CHARMM36 force fields for: (a) and (c) full protein including
disordered regions; and (b) and (d) only structured part. Figure S3: Superimposition of the best pose
from AutoDock Vina docking to the co-crystalized structures for (a) MI-2 (0RO), (b) MI-2-2 (0RT),
(c) MI-89, and (d) MIV-6. For all the superimpositions, the co-crystalized ligands are in red while
the docking poses are coloured yellow. Figure S4: Protein-ligand interaction maps of menin in com-
plex with (a) CID 71777742, (b) ZINC000103526876, (c) ZINC000085530497, (d) ZINC000095912718,
(e) ZINC000070451048, (f) ZINC000085530488, (g) ZINC000095912706, (h) ZINC000103580868, and
(i) ZINC000103584057. Figure S5: Radius of gyration plots of only the structured region of the
unbound menin protein and the menin-ligand complexes generated using GROMACS after 100 ns
simulation. The Rg plots were generated using: (a) and (b) whole menin structure from MD
run 1; (c) and (d) whole menin structure from MD run 2; (e) and (f) only structured regions of
menin from MD run 2; (g) and (h) whole menin structure from MD run 3; and (i) and (j) only
structured regions of menin from MD run 3. The unbound protein is coloured black while the
known inhibitors CID 71777742, CID 36294 and 0RT are coloured red, green, and blue, respec-
tively. Figure S6: Root mean square deviation of the unbound menin protein and the menin-ligand
complexes generated using GROMACS after 100 ns simulation. The RMSD plots were generated
using: (a) and (b) whole menin structure from MD run 1; (c) and (d) whole menin structure from
MD run 2; (e) and (f) only structured regions of menin from MD run 2; (g) and (h) whole menin
structure from MD run 3; and (i) and (j) only structured regions of menin from MD run 3. The
unbound protein is coloured black while the known inhibitors CID 71777742, CID 36294, and 0RT
are coloured red, green and blue, respectively. Figure S7: Root mean square fluctuation plots for

https://www.mdpi.com/article/10.3390/computation12010003/s1
https://www.mdpi.com/article/10.3390/computation12010003/s1
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menin-ligand complexes generated using GROMACS after 100 ns simulation for (a) MD run 2 and
(b) MD run 3. The known inhibitors CID 71777742, CID 36294 and 0RT are coloured as purple, red,
and green, respectively. Figure S8: Per-residue energy decomposition of the menin-ligand complexes:
(a) 0RT, (b) 36294, (c) 71777742, (d) ZINC000095912705, (e)ZINC000103526876, (f) ZINC000085530497,
(g) ZINC000095912718, (h) ZINC000070451048, (i) ZINC000085530488, (j) ZINC000095912706, (k) ZINC
000103580868, and (l) ZINC000103584057.
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