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Abstract: The term metabolic syndrome describes the clinical coexistence of pathological disorders
that can lead to the development of cardiovascular disease and diabetes in the long term, which is
why it is now considered an initial stage of the above clinical entities. Metabolic syndrome (MetSyn)
is closely associated with increased body weight, obesity, and a sedentary lifestyle. The necessity of
prevention and early diagnosis is imperative. In this research article, we experiment with various
supervised machine learning (ML) models to predict the risk of developing MetSyn. In addition, the
predictive ability and accuracy of the models using the synthetic minority oversampling technique
(SMOTE) are illustrated. The evaluation of the ML models highlights the superiority of the stacking
ensemble algorithm compared to other algorithms, achieving an accuracy of 89.35%; precision, recall,
and F1 score values of 0.898; and an area under the curve (AUC) value of 0.965 using the SMOTE
with 10-fold cross-validation.
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1. Introduction

Metabolic syndrome is a nosological entity that is strongly correlated with many
cardiovascular risk factors, which are observed and coexist within the same individual,
such as obesity, type 2 diabetes mellitus, arterial hypertension, and dyslipidemia. Metabolic
syndrome is also called Syndrome X or Insulin Resistance Syndrome [1,2]. Someone has
metabolic syndrome if three or more of the following criteria for metabolic syndrome are
abnormal [3,4]:

• Waist circumference greater than 102 cm and 88 cm for men and women, respectively.
• Triglyceride levels greater than or equal to 150 mg/dL.
• HDL lower than 40 mg/dL and 50 mg/dL for men and women, respectively.
• Blood pressure, systolic greater than or equal to 130 or diastolic greater than or equal to

85 mmHg.
• Fasting plasma glucose levels greater than or equal to 110 mg/dL.

The primary cause of metabolic syndrome is the insulin resistance of the tissues,
especially the muscles, liver, and adipose tissue, i.e., the adverse effect of endogenous
insulin on these organs. Insulin resistance is associated with diabetes, whose triggering
factor is obesity. The causes of metabolic syndrome are closely related to certain factors
contributing to diabetes mellitus and atherosclerosis. These factors include the production
of anti-inflammatory proteins, i.e., proteins produced and secreted by adipose tissue,
which have local and systemic effects [5,6]. Other contributing factors, and therefore
causes of metabolic syndrome, are heredity, age, smoking, reduced physical activity, and
dietary intake with increased calories (in particular, saturated animal fats can cause serious
problems) [7–9].
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Weight loss constitutes an etiological (namely, it acts causally) and thus an essential
treatment of metabolic syndrome. It improves individual disorders related to blood sugar,
blood pressure, and lipids, as well as insulin resistance. Moreover, increasing physical
exercise, either in the form of going to the gym or an increase in daily activities, may have
the same causal effect [10]. Also, medications that aid in weight loss, such as drugs that
control insulin resistance (acting as antidiabetics), hypertension, and dyslipidemia, can
equally help to control metabolic syndrome [11,12].

Prevention is dependent on an appropriate healthy diet, such as the Mediterranean
diet, which helps to reduce body weight, thereby preventing the occurrence of hyperlipi-
demia, hypertension, and diabetes. This diet is characterized by reduced fats, mainly of
vegetable origin, with a special emphasis on olive oil, which has been proven to have a ben-
eficial effect on insulin resistance (when consumed in small and moderate amounts). Also,
this diet consists of minimal micromolecular carbohydrates (e.g., sugar) that can be rapidly
absorbed, create hyperinsulinemia, and worsen insulin resistance. Moreover, it contains a
lot of fibre, which helps in weight loss, regulates sugar, and reduces hyperlipidemia [13,14].
Additionally, a small amount of salt (less than 6 g per day), low amounts of cholesterol
(up to 300 mg per day), and low or moderate amounts of alcohol (1–7 glasses per week,
preferably red wine) can help control MetSyn. Finally, an increase in exercise and physical
activity plays an important role in prevention since it prevents weight gain and reduces
insulin resistance [15–17].

It is a common belief that, nowadays, medical experts have at their disposal numerous
medications that can correct the nutritional deficiencies of a patient with metabolic syn-
drome by adapting to their profile and radically changing their quality of life. Furthermore,
given that researchers have access to diverse medical and anthropometric data of various
subjects, the efficient exploitation of these data using modern information processing meth-
ods, especially from the fields of Artificial Intelligence (AI) and machine learning (ML),
can help build highly accurate predictive and diagnostic models, not only for metabolic
syndrome but also for many other diseases. Indeed, ML techniques have played and
will continue to play a key role in the prevention of disease complications through early
prediction. Some characteristic examples are diabetes (as classification [18] or time-series
tasks for continuous glucose prediction [19]), stroke [20], chronic obstructive pulmonary
disease (COPD) [21], COVID-19 [22], chronic kidney disease (CKD) [23], liver disease [24],
cardiovascular diseases (CVDs) [25], hypertension [26], lung cancer [27], etc.

The prediction of metabolic syndrome is the focus of the analysis and discussion in this
research article. From an ML perspective, the contributions of this submission are fourfold:

• Data preprocessing is performed, which involves data cleaning and class balanc-
ing using the SMOTE. Thus, we are given the chance to experiment with effective
classification models for the accurate identification of the occurrence of metabolic
syndrome.

• In terms of feature ranking, three methods, namely information gain, gain ratio,
and random forest, are chosen to measure their significance in the MetSyn class.

• In this submission, we experiment with a multitude of supervised ML models to
determine the most accurate for classifying an unknown instance into the correct
class. Well-known ML metrics with 10-fold cross-validation are used to evaluate the
models’ performance. An “ablation experiment” is conducted to measure the role
of class balancing in the ML models’ predictive performance. From this perspective,
the experiments are executed with and without applying the SMOTE for the models’
training. The performance outcomes illustrate the prevalence of the ensemble model
with the stacking technique due to the application of the SMOTE. Moreover, feature
importance is measured with and without using the SMOTE.

• A discussion of related works on the prediction of metabolic syndrome using ML
techniques and models is presented.

This paper is organized as follows. In Section 2, we analyze the methodology we
adopted to process and comprehend the dataset we relied on. Next, in Section 3, we
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demonstrate the outcomes of the ML metrics used to evaluate the models’ performance.
In Section 4, we provide a discussion of related works that use ML models and methods to
predict metabolic syndrome. Finally, in Section 5, we summarize our research findings and
discuss future directions.

2. Materials and Methods

This section briefly discusses the dataset we used in our experiments. In addition,
the steps of the methodology followed are presented. Also, we describe the experiment’s
environment, including the configuration of the ML models to maximize the performance
metrics. Finally, the metrics used to evaluate the models are discussed.

2.1. Data Collection and Description

For the analysis, we selected a dataset [28] from the NHANES (National Health and
Nutrition Examination Survey). The NHANES is one of a series of health-related programs
conducted by the National Center for Health Statistics (NCHS) to provide information on
the health and nutritional status of the non-institutionalized civilian resident population of
the United States. This information has been used to estimate the prevalence of various
diseases and conditions and provide information for use in planning health policies. The
NHANES is unique in its collection of person-level demographic, health, and nutritional
information from personal interviews and a standardized physical examination in a mobile
examination center. The examination includes objective measures of health status, includ-
ing height, weight, blood pressure, and the collection of blood and urine specimens for
laboratory testing.

From the NHANES database, the data collector combined risk factor variables from
multiple tables by submitting an SQL query: abnormal waist circumference of more than
35 inches for women and more than 40 inches for men, triglycerides above 150, HDL choles-
terol below 50 in women or 40 in men, and a history of hypertension and mildly elevated
fasting blood sugar (100–125). Numerous other variables were considered, such as uric
acid, race, income, etc., since they may contribute to the modeling of metabolic syndrome.

From the above process, a set of 2401 samples was collected, represented by 13 at-
tributes of which 10 are numerical and 3 nominal. Specifically, the numerical attributes
include age [29], income [30], waist circumference (waistcirc), body mass index (BMI) [31],
albuminuria, urine albumin–creatinine ratio (UrAlbCr), uric acid [32], blood glucose [33],
high-density lipoprotein (HDL), and triglycerides [34]. The nominal attributes include
sex [29], marital status [31], and race [32]. From now on, MetSyn denotes the target class,
which is binary and indicates the occurrence or not of metabolic syndrome.

2.2. MetSyn Risk Prediction: Methodology

Metabolic syndrome risk prediction consists of several steps. In the first step, data
preprocessing was applied to handle (i) incomplete data or lack of attribute values, (ii) dif-
ferent dimensions or distributions of the attributes, and (iii) class unbalancing. Then,
we identified the features’ importance and selected several classifiers to design the risk
prediction models. These steps are analyzed in the following subsections.

2.2.1. Data Preprocessing

Data preprocessing helps clean, format, and organize raw data. Hence, this step
is necessary to enhance the quality of raw data, making it suitable for the extraction of
meaningful insights. Among the data, from the total records (2401 in number), 208 had
no marital status, 117 (4.9%) lacked income data, 5 (0.21%) had no waist circumference
information, and finally, 117 (4.9%) had missing values for the BMI. Therefore, we decided
to exclude those records with missing values.

After completing the previous step, the resulting number of participants was 2009, of
whom 712 (35.4%) had been diagnosed with MetSyn. Also, the number of women was 1022
(50.9%), whereas the number of men was 987 (49.1%). The participants’ ages varied from 20
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to 80 years. Concerning the participants’ races, six types were present in the dataset, White
(40%), Black (23%), Asian (14.7%), Hispanic (9.9%), Mexican-American (9.9%), and Other
(2.5%). Further statistical details of the numerical attributes are noted in Table 1.

Table 1. Univariate analysis of the dataset (without the SMOTE).

Attribute Description

Min Max Mean ± std Dev

age 20 80 49.2 ± 17.4

income 300 9000 4147.2 ± 2984.6

waistcir 63.1 170.5 98.5 ± 16.3

BMI 15.7 68.7 28.7 ± 6.58

albuminuria 0 2 0.15 ± 0.41

UrAlbCr 1.4 4462.8 42.3 ± 241.4

uric acid 1.8 11.3 5.5 ± 1.4

blood glucose 39 382 108 ± 33.6

HDL 14 150 53.5 ± 15

triglycerides 26 1311 126.9 ± 89.8

In the following step, data normalization was applied to the attributes by rescaling the
numerical attributes to a range between 0 and 1 to make the data dimensionless and/or
have similar distributions. Moreover, to increase the efficiency of the models to be trained,
class balancing was applied, creating synthetic samples in the minority class, i.e., MetSyn,
following the steps of the SMOTE [35] (with K = 5), as shown in Algorithm 1.

Algorithm 1 SMOTE

Input: T (sample’s size in the minority class), N (% of synthetic samples for balancing),
K (number of nearest neighbors), rsyn synthetic instance, S = N

100 T (synthetic samples);
for all ri ∈ S do

(1) Estimate the K-nearest neighbors;
(2) Randomly choose one of the K neighbors, called r̂i;
(3) Compute the distance di,k = r̂i − ri between the randomly selected NN r̂i and the
instance ri;
(4) The new synthetic instance is created as rsyn = ri + γdi,k (where γ = rand(0, 1) is a
random number between 0 and 1);

end for
Steps 2–4 are repeated until the desired proportion S is satisfied.

2.2.2. Feature Importance Ranking and Analysis

We employed three methods to rank the contribution of a feature in the MetSyn class.
The results are illustrated in Figures 1–3. The importance of the feature was evaluated
under two cases: unbalanced (No SMOTE) and balanced data (SMOTE).

Initially, the value of an attribute Y was captured by measuring its information gain
(InfoGain) according to the following equation:

In f oGain(C, Y) = H(C)− H(C|Y). (1)

Focusing on the right-hand side of Equation (1), the left term measures the entropy of the
class variable C, which is defined as H(C) = −∑c∈Vc pclog2(pc), where pc is the probability,
such that c ∈ Vc = {0, 1} (0: Non_MetSyn and 1: MetSyn). The term on the right-hand side,
H(C|Y) = −∑c∈VC

pc|ylog2(pc|y), is the conditional entropy of the class variable C given
an attribute Y, with pc|y representing the conditional probability.
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Figure 1. Feature importance based on the information gain, with and without using the SMOTE.

Figure 2. Feature importance based on the gain ratio, with and without using the SMOTE.



Computation 2023, 11, 170 6 of 15

Figure 3. Feature importance based on Gini impurity, with and without using the SMOTE.

Then, the gain ratio (GR) method was employed, which was calculated as

GR(Y) =
H(C)− H(C|Y)

H(Y)
. (2)

The entropy of feature Y in Equation (2) was calculated by H(Y) = −∑y∈VY
pylog2(py)

(with py denoting the probability of feature Y = y ∈ VY). The numerator of the GR
is the InfoGain, which we previously analyzed. In addition to the previous methods,
the random forest classifier was considered to measure the importance of features based
on Gini impurity. This index measures a candidate feature’s ability to optimally split the
instances into two classes.

The first two methods assigned the same order of importance to all variables, except
for marital, race, age, uric acid, and albuminuria. All methods assigned blood glucose
the highest ranking, whereas sex was assigned the lowest ranking with a rank close to
zero. Moreover, the BMI and triglycerides were assigned the same order in the hierarchy,
although the respective scores derived by each method were different.

In Figures 4 and 5, we illustrate the Pearson correlation matrices [36] of the features
(including the target class) without and with the use of the SMOTE. In both figures, it is
shown that the linear relationship (positive or negative) among the features was maintained
either without or with the use of the SMOTE. The strongest relationship was observed
between the BMI and waist circumference, both without and with the use of the SMOTE,
with values of 0.91 and 0.89, respectively. Most of the features have low associations (values
in the range of 0.01–0.30). Waist circumference, BMI, triglycerides, and blood glucose
indicated a medium-level positive linear relationship (values in the range of 0.3–0.5) with
the metabolic syndrome class. Finally, it should be noted that all available features (demo-
graphic, biochemical, and social) were considered for training more generalized models.
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Figure 4. Correlation matrix for different pairs of features (except for income, marital status, and race).

Figure 5. Correlation matrix for different pairs of features when using the SMOTE (except for income,
marital status, and race).
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2.3. Evaluation Models and Metrics

Among the wide list of ML models, we selected a representative number of classifiers
for our experiments to determine which one could outperform the others by comparing
their predictive abilities. More specifically, we selected the following classifiers: (i) two
probabilistic models, namely naive Bayes (NB) [37] and logistic regression (LR) [38]; (ii) a
decision tree-based model, i.e., J48 [39]; (iii) (linear) support vector machine (SVM) [40]
which constitutes a well-known kernel-based classifier, (iv) extreme gradient boosting (XG-
Boost), bagging [41], random forest (RF) [42], rotation forest (RotF) [43], voting [44], and
stacking [45] from the family of ensemble algorithms; (v) multilayer perceptron (MLP) [46],
a fully connected feedforward artificial neural network; and (vi) k-nearest neighbors
(kNN) [47], a distance-based classifier. Focusing on the ensemble models, the stacking
method utilized the RF and J48 models as base classifiers and the LR model as a metaclassi-
fier. Voting exploited the same base models, whose outcomes were combined by applying
the average probabilities approach (soft voting), assigning an instance to the class with the
highest average probability. Finally, the bagging method utilized the RF model.

The models’ performance was assessed by employing the accuracy, precision, recall,
F1 score, and AUC metrics [22]. The confusion matrix consists of true positives (tp),
true negatives (tn), false positives (fp), and false negatives (fn). Based on these elements,
the aforementioned metrics can be defined as follows:

• Accuracy sums up the classification performance by measuring the number of correctly
predicted instances out of the total data.

Accuracy =
tn + tp

tn + fn + tp + fp
(3)

• Precision indicates how many of the instances that were positive for MetSyn actually
belong to this class.

Precision =
tp

tp + fp
(4)

• Recall measures the proportion of instances of MetSyn that were correctly considered
positive, concerning all positive instances.

Recall =
tp

tp + fn
(5)

• The F1 score is a measure of a model’s accuracy on a given dataset. It is used to
evaluate a model’s performance in binary classification problems. It combines the
precision and recall values of the model, and it is defined as the harmonic mean
of them.

F1− score = 2
Precision · Recall

Precision + Recall
(6)

• To evaluate a model’s ability to distinguish MetSyn instances from Non-MetSyn ones,
the AUC was utilized. The AUC varied in the range of [0, 1]; the closer to one, the more
efficient the ML model.

2.4. Experimental Setup

The experiments were executed in the Waikato Environment for Knowledge Analysis
(Weka) [48] on a personal computing system with the following characteristics: 11th
generation Intel(R) Core(TM) i7-1165G7 @ 3.2 GHz, RAM 32 GB, Windows 11 Pro, 64-bit
OS, and x64 processor. The 10-fold cross-validation procedure was preferred (due to its
suitability for a limited-size dataset) to measure the models’ efficiency considering all
features by training and comparing their performance with and without class balancing.
The process was repeated until all folds were covered, and the average performance was
recorded. The optimal parameter settings of the ML models are presented in Table 2.
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Table 2. Machine learning models’ settings.

Model Parameters

LR use Conjugate Gradient Descent: True

J48

reduced Error Pruning: False
save lnstance Data: True

use MDL Correction: True
subtree Raising: True

binary Splits: True
collapse Tree: True

MLP learning rate = 0.1
training time = 200

k-NN

k = 3
Search Algorithm: Linear NN Search

with Euclidean
cross-validate: True

NB use Kernel Estimator: False
use Supervised Discretization: True

SVM kernel type: linear

RF break Ties Radomly: True
store out of Bag Predictions: True

XGBoost batch Size: 100
num Decimal Places: 2

RotF
classifier: RF

number of Groups: True
projection Filter: Principal Components

Stacking classifiers: RF and J48
meta Classifier: LR

Voting
classifiers: RF and J48

combination Rule: average
of probabilities

Bagging
classifiers: RF

print Classifiers: True
store out of Bag Predictions: True

3. Results

The performance evaluation was conducted before and after the application of class
balancing to investigate the contribution of the SMOTE to the improvement of the models’
efficiency. The role of class balancing is demonstrated by the precision and recall values
(and thus the F1 score) in the middle columns in Table 3. Training the ML models with
class-balanced data using the SMOTE reduced false negatives and, as a result, enhanced
the identification of non-healthy instances without deteriorating the prediction of healthy
instances and, ultimately, reached high average performance. Moreover, we observed that
the precision of the models exhibited an increase, which means that the false positives were
also reduced. Hence, the number of correct predictions of the minority class was increased
using the SMOTE, improving both the precision and recall values of the MetSyn class.

From the investigated models shown in Table 3, the stacking ensemble outperformed
the other models, achieving an accuracy of 89.35%; precision, recall, and F1 score values
of 0.898; and an AUC value of 0.965. Also, bagging, which used RF as the base classifier,
achieved an accuracy of 89.10%; precision, recall, and F1 score values of 0.891, 0.893,
and 0.892, respectively; and an AUC value of 0.963. Bagging achieved the second-best
performance after stacking, which was ranked first among the models. The RotF model
achieved recall and AUC values of 0.867 and 0.944, respectively, whereas voting was
characterized by higher recall and AUC values (0.887 and 0.957, respectively). Finally,
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Figure 6 illustrates the relationship between the true positive rate (tpr = tp
tp+ f n ) and

the false positive rate ( f pr = f p
f p+tn ) when using SMOTE. Among the ensemble models,

stacking, bagging, RF, and XGBoost exhibited approximately similar ROC curves, which
were a bit higher than those of RotF and voting (this was verified for f pr in the range
[0.05, 0.35]) but significantly higher than the other models.

Table 3. An overview of the ML models’ evaluation.

Accuracy (%) Precision Recall F1 Score AUC

No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE

NB 84.57 84.87 0.849 0.854 0.846 0.858 0.847 0.856 0.926 0.930

LR 83.27 83.56 0.831 0.835 0.833 0.837 0.832 0.836 0.891 0.912

SVM 82.83 82.96 0.826 0.829 0.828 0.833 0.827 0.831 0.796 0.806

MLP 84.87 84.98 0.847 0.851 0.849 0.853 0.848 0.852 0.901 0.919

3-NN 75.91 75.96 0.754 0.757 0.759 0.763 0.756 0.760 0.779 0.789

J-48 86.56 86.61 0.865 0.869 0.865 0.868 0.865 0.868 0.895 0.918

RF 88.93 89.15 0.890 0.894 0.890 0.894 0.890 0.894 0.958 0.962

RotF 85.51 86.71 0.854 0.868 0.854 0.867 0.854 0.867 0.937 0.944

Stacking 88.95 89.35 0.889 0.898 0.889 0.898 0.889 0.898 0.960 0.965

Bagging 88.80 89.10 0.888 0.891 0.892 0.893 0.890 0.892 0.958 0.963

Voting 87.36 87.49 0.873 0.885 0.878 0.887 0.875 0.886 0.956 0.957

XGBoost 87.50 88.15 0.821 0.873 0.832 0.889 0.826 0.881 0.949 0.961

Figure 6. AUC ROC curves of ML models using the SMOTE with 10-fold cross-validation.
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4. Discussion

In this section, related works are presented that exploit different datasets, using as a
reference point the prediction of the metabolic syndrome occurrence with the aid of ML
models and techniques. The outline of these studies aimed to (i) show the interest of the
research community in this health condition, (ii) highlight the diversity in available datasets,
and (iii) identify the best-performing classifiers for metabolic syndrome risk prediction,
although their performance is not explicitly compared to the research results of the present
submission.

First, the authors of [49] used the National Cholesterol Education Program Third Adult
Treatment Panel (ATP III) criteria to rank the health parameters (clinical and anthropometric
measurements, lifestyle data, and blood tests) from a dataset in Mexico City. The random
forest model prevailed in terms of sensitivity (0.93) and specificity (0.93) in classifying
abdominal obesity in people with MetSyn. Similarly, the authors of [50] used the ATP III
criteria with two ML models, decision tree and SVM, which were selected for the prediction
of MetSyn occurrence. The sensitivity, specificity, and accuracy values achieved using SVM
(decision tree) were 0.774 (0.758), 0.74 (0.72), and 0.757 (0.739), respectively.

Moreover, [51] analyzed data from 17,182 adults attending an annual checkup program
(37,999 visit pairs) over 17 years. The light gradient boosting machine (LGBM) model
exhibited better performance (sensitivity = 0.878, specificity = 0.702, AUC = 0.86) in the
prediction of MetSyn. In [52], the authors evaluated the performance of different decision
tree ML algorithms to predict the occurrence of MetSyn in self-paid health examination
subjects who were examined with an ultrasound device called FibroScan. The AUC value
achieved using fandom forest was 0.904.

Additionally, the authors of [53] aimed to develop a MetSyn prediction ML model
using genetic and clinical factors of non-obese Koreans. The naive Bayes model prevailed
over the other models in terms of the sensitivity (0.42), specificity (0.80), and AUC (0.69)
values. In [54], an ML-based method for the early detection of MetSyn was presented,
which uses only non-invasive features. The authors achieved AUC values of up to 0.90
with the ensemble classifier.

The discriminative abilities of the BMI, waist circumference, and waist-to-hip ratio
in predicting two or more non-adipose components of MetSyn (high blood pressure,
hypertriglyceridemia, low high-density lipoprotein-cholesterol, and high fasting plasma
glucose) were examined in [55]. A receiver operating characteristic (ROC) curve analysis
was used to evaluate the ability of each anthropometric index to discriminate MetSyn from
non-MetSyn cases based on the AUC. The study in [56] aimed to identify and rank the
most important nutritional and non-nutritional factors contributing to the development of
MetSyn using a data-mining method. The results illustrated the high ability of the random
forest model to correctly predict MetSyn, achieving a sensitivity of 0.97.

The eXtreme gradient boosting model was utilized in [57,58], achieving AUC values of
0.88 and 0.93, respectively, in the prediction of MetSyn. Also, in [59,60], the LR model was
employed, achieving AUC values of 0.817 and 0.813, respectively. In [61], a new MetSyn
risk score was established and validated to predict the risk of MetSyn within the next three
years. The proposed ML model achieved an AUC of 0.68.

In this work, we considered a dataset that combines biochemical indices (albuminuria,
UrAlbCr, uric acid, blood glucose, HDL, triglycerides) that capture the most relevant factors
of metabolic syndrome, along with sociodemographic features (such as age, income, race,
and marital status). Several classifiers, including those models that adopt the concept of
ensemble learning, were trained and tested assuming 10-fold cross-validation with and
without using the SMOTE. In the evaluation, the most critical numerical performance
metrics, along with a graphical illustration of the AUC curves, were compared. Finally,
it should be noted that among the ensemble learning methods that were assessed in this
study, stacking was our preferred method, attaining an accuracy of 89.35%; precision, recall,
and F1 score values of 0.898; and an AUC value of 0.965.
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5. Conclusions and Future Work

Metabolic syndrome is not an independent disease but a combination of factors that
increase the risk of its development. It is closely related to increased body weight, obesity,
and a sedentary lifestyle. The necessity of prevention and early diagnosis is imperative, as
the condition takes on alarming proportions over time.

In this research article, we experimented with various ML models, namely NB, LR,
kNN, SVM, J48, MLP, RotF, RF, XGBoost, stacking, bagging, and voting, to predict the
risk of developing metabolic syndrome, with and without using the SMOTE with 10-fold
cross-validation. Finally, the models were evaluated and compared in terms of accuracy,
precision, recall, F1 score, and AUC to identify the most efficient for predicting the risk
of an individual being diagnosed with metabolic syndrome. The experimental results
demonstrated that the stacking ensemble model exhibited superior performance compared
to the other models, achieving an accuracy of 89.35%; precision, recall, and F1 score values
of 0.898; and an AUC value of 0.965 using the SMOTE with 10-fold cross-validation. A
limitation of the current study is that the set features did not include the blood pressure and
waist-to-hip ratio, which would make it even more accurate than the BMI for predicting
the risk of metabolic syndrome [55].

As a future extension of this paper, we aim to incorporate an explainable step into
the current methodology that considers techniques for features’ effects interpretation in
metabolic syndrome risk prediction, such as individual conditional expectation (ICE) and
partial dependence plot (PDP) [62]. The former visualizes how the changes in features
impact an instance’s class prediction. The latter is a global method that captures the effect
of a feature, focusing on an overall average, not specific instances.

Also, we aim to examine data-driven dimensionality reduction and visualization
tools, such as t-distributed stochastic neighborhood embedding (t-SNE) which non-linearly
transforms the input features into low-dimensional ones [63]. The acquired features will be
investigated in combination with the currently available ones to determine whether they
improve the classifiers’ performance. Although the initial scope of the study was to tackle
the data imbalance issue considering a class balancing technique and all available features,
measuring the performance metrics in terms of different portions of the input variables
remained quite challenging. Here, we selected the SMOTE to tackle the imbalanced
class distribution among MetSyn and Non-MetSyn instances for the models’ training.
Automating the procedure to render it applicable for different portions of the input features
and re-investigating the impact of selected features (based on their importance) in the
performance metrics will be taken into consideration in an extended version of the current
work. Finally, the ML framework will be expanded by investigating deep learning methods
and comparing the results on the same metrics.
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