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Abstract: This research analyzes electrical distribution networks using renewable generation sources
based on photovoltaic (PV) sources and distribution static compensators (D-STATCOMs) in order to
minimize the expected annual grid operating costs for a planning period of 20 years. The separate and
simultaneous placement of PVs and D-STATCOMs is evaluated through a mixed-integer nonlinear
programming model (MINLP), whose binary part pertains to selecting the nodes where these devices
must be located, and whose continuous part is associated with the power flow equations and device
constraints. This optimization model is solved using the vortex search algorithm for the sake of
comparison. Numerical results in the IEEE 33- and 69-bus grids demonstrate that combining PV
sources and D-STATCOM devices entails the maximum reduction in the expected annual grid
operating costs when compared to the solutions reached separately by each device, with expected
reductions of about 35.50% and 35.53% in the final objective function value with respect to the
benchmark case. All computational validations were carried out in the MATLAB programming
environment (version 2021b) with our own scripts.

Keywords: radial and meshed distribution networks; renewable generation sources; static
distribution compensators; mixed-integer nonlinear programming model; vortex search algorithm

1. Introduction
1.1. General Context

Medium-voltage distribution networks are infrastructures that span tens or hundreds
of kilometers in urban and rural areas in order to supply electricity to all end users while
ensuring quality, reliability, efficiency, and security [1]. However, these grids are typically
built considering a radial configuration (i.e., a tree structure) [2]. This configuration,
although economical from an investment perspective, increases the operating costs, as a
radial configuration entails the most significant power losses and low voltage profiles [3].
In terms of percentage, distribution networks typically report losses between 6 to 18%,
whereas transmission networks are typically designed to have losses between 1 and 2% [4].

To deal with the higher level of energy losses in distribution networks, distribution
companies have implemented different compensation strategies that include shunt reactive
power compensation with fixed and step variable capacitor banks [5], static distribution
compensators (D-STATCOMs) [6], flexible AC transmission systems (FACTS) [7], grid
reconfiguration [8], and active power compensation via distributed generation sources [9],
among others. All of these compensation strategies have proven to be effective in grid
operation (i.e., in the reduction of energy losses and purchasing costs, as well as in voltage
profile improvements). However, dispersed generation is an expensive solution to deal
with energy losses when compared to reactive power compensation [6].
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1.2. Motivation

Considering the alternatives available for improving the electrical performance of
medium-voltage distribution networks, this research aims at the effective integration
of PV generators and D-STATCOMs to minimize the expected energy purchasing costs
at the terminals of the substation for a projected planning period [10]. The use of PV
generation allows indirectly reducing CO2 emissions by reducing the energy generated at
the substation, which is equivalent to avoiding the use of conventional thermal sources to
produce electricity [11]. In addition, using D-STACOMs in distribution networks helps to
reduce the total grid power losses and improve voltage profiles, which generally makes
distribution networks more efficient and reliable [12]. The main idea of this research is to
explore the separate and simultaneous integration of both compensation devices. However,
the mathematical formulation involved belongs to the family of mixed-integer nonlinear
programming (MINLP) models, which implies that it is not possible to ensure a global
optimum [13]. Therefore, this research is also motivated by the idea of proposing a leader-
follower optimization methodology that allows dealing with the optimal sizes and locations
of these devices in medium-voltage distribution networks that is efficient and has low
computational complexity due to its sequential programming structure.

1.3. Literature Review

The problem regarding the optimal integration of PVs and D-STATCOMs in medium-
voltage distribution networks has been widely explored in the specialized literature, mainly
focusing on the separate integration of each device, i.e., the allocation and sizing of PVs or
D-STATCOMs without simultaneous analysis. Some of the most recent advances in this
research area are presented below.

The authors of [14] presented the application of the vortex search algorithm (VSA)
to address the problem regarding the efficient integration of PV systems in electrical
distribution networks, considering the possibility of operating with both AC and DC
distribution technologies, which improved the results reported in [4], where only AC
grids where analyzed. The main goal of PV integration was to minimize the network’s
equivalent investment and operating costs. Numerical results in the IEEE 33- and 69-bus grids
demonstrated the effectiveness of the proposed optimization approach when compared to
the discrete-continuous version of the vortex search algorithm.

In [15], the authors presented a general literature review regarding the integration of
renewable generation in electrical networks. They demonstrated that these technologies are
the essential driver for improving the quality of the energy service, and they studied eco-
nomic and atmospheric parameters. A complete review of the most common optimization
methods based on metaheuristics was provided, where classical methods such as particle
swarm optimization, genetic algorithms, and ant-lion optimizers were analyzed.

The work by [16] presented a heuristic analysis based on multiple simulations run in
the DIgSILENT software to determine an adequate renewable energy penetration based
on PV generation sources, with the aim to minimize the expected grid energy losses.
Numerical results in the IEEE 13-, 33-, and 34-bus grids, among others, demonstrated that
the proposed approach indeed allowed identifying the degree of PV penetration and the
potential nodes for installation.

The authors of [17] presented a complete review of the state of the art on the efficient
integration of PV systems in electrical distribution grids. The main contribution of this
research was that it identified the most suitable programming models for integrating
renewables in electrical grids while considering the constraints, possible objective functions,
and applicable solution methodologies.

Additional solution methodologies applicable to the efficient integration/operation
and control of PV systems in electrical networks include the particle swarm optimization
algorithm [18,19], the tabu search algorithm [20], the krill heard optimizer [21], the bat opti-
mization algorithm [22], and the wild horse optimization approach [23,24], among others.
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As for the efficient integration of D-STATCOMs, some of the most recent approaches
reported in the specialized literature are the following.

The authors of [6] applied the VSA approach to locate and size D-STATCOMs in distri-
bution networks. Their objective function was the minimization of the annual operating
costs of the network for a period of one year. These costs included the costs of energy
losses and the investments made in D-STATCOMs. Numerical results demonstrated the
effectiveness and robustness of this approach in comparison with the exact solution of the
MINLP model reached by the GAMS software.

The work by [25] presented the application of the sine-cosine algorithm to define
the location and size of D-STATCOMs in distribution networks with a radial topology.
A multi-objective analysis showed that this approach minimizes the total grid power
losses, improves the voltage grid profile, and increases the grid stability index. Numerical
comparisons with the classical particle swarm optimization method demonstrated the
effectiveness of the proposed optimization model.

In [26], the problem regarding the efficient integration and dispatch of D-STATCOMs in
distribution networks was addressed via convex optimization while including a stochastic
analysis. Numerical results in the IEEE 33- and 69-bus grids improved the numerical results
reached by solving the exact MINLP model in the GAMS software.

The authors of [12] presented a complete review of the literature on the optimal
placement and sizing of D-STATCOMs for distribution system applications. This document
reviews the objective functions considered (technical or economic) and the classical solution
methodologies, which include sensitive-based algorithms, combinatorial optimizers, and
convex approaches.

Regarding the simultaneous integration of PVs and D-STATCOMs, the authors of [9]
presented the combination of these devices in a new technology known as PV-STATCOMs,
which consists of adding reactive power control capabilities to the voltage source inverters
that interface the PV systems with the electrical network. Recently, the study by [27]
applied the hunter-prey-based algorithm to locate and size PV-STATCOMs in medium-
voltage distribution networks, in order to minimize the expected grid power losses and
improve the average grid voltage profile. Numerical results in the IEEE 33-bus grid showed
the efficiency and robustness of the proposed algorithm when compared to different
combinatorial optimizers.

The above-presented literature review allows noting two main aspects: (i) the integra-
tion of PVs and D-STATCOMs is a research area of high interest for industry and academia,
as these devices allow improving the technical, economic, and environmental aspects of
distribution grids; and (ii) most optimization methodologies are based on combinatorial
algorithms, which confirms that these are well-established methods which provide efficient
solutions to complex MINLP formulations, as is the case of this research.

1.4. Contribution and Scope

Considering the above, the main contributions of this research article are the following:

i. A general MINLP formulation of the problem regarding the simultaneous integra-
tion of PVs and D-STATCOMs in medium-voltage distribution networks in order to
minimize the expected annual grid investment and operating costs while considering
variable active and reactive power demand curves. This formulation is based on the
combinations existing in the literature for the efficient, independent integration of
each device.

ii. The application of a leader-follower optimization methodology based on hybridizing
the VSA and the successive approximations power flow method. Based on the VSA
approach, the leader stage uses a discrete continuous-codification vector to define
the nodes where the PVs and D-STATCOMs must be placed (discrete part) and their
optimal sizes (continuous part). On the other hand, the follower component of the
optimization approach is associated with the technical evaluation of each solution
provided by the leader, i.e., the calculation of voltages and powers, among other variables.
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Numerical results in the IEEE 33- and IEEE 69-bus grids demonstrate that the simulta-
neous integration of PVs and D-STATCOMs is the best option to minimize the expected
investment and operating costs of a network for a planning period of 20 years. This, in
comparison with the separate integration of each device.

It is worth mentioning that, in the scope of this research, the following aspects are
considered: (i) the daily active and reactive power demand curves, as well as the solar
availability in the area of influence of the distribution networks, are considered exogenous
inputs provided by the distribution company, which implies that these are regarded as
constant data during the solution process of the MINLP model (i.e., they have no uncer-
tainties); and (ii) the selection of the VSA combined with the successive approximation
power flow method for the leader-follower optimization strategy was based on the excel-
lent results reported in the specialized literature for separately integrating PVs [4,14] and
D-STATCOMs [6].

1.5. Document Structure

The remainder of this research is structured as follows. Section 2 presents the mathe-
matical model of the problem aimed at locating and sizing PV systems and D-STATCOMs
(both separately and simultaneously). Section 3 shows the main characteristics of the leader-
follower optimization technique, where the leader algorithm corresponds to the vortex
search algorithm (VSA) with a discrete-continuous codification, and the follower algorithm
is the classical successive approximations power flow method. Section 4 outlines the main
details of the IEEE 33- and 69-bus grids, the active and reactive power curves, and the
solar generation availability. Section 5 describes the main numerical results of the studied
problem while considering four simulation scenarios, which include a benchmark case
and the separate and simultaneous integration of PVs and D-STATCOMs. Finally, Section 6
presents the main concluding remarks of this research, as well as possible future works.

2. Mathematical Model

This section presents the mathematical formulation of the studied problem, which is
presented in three parts: the problem regarding the optimal placement and sizing of PV
sources, the same problem for D-STATCOMs, and the combination of both models, i.e., the
simultaneous allocation of PV generators and D-STATCOMs.

2.1. Mathematical Model for Locating and Sizing PV Generation Units
2.1.1. Objective Function Formulation

The main idea when it comes to optimally integrating renewable energy resources
based on PV systems in electrical distribution networks is to minimize the expected operat-
ing ( f1) and investment ( f2) costs during a project. This objective function is formulated in
Equation (1) [17].

min Acost1 = f1 + f2 (1)

where the components f1 and f2 are defined in Equations (2) and (3).

f1 = CkWhT fa fc

(
∑
hεH

∑
i∈N

pcg
i,h∆h

)
(2)

f2 = Cpv fa

(
∑
iεpv

ppv
i

)
+ T

(
∑
hεH

∑
iεpv

Cpv
O&M ppv

i,h∆h

)
(3)

Here, f1 is the function that allows finding the annual costs of the purchase or pro-
duction of the energy produced by the conventional generators installed in the electrical
network during the useful life of the distributed PV systems; CkWh is the average cost of
energy purchasing at the substation bus; T is the number of days in a year (i.e., 365 days);
pcg

i,h represents the active power generation in the slack bus connected at node i at time h;
∆h is the division time used for representing data during a day of operation (typically 1 h,
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0.5 h, or 0.25 h); f2 is a function that allows calculating the annualized investment costs
associated with the installation and maintenance of the PV generation units in the electrical
grid; Cpv denotes the installation costs of the PV plants per unit of capacity (USD/kWp);
ppv

i is the size of the PV generation installed; and Cpv
O&M represents the average maintenance

and operation costs of the PV sources. Note thatH, N , and T are the sets containing the
daily periods, the number of nodes, and the number of years analyzed, respectively. In
addition, the factors fa and fc are defined below.

fa =

(
ta

1− (1 + ta)−Nt

)
, (4)

fc = ∑
tεT

(
1 + te

1 + ta

)t
, (5)

where fa is the annualization cost factor; fc is the projection of the expected energy purchas-
ing costs during the project; ta represents the fixed rate of return for the investments made
by the owner or operator of the network during the planning horizon; Nt is the number of
years of the project; and te represents the percentage increase regarding the costs of energy
purchasing during the planning horizon, which corresponds to 20 years.

2.1.2. General Set of Constraints

The problem regarding the optimal location and sizing of PV plants in electrical
distribution networks implies some typical constraints associated with the active and
reactive power balance, voltage regulations, and device capabilities, among others. The
complete set of constraints is presented below.

pcg
i,h + ppv

i,h − Pd
i,h = vi,h ∑

j∈N
Yijvj,hcos(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (6)

qcg
i,h −Qd

i,h = vi,h ∑
j∈N

Yijvi,hsin(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (7)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i , {∀i ∈ N & h ∈ H} (8)

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i , {∀i ∈ N & h ∈ H} (9)

xpv
i Ppv,min

i,h ≤ ppv
i ≤ xpv

i Ppv,max
i,h , {∀i ∈ N} (10)

ppv
i,h = Gpv

i,h ppv
i , {∀i ∈ N} (11)

vmin ≤ vi,h ≤ vmax, {∀i ∈ N & h ∈ H} (12)

∑
i∈N

xpv
i ≤ Nava

pv (13)

Equation (6) defines the active power balance, where Pd
i,h represents the active power

demanded at node i and time h; Vi,h and Vj,h correspond to the voltage magnitudes at
nodes i and j at time h, whose angles are θi,h and θj,h, respectively; and Yij and ϕij are the
magnitude and angle of the components of the admittance matrix that relates nodes i and j,
respectively. Equation (7) defines the reactive power balance per node and period, with
Qd

i,h being the power demanded at node i in period h, and qcg
i,h the reactive power injection

in the conventional generator connected at node i and time h. In (8), the parameters
Pcg,min

i and Pcg,max
i define the lower and upper bounds for active power generation in the

conventional source, while, in (9), Qcg,min
i and Qcg,max

i correspond to the upper and lower
bounds for reactive power generation by the conventional generator connected at node i.
Inequality constraint (10) defines the lower and upper bounds of active power generation
at node i and time h, i.e., Ppv,min

i,h and Ppv,max
i,h , when the binary variable xpv

i is activated.
Equation (11) defined that the PV generation sources must operate with maximum power
point tracking, which implies that each generator will follow the generation availability
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curve Gpv
i,h . Inequality constraint (12) defines the admissible voltage regulation bounds for

the voltage profiles in all nodes and periods, with vmin and vmax being the minimum and
maximum voltage limits. Finally, inequality constraint (13) defines the maximum number
of PV generators available for installation (i.e., Nava

pv ) in the entire distribution grid.
The parameterization of the optimization model (1)–(13) is presented in Table 1.

Table 1. Model parameters associated with the optimal placement and sizing of PVs in distribution grids.

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
∆h 1 h te 2 %
Cpv 1036.49 USD/kWp C0andM 0.0019 USD/kWh
Nava

pv 3 - ppv,max
i 2400 kW

Ppv,min
k 0 kW

2.2. Mathematical Model for Locating and Sizing D-STATCOMS
2.2.1. Objective Function Formulation

The problem regarding the optimal siting and sizing of D-STATCOMs in medium-
voltage distribution networks can be modeled as a MINLP model, where the binary vari-
ables correspond to the nodes where the reactive power compensators must be installed
and the continuous part is associated with the power flow variables, i.e., voltages and
powers. The objective function of this problem is presented in (14).

min Acost2 = f1 + f3 (14)

where f3 is the component of the objective function associated with the annualized invest-
ment in D-STATCOMs.

f3 = γ ∑
i∈N

(
ω1(qi

comp)2 + ω2qi
comp + ω3

)
qi

comp, (15)

where qcomp
i is the installed capacity of the D-STATCOM connected at node i; ω1, ω2, and ω3

are the cubic, quadratic, and linear objective function coefficients [28], with γ being the
annualization factor applied to the investment costs in D-STATCOMs while considering a
useful life of 20 years [29].

2.2.2. General Set of Constraints

This problem implies some typical constraints associated with the active and reactive
power balance, voltage regulations, and device capacities, among others. The complete set
of constraints is presented below.

pcg
i,h − Pd

i,h = vi,h ∑
j∈N

Yijvj,hcos(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (16)

qcg
i,h + qcomp

i,h −Qd
i,h = vi,h ∑

j∈N
Yijvi,hsin(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (17)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i , {∀i ∈ N & h ∈ H} (18)

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i , {∀i ∈ N & h ∈ H} (19)

xcomp
i Qcomp,min

i ≤ qcomp,max
i ≤ xcomp

i Qcomp,max
i,h , {∀i ∈ N} (20)

qcomp
i,h = qcomp

i , {∀i ∈ N} (21)
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vmin ≤ vi,h ≤ vmax, {∀i ∈ N & h ∈ H} (22)

∑
i∈N

xcomp
i ≤ Nava

comp, (23)

Equation (16) defines the active power balance per node and period. Equation (17)
presents the reactive power balance per node and period, with qcomp

i,h being the hourly reactive
power injection at the D-STATCOM connected at node i. Inequality constraints (18) and (19)
express the limitations regarding active and reactive power generation applied to the con-
ventional source connected at node i. Inequality constraint (20) presents the maximum and
minimum sizes applicable to the D-STATCOM that to be connected at node i, i.e., Qcomp,max

i
and Qcomp,min

i , if the binary variable xcomp
i is activated. Equation (21) shows that the

D-STATCOMs are designed to inject constant reactive power during all periods. Inequality
constraint (22) presents the upper and lower bounds applicable to voltage operation along
the distribution grid. Finally, inequality constraint (23) defines the maximum number of
reactive power compensators available for installation (i.e., Nava

comp).
The parameterization of the optimization model (14)–(23) is presented in Table 2.

Table 2. Parametrization of the objective function f3.

Parameter Value Unit Parameter Value Unit

ω1 0.30 USD/Mvar3 ω2 −305.10 USD/Mvar2

ω3 127,380 USD/Mvar γ 1/20 —
Qcomp,min

i
0 Mvar Qcomp,max

i,h 2000 kvar

Pcg,min
i

0 W Pcg,max
i 5000 kW

Qcg,min
i

0 var Qcg,max
i 5000 kvar

2.3. Mathematical Model for Simultaneously Locating and Sizing PV Generation Units and
D-STATCOMs
2.3.1. Objective Function Formulation

The objective function considered for this work corresponds is a combination of those
presented in Sections 2.1 and 2.2, with the aim to minimize the annual operating costs of
the electrical grid over 20 years. This objective function is presented in Equation (24).

min Acost3 = f1 + f2 + f3 (24)

According to the explanations provided in the previous sections, f1 is used to de-
termine the annual production or acquisition costs of energy generated by conventional
generators, and f2 allows calculating the annual investment costs associated with installing
and maintaining photovoltaic (PV) generation units. Finally, f3 is related to the annualized
investment costs of D-STATCOMS. The 20-year planning horizon has been previously
considered in the values of the constants presented in Tables 1 and 2, as well as in the
annualization factors fa and fc.

2.3.2. General Set of Constraints

The problem regarding the simultaneous optimal location and sizing of PV units and
D-STATCOM devices in distribution networks involves several constraints. The complete
set of constraints is presented below:
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pcg
i,h + ppv

i,h − Pd
i,h = vi,h ∑

j∈N
Yijvj,hcos(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (25)

qcg
i,h + qcomp

i,h −Qd
i,h = vi,h ∑

j∈N
Yijvi,hsin(θi,h − θj,h − ϕij), {∀i ∈ N & h ∈ H} (26)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i , {∀i ∈ N & h ∈ H} (27)

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i , {∀i ∈ N & h ∈ H} (28)

xpv
i Ppv,min

i,h ≤ ppv
i ≤ xpv

i Ppv,max
i,h , {∀i ∈ N} (29)

xcomp
i Qcomp,min

i ≤ qcomp,max
i ≤ xcomp

i Qcomp,max
i,h , {∀i ∈ N} (30)

ppv
i,h = Gpv

i,h ppv
i , {∀i ∈ N} (31)

qcomp
i,h = qcomp

i , {∀i ∈ N} (32)

vmin ≤ vi,h ≤ vmax, {∀i ∈ N & h ∈ H} (33)

∑
i∈N

xpv
i ≤ Nava

pv , (34)

∑
i∈N

xcomp
i ≤ Nava

comp, (35)

For the simultaneous model, the equations for the active (25) and reactive power
balance (26) should include the active power generated by the PV units and the reactive
power delivered by the D-STATCOMS. The inequalities that relate to the upper and lower
limits of active (27) and reactive power (28) for the conventional generators and the network
voltage (33) generally depend on the network conditions. Therefore, they apply without
changing the D-STATCOMS and the PV units. The inequalities associated with the limits of
PV generation (29) and power injection of the D-STATCOMS (30), those relate production to
h periods ((31) and (32)), and the available amount of devices for installation ((34) and (35))
all depend individually on the conditions of each PV system or D-STATCOM.

This mathematical model does not have a linear structure due to the trigonometric
functions and voltage products that are implicitly present in the equations of active and
reactive power balance. This implies a complex solution with conventional optimization
methods. Therefore, convex optimization or combinatorial tools may be suitable. This
research focuses on applying an efficient combinatorial optimization method with a classical
power flow tool to solve the exact MINLP model via a leader-follower methodology.

3. Proposed Leader-Follower Optimization Approach

A leader-follower optimization methodology is proposed to deal with the problem
under study. The leader strategy uses a discrete codification to determine the value of
the binary variables xcomp

i and xpv
i , in addition to a continuous codification part that

defines the sizes of these systems. In the follower stage, a conventional multi-period
power flow formulation is implemented to evaluate the system’s operating costs, i.e., the
energy purchasing costs at the terminals of the substation. The main characteristics of the
leader-follower optimization strategy are presented below.

i. In the leader stage, a combinatorial optimization method is implemented to evolve
an initial set of individuals, i.e., a set of a potential solutions, where the discrete
codification implemented allows evaluating the components f2 and f3 regarding the
installation costs of the PV and D-STATCOM systems.

ii. The follower stage determines the expected energy purchasing costs at the terminals
of the substation (i.e., f1) and the operating and maintenance costs of the PV systems.

The main characteristics of the leader and follower components of the proposed
solution methodology are detailed below.
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3.1. Follower Stage: Successive Approximations Power Flow Method

In optimization approaches involving electrical distribution networks and their tech-
nical characteristics, such as voltage and power calculations, a follower stage requires the
recursive solution of the power flow problem for a single or multi-period analysis [30].
In the case of distribution networks, the most common power flow methodologies are
based on graph-based methods, i.e., they exploit the grid topology, typically radial or
weakly meshed, in order to propose efficient iterative formulas [31,32]. This research
adopts one of the most efficient power flow methods for distribution networks, which was
originally proposed by the authors of [33], known as the successive approximations power
flow method.

The general power flow formula of the successive approximations power flow method
in the complex variable domain is presented in (36). This iterative formula allows solving
the active and reactive power flow equations defined by (28) and (29).

Vm+1
dh = −Y−1

dd

(
diag−1(Vm,?

dh
)(

S?dh − S?comph − S?pvh

)
+ YdgVgh

)
, {∀h ∈ H} (36)

where m corresponds to the iterative counter; Vdh represents a complex vector that contains
the voltage variables per period of analysis in all the nodes of the network; Vgh is the
vector associated with the fixed voltage output at the terminals of the substation; Ydd is
an invertible matrix that contains the admittance relations between the demand nodes;
Ydg represents a rectangular matrix associating the admittances between the substation
bus and the demand nodes; Sdh represents the vector that contains the constant power
consumptions per period of analysis; and S?comph and S?pvh represent vectors that contain the
apparent power injection in the reactive power compensators and PV generation systems
installed along the distribution grid. (·)? corresponds to the conjugate operation associated
with the complex variable inside the parenthesis.

Note that the initialization of the power flow Formula (36) requires defining the
voltage values of the demand nodes at t = 0 (i.e., V0

dh Vgh), which are assigned as equal to
the substation voltage.

Remark 1. The convergence of the recursive power flow formula defined in (36) can be demonstrated
by applying the Banach fixed-point theorem, as demonstrated by the authors of [33]. In addition,
the values associated with the apparent power injection in the D-STATCOM and PV systems (see
vectors S?comph and S?pvh) are provided by the leader stage and define the intrinsic relation between
the leader and the follower optimization layers. Therefore, the follower stage is considered to be the
heart of leader-follower optimization algorithms [34].

The following stopping criterion is applied to ensure that the recursive power flow
formula in (36) reaches the desired convergence.

max
h∈H

{∣∣∣∣∣∣Vm+1
dh

∣∣∣− |Vm
dh|
∥∥∥} ≤ $, (37)

where $ represents the maximum tolerance, typically defined as 1× 10−10 [33].
Once the power flow formula in (36) has reached the desired convergence, the power

generation at the substation source can be determined as presented in (38).

S?gh = YggVgh + YgdVdh (38)

which allows calculating the component of the objective function f1, as presented in
Equation (39).

f1 = CkWhT fa fc ∑
h∈H

real
{
S?gh

}
, (39)
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3.2. Master Stage: The Vortex Search Algorithm (VSA)

The VSA is a combinatorial methodology from the family of physics-inspired opti-
mization algorithms, which was developed in 2015 by the authors of [35]. This algorithm
aims to emulate the physical behavior of the vortical flow of stirred fluids using a Gaussian
formulation structure [36]. The VSA is an optimization method developed for continuous
optimization problems that balance the exploration and exploitation stages by consider-
ing hyper-ellipses with a variable radius that initially cover all of the solution space [37].
During the iterative process, the hyper-volume of this hyper-ellipse is reduced in order to
explore specific, promising areas of the solution space. This exploration and exploitation
is performed using a Gaussian distribution and incomplete gamma functions [35]. Even
though the VSA was initially designed for continuous optimization problems, it can be
adapted to discrete-continuous problems, as proposed in [14]. Thus, the VSA can deal with
the simultaneous placement and sizing of PV and D-STATCOMs in distribution networks.

3.2.1. Generating the Initial Solution

To generate the initial solution as per the VSA approach, consider a multi-dimensional
space with size d. In addition, the main characteristic of the VSA is that it generates a
hyper-ellipse centered at the solution space in the first iteration (i.e., t = 0), whose radius
rt is continuously reduced as the iterative process advances. The the initial center of the
hyper-ellipse is defined in (39).

µ0 =
xmin + xmax

2
, (40)

where xmin ∈ Rd×1 and xmax ∈ Rd×1 are the lower and upper bounds of the decision variables.

Remark 2. Considering that the VSA approach will determine the nodes for locating PV and
D-STATCOM systems, the discrete component of µ0, i.e., its first d/2 positions, must be rounded to
ensure the feasibility of the solution space, given that the nodes of electrical distribution networks
are typically represented as integer numbers.

3.2.2. Generating the Candidate Solutions

To obtain a set of candidate solutions Ct
i (x) = st

i = {x1, x2, . . . , xd}, with i being
a sub-index related to the ith potential solution individual contained in the population.
As proposed by the authors of [35], the generation of candidate solutions is reached by
implementing a Gaussian distribution with the structure presented in (41).

st
i = p

(
ζt

i , µt, v
)
=
(
(2π)d|v |

)1/2
e
(
− 1

2 (ζt
i−µt)

>
v−1(ζt

i−µt)
)

. (41)

In this distribution probability, ζt
i ∈ Rd×1 corresponds to a vector containing random

numbers with appropriate dimensions, µt ∈ Rd×1 corresponds to the current center of
the hyper-ellipse at iteration t, and v ∈ Rd×d is known as the covariance matrix. The
work by [36] recommends simplifying this matrix by considering equal variances in its
diagonal and null covariances. This simplification can be formulated as follows:

σ0 =
max{xmax} −min

{
xmin}

2
, (42)

where v is defined as σ0 Id×d, considering that I is an identity matrix with dimensions d× d.

Remark 3. At the beginning of the optimization process, the authors of [35] suggest that the initial
radius rt of the hyper-ellipse be selected as equal to σ0 when t = 0. This selection is supported by the
idea that, during the initial evolution of the VSA approach, the hyper-ellipse must cover the entirety
of the hyper-volume of the solution space, which implies that its initial radius must be as large as



Computation 2023, 11, 145 11 of 19

possible. This radius will decrease as the iteration process advances, since the VSA will transition from
the exploration to the exploitation stage, where promising regions of the solution space will be checked.

Note that the reduction of the radius will affect the generation of random values in
the ζt

i vector, as ζt
i = rtrand(d), where rand(d) defines a generation of values 0 and 1 with

dimension d following a uniform distribution.

3.2.3. Correcting the Candidate Solutions

Given the random nature of the evolution process in all combinatorial optimization
methods, including the VSA approach, each st

i may have values outside of the limits of
the solution space, which makes them impossible to evaluate in the follower stage [14].
Therefore, in this kind of method, each and every candidate solution must be evaluated [17]. In
this work, each potential solution st

i is checked as presented in (43).

st
i,j =

{
st

i,j xmin
j ≤ xj ≤ xmax

j , j = 1, 2, . . . , d

xmin
j +

(
xmax

j − xmin
j

)
rand(1) otherwise, j = 1, 2, . . . , d

(43)

where rand(1) is a random number between 0 and 1, generated with a uniform distribution.
Note that, once all solution individuals have been evaluated, the first d/2 part is rounded to
the nearest integer in order to ensure that the location of the PV and D-STATCOM systems
is feasible.

To illustrate the general structure of a potential solution individual st
i , consider the

vector defined below.

st
i =

xpv
k xcomp

l ppv
k qcomp

l

[
︷ ︸︸ ︷
12, k, . . . , 30

︷ ︸︸ ︷
21, 9, . . . , l

︷ ︸︸ ︷
0.1897, ppv

k , . . . , 1.3801
︷ ︸︸ ︷
0.1624, 0.5598, . . . , qcomp

l ]

which is a discrete-continuous codification, where the first d/2 positions denote the nodes
for locating PV units and D-STATCOMs and the second part is associated with their sizes.

3.2.4. Selecting the New Hyper-Ellipse Center

The evolution of the VSA through the solution space is governed by the location of
the hyper-ellipse center, which corresponds to the best current individual contained in the
set of candidate solutions Ct

i (x), i.e., µt+1 = st
i,best [35]. It is worth mentioning that the best

current solution will depend on the nature of the optimization problem, which, in this case,
is the candidate with the lowest objective function value. Otherwise, it will correspond to
the potential solution individual with the highest objective function value [4].

3.2.5. Radius Reduction Criterion

To transition from the exploration to the exploitation stage in the VSA, a reduction
of the radius of the hyper-ellipse is performed in each iteration. In the specialized lit-
erature, there are two ways to implement this reduction. In the original version of the
VSA approach, which was presented by [35], an incomplete inverse gamma function was
reported. However, the study by [4] proposed an exponential rule. This work employed
the latter since its computational implementation is simple and efficient. This reduction
rule is defined in (44).

rt+1 = σ0

(
1− t

tmax

)
e(−6 t

tmax ), (44)

with tmax being the maximum number of iterations assigned to the optimization algorithm.

3.2.6. Stopping Criteria

The exploration and exploitation of the solution space using the VSA ends
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X if the maximum number of iterations tmax is reached, or
X if, after τmax consecutive iterations, the center of the hyper-ellipse has not been modified.

3.3. General Implementation of the Proposed Leader-Follower Optimization Algorithm

The application of the VSA approach to the problem regarding the simultaneous
location and sizing of PV units and D-STATCOMs in distribution networks is presented in
Algorithm 1 [4].

Algorithm 1: Application of the VSA approach for locating and sizing PVs and
D-STATCOMs in distribution networks.

Data: Read data of the distribution network under analysis
Obtain the per-unit equivalent of the distribution network;
Define the initial center and radius of the hyper-ellipse µt and rt;
Generate the initial set of candidate solutions st

i using (41);
Check and correct each potential solution st

i using (43);
Evaluate each potential solution st

i in the follower stage, i.e., the power flow
formula defined in (36);

Find the best current solution st
i,best;

for t = 1 : tmax do
Update the hyper-ellipse center making µt+1 = st

i,best;
Calculate the new radius of the hyper-ellipse rt+1 as in (44);
Generate the new set of candidate solutions st

i using (41);
Check and correct each potential solution st

i using (43);
Evaluate each potential solution st

i in the follower stage, i.e., the power flow
formula defined in (36);

Find the best current solution st
i,best;

if τ ≥ τmax then
Report the best current solution in µt+1;
break;

end
end
Result: Return the best solution found

4. Test Feeder Characterization

To validate the effectiveness and robustness of the proposed leader-follower opti-
mization methodology to locate and size PV units and D-STATCOMs in medium-voltage
distribution networks, the IEEE 33- and 69-bus grids were used as test feeders. The schematic
nodal connection of these feeders is presented in Figures 1 and 2, and their electrical parameters
regarding branches and peak load consumptions are listed in Tables 3 and 4. Note that the
main characteristics of these test feeders are their radial structure and their voltage profile,
which is equal to 12.66 kV at the terminals of the substations located at node 1 in both cases.
In addition, the voltage regulation bounds were assigned as ±10%.
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Figure 1. Electrical configuration of the IEEE 33-bus test system.
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Figure 2. Electrical configuration of the IEEE 69-bus test system.

Table 3. Electrical parameters of the IEEE 33-bus grid.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj
(kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj

(kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40

Table 4. Electrical parameters of the IEEE 69-bus grid.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj
(kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj

(kvar)

1 2 0.0005 000012 0.00 0.00 3 36 0.0044 0.0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00

10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
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Table 4. Cont.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj
(kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj

(kvar)

21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00

28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00

To define the expected behavior of the electrical distribution network for the planning
period, the solar availability and the active and reactive power consumptions in the area of
influence of the studied distribution network are presented in Figure 3.

0 4 8 12 16 20 24 28 32 36 40 44 48

10
20
30
40
50
60
70
80
90

100

Time ( 1
2 h)

Lo
ad

an
d

so
la

r
va

ri
at

io
n

(%
)

Active power
Reactive power

Solar power

Figure 3. Active and reactive power curves and solar availability curve.

5. Numerical Results

For the computational implementation of the proposed leader-follower optimization
approach, the MATLAB software (version 2021b) was employed on a PC with an AMD
Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM running a 64-bit version of Microsoft
Windows 10 Single Language. The VSA and the successive approximations power flow
method were executed with our own scripts. The following simulation scenarios were
evaluated for each test feeder.

S1. The evaluation of a benchmark case, i.e., the original conditions of the test feeder
without including PVs and D-STATCOMs.

S2. The solution of the optimization model (14)–(23), which corresponds to the optimal
location of D-STATCOMs in distribution networks.

S3. The solution of the optimization model (1)–(13), which corresponds to the optimal
location of PV plants in distribution networks.

S4. The solution of the optimization model (24)–(35), i.e., the simultaneous location of PV
units and D-STATCOM systems in distribution networks.

It is worth mentioning that, in the parameterization of the VSA approach, 10 solution
individuals in the population were considered, as well as 1000 iterations and 100 evaluations
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of the whole optimization strategy. In addition, for the successive approximations power
flow method, 100 iterations and a tolerance equivalent to 1× 10−10 were assigned.

5.1. Numerical Results for the IEEE 33-Bus Grid

Table 5 reports the numerical solutions reached with the proposed leader-follower
optimization algorithm in the IEEE 33-node system.

Table 5. Numerical results in the IEEE 33-bus grid.

Scen. xcomp
i (Node) qcomp

i (Mvar) xpv
i (Node) ppv

i (MW) Acost3 (USD)

S1 — — — — 3,553,557.38
S2 [14, 25, 30] [0.1864, 0.1211, 0.5286] — — 3,530,954.52
S3 — — [10, 16, 32] [0.8337, 0.9185, 1.6684] 2,300,724.60
S4 [6, 15, 31] [0.3801, 0.0640, 0.3543] [9, 14, 31] [0.9844, 0.6312, 1.7602] 2,292,022.62

These results show that:

i. In S2, three D-STATCOMs with sizes of about 186.4, 121.1, and 528.6 kvar were placed
at nodes 14, 25, and 30. With these devices, a reduction of about USD 22,602.85 in
the expected grid operating costs corresponds to 0.64%. However, this is an expected
result, as the D-STATCOMs provide reactive power and the energy purchasing costs
at the terminals of the substation are associated with active power. This implies that
the utility company must purchase less energy to support all the end users since the
D-STATCOMs improve the grid efficiency.

ii. As expected, in S3, a reduction of about USD 1,252,832.78 (i.e., 35.26% with respect
to the benchmark case) in the total grid costs was achieved by installing three PV
generators at nodes 10, 16, and 32, with sizes of about 833.7, 918.5, and 1668.4 kW. This
significant reduction in the objective function calue can be attributed to the fact that
the PV generators provide active power to all the energy sources during the part of the
day that has adequate solar radiation, which means that the substation bus reduces its
active power injection, i.e., less energy must be purchased in the spot market to supply
the end users, which is directly related to the final value of the objective function.

iii. The combination of D-STATCOMs and PV sources in S4 shows different locations and
sizes when compared to the individual solutions in S2 and S3. Nevertheless, the joint
use of these devices allowed for a reduction of about USD 1,261,534.76 (i.e., 35.50)
in the objective function with respect to the benchmark case. This was achieved by
installing 3375.8 kW in PV sources and 798.4 kvar in D-STATCOMs, which confirms
that, with the simultaneous integration of these devices, the best objective function
value is reached, with reduced sizes in the D-STATCOMs and PV sources, when S4 is
compared against S2 and S3, i.e., 836.1 kvar and 3420.6 kW.

As for the processing times required to reach the solutions in Table 5, it was observed
that, after 100 consecutive evaluations, S2 took 61.71 s, S3 about 61.81 s, and S4 79.88 s,
which demonstrates that an efficient solution for integrating PV units and D-STATCOMs in
medium-voltage grids can be reached in less than two minutes. This time can be considered
to be low, taking into account that the dimension of the solution space is infinite due to
the presence of continuous variables in the optimization model, with thousands of binary
combinations in each case of nodal selection.

5.2. Numerical Results for the IEEE 69-Bus Grid

Table 6 reports the numerical solutions reached with the proposed leader-follower
optimization algorithm in the IEEE 69-bus system.
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Table 6. Numerical results in the IEEE 69-bus grid.

Scen. xcomp
i (Node) qcomp

i (Mvar) xpv
i (Node) ppv

i (MW) Acost3 (USD)

S1 — — — — 3,723,529.52
S2 [18, 61, 64] [0.1470, 0.5287, 0.1145] — — 3,697,899.84
S3 — — [24, 61, 63] [0.3688, 1.8879, 1.3167] 2,406,951.90
S4 [19, 53, 63] [0.0871, 0.0075, 0.4555] [15, 33, 62] [0.8753, 0.5941, 2.0184] 2,400,490.65

These results show that:

i. The installation of D-STATCOMs in S2 allowed for an effective reduction of about
USD 25,629.68 in the objective function value, i.e., 0.69% with respect to the bench-
mark case. This result confirms (as happened with the IEEE 33-bus grid) that the
D-STATCOMs contribute to minimizing the expected grid power losses, which in turn
reduces the energy purchased at the terminals of the substation and therefore the total
operating costs.

ii. In S3, the use of PV systems showed an effective reduction of about 35.36% in the
total grid operating and investment costs with respect to the benchmark case, which
confirms that PV plants indeed allow distribution companies to reduce the expected
energy purchasing costs (by about USD 1,316,577.62).

iii. The combination of PV units and D-STATCOMs in S4 showed the most efficient
reduction in the total grid operational cost, with a reduction of about USD 1,323,038.87,
i.e., a 35.53% improvement with respect to the benchmark case. This demonstrates
that, for utility companies, this approach constitutes an efficient option to reduce their
operating costs and improve their grid efficiency in the form of reduced total grid
energy losses, which indirectly improves the grid voltage profile.

Regarding processing times, it is worth mentioning that, in S1, the average processing
time for defining the location and sizing of D-STATCOMs was about 269.14 s, in S3, this
time was about 271.41 s, whereas, in S4, the average time was about 336.01 s. Thus, the
solution to the studied problems in the IEEE 69-bus grid took less than 6 min, which is
a very low value considering that the dimension of the solution space is infinite for each
combination of binary variables (i.e., the nodes where the D-STATCOMs and PV units
must be placed).

6. Conclusions and Future Work

The problem regarding the efficient integration of PV plants and D-STATCOMs in elec-
trical networks was addressed in this research by applying a leader-follower optimization
strategy. In the leader stage, using a discrete-continuous codification, the VSA approach
was implemented to determine the optimal location of PV systems and D-STATCOMs
both individually and simultaneously. In the follower stage, a multi-period power flow
approach based on the successive approximations method was implemented in order to
determine the expected grid operating costs for each combination of PV and D-STACOM
systems provided by the VSA approach in the leader stage. Numerical results in the IEEE
33- and 69-bus grids showed that:

i. The use of D-STATCOMs in distribution networks has a significant effect on minimizing
the expected grid power losses, which influences the operating efficiency of electrical
networks. In both test feeders, the use of D-STATCOMs allowed for reductions between
22,000 and 25,000 dollars with regard to the total energy purchasing costs.

ii. As expected, the use of PV systems also influences the total grid operating costs, as
more than one and a quarter million dollars were saved by the distribution company
when three PV plants were installed in the IEEE 33- and IEEE 69-bus grids. These
results were expected since renewable generation from PV sources provides active
power, which reduces the energy required from the terminals of the substation.
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iii. The combination of PV units and D-STATCOMs showed the best results regarding
the objective function, since, in the IEEE 33-bus grids, the expected reduction was
about 35.50%. In the IEEE 69-bus grids, this reduction was about 35.53%, confirming
that the simultaneous integration of these distributed energy resources in distribution
networks is the best option to improve their technical and economic performance.

Regarding the processing times reported for the simulations in the IEEE 33- and 69-bus
grids, in the first case, less than two minutes were required to solve the MINLP model,
while, in the second test feeder, about six minutes were required. These are minimal
processing times, considering the complexity of the optimization model and the enormous
size of the solution space.

As future work, the following studies can be conducted: (i) proposing a convex formu-
lation to determine the day-ahead economic dispatch of PV systems and D-STATCOMs in
distribution networks while considering technical, economic, and environmental objective
functions; (ii) applying new combinatorial optimization algorithms to validate/improve the
numerical results presented in this contribution; (ii) extending the proposed formulation to
include battery energy storage systems; and (iv) including regarding weather conditions in
the PV generation and the active and reactive power demand curves in order to address
the studied problem from a stochastic point of view.
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