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Abstract: We studied obtaining exact solutions to a set of equations related to the SEIR (Susceptible-
Exposed-Infectious-Recovered) model of epidemic spread. These solutions may be used to model
epidemic waves. We transformed the SEIR model into a differential equation that contained an
exponential nonlinearity. This equation was then approximated by a set of differential equations
which contained polynomial nonlinearities. We solved several equations from the set using the Simple
Equations Method (SEsM). In doing so, we obtained many new exact solutions to the corresponding
equations. Several of these solutions can describe the evolution of epidemic waves that affect a
small percentage of individuals in the population. Such waves have frequently been observed in the
COVID-19 pandemic in recent years. The discussion shows that SEsM is an effective methodology
for computing exact solutions to nonlinear differential equations. The exact solutions obtained can
help us to understand the evolution of various processes in the modeled systems. In the specific case
of the SEIR model, some of the exact solutions can help us to better understand the evolution of the
quantities connected to the epidemic waves.

Keywords: SEIR model of epidemics; nonlinear differential equations; exact solutions; Simple
Equations Method (SEsM); Modified Method of Simplest Equation (MMSE); epidemic waves; COVID-19

1. Introduction

In this article, we discuss the classic version of the SEIR model of spread of epidemics in
a population. The spread of an epidemic is an example of a nonlinear process in a complex
system. Such processes are frequently observed in nature and in society [1–8]. They are
usually studied by the methodology of nonlinear time series analysis or by numerical
simulations of models containing nonlinear differential or difference equations [9–12]. The
exact analytical solutions to the model equations are very informative. These solutions allow
us to understand the relationships among the characteristic parameters of the investigated
system. In addition, the solutions may be used to test the correctness of corresponding
computer programs.

Below, we reduce the classic SEIR model to a single nonlinear differential equation,
which can be connected to a set of differential equations containing polynomial nonlineari-
ties. Exact solutions to several of these equations are described, and a number of these are
used to study epidemic waves. We obtain the solutions using the SEsM (Simple Equations
Method) methodology [13]. This methodology is an example of the large field of research on
methods for obtaining exact analytical solutions of nonlinear differential equations, which
has roots in the Hopf–Cole transformation [14,15] and the inverse scattering transform
method [16]. The study of the truncated Painleve expansions [17–21] led Kudryashov [22]
to propose of the Method of Simplest Equation (MSE) [23–25]. MSE is connected to the
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SEsM methodology [26–30]. Specific cases of SEsM are visible in our articles written many
years ago [31,32]. In [33], we applied a specific case of SEsM called MMSE in order to obtain
exact solutions of a model from the population dynamics [34]. The MMSE [35] applied the
concept of balancing equations in order to fix the simplest equation. Then, the solution
of the complicated equation was constructed as a power series of the solution to the used
simplest equation [36,37]. MMSE led to results which were equivalent to the results of the
MSE. The capacity of the MMSE was then extended in the direction of using more than one
simple equation. Because of this, the name of the methodology was changed from MMSE
to SEsM. SEsM based on two simple equations can be seen in [38]. Other specific cases of
application of SEsM are presented in [26,30,39,40].

Below, we apply SEsM to the SEIR model of the spread of an epidemic in a population.
One of the most basic such compartmental models [41–53] is the SIR model for the dynamics
of an infectious disease in a population. This model considers individuals who are infected
(I) and those who have recovered (R) with immunity. We previously studied the SIR
model in [30]. With respect to the SIR model, the SEIR model has an additional group
of individuals, namely, those who are exposed to the infection. Epidemic models can
be applied to study other processes as well, such as the spread of ideas (for overviews,
see [4,54]). An important recent application of epidemic models is in research on the spread
of COVID-19 [55–68]. We proceed as follows: the methodology of SEsM is described briefly
in Section 2; in Section 3, we derive a sequence of nonlinear differential equations connected
to the SEIR model of epidemic spread and use SEsM to obtain exact solutions of these
equations; and in Section 4, the applicability of the obtained solutions for describing the
evolution of epidemic waves is discussed. Finally, we present our concluding remarks in
Section 5.

2. Simple Equations Method (SEsM)

The full notation of SEsM is SEsM(n,m), where n denotes the number of solved
equations and m denotes the number of simpler equations for which the solutions are
used. The most commonly used version of SEsM to date is SEsM(1,1), in which a single
complicated nonlinear differential equation is solved on the basis of known solutions to
a single simpler differential equation. SEsM(1,1) is sometimes called the MMSE, and this
specific case of SEsM has many applications [69–71].

The idea of SEsM is to transform the solved system of nonlinear differential equations

Di[ fi1(x, . . . , t), . . . , fin(x, . . . , t)] = 0, i = 1, 2, . . . , n. (1)

(here, Di[ fi1(x, . . . , t), . . . , fin(x, . . . , t), . . . ] depends on the functions fi1(x, . . . , t), . . . ,
fin(x, . . . , t), and a number of their derivatives and functions fij can depend on several
spatial coordinates) into

n

∑
i=1

bij(. . . )Eij = 0, j = 1, 2, . . . , πi. (2)

The transformation is performed by the choice of fij as composite functions of known
analytical solutions to simpler equations. Here, Eij are functions of the time and the
spatial variables, and the quantities bij are algebraic relationships among the parameters of
Equation (1), the parameters of the solutions to the simpler equations, and the parameters
of the solutions to (1); bij(. . . ) do not contain the time and the spatial coordinates, and πi is
a characteristic parameter for the i-th equation from (1). If we succeed in transforming (1)
to (2), then we can write

bij(. . . ) = 0, (3)

and we obtain a system of nonlinear algebraic equations. Each of the nontrivial solutions
to (3) leads to a solution to system (1).

The idea of SEsM is realized in four steps.
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• Step 1: Transformation of the nonlinearities of (1).
In rare cases, this transformation leads to the removal of the nonlinearity. In this
case, the solved nonlinear equation is transformed into a linear equation. In most
cases, however, the nonlinearity of the equation remains after the transformation. For
these cases:

1. If the nonlinearities in (1) or in the transformed equations are polynomial, then
there is no need for a transformation for these nonlinearities.

2. If the nonlinearities in (1) are not polynomial, transformations can be used to turn
them into polynomial nonlinearities or more treatable kinds of nonlinearities.

An example of an appropriate transformation is the transformation of Hopf and Cole,
which transforms the (nonlinear) Burgers equation into the linear heat equation [14,15].
As we have already noted, such successful transformations are rare. Therefore, the
goal is to convert the nonlinearity to polynomial nonlinearity. For the specific case of
SEsM(1,1), two examples of such transformations are as follows: for the sine–Gordon
equation –> u(x, t) = 4 tan−1[F(x, t)]; and for the Poisson–Boltzmann equation –>
u(x, t) = 4 tanh−1[F(x, t)] [31,32].
The exact forms of the transformations may remain unfixed at this step of SEsM. In
this case, the forms must be determined at some point during Steps 2 and 3.

• Step 2: Construction of solutions to the transformed equations.
The idea of SEsM is to use composite functions of known solutions to simpler dif-
ferential equations in order to construct the sought-after solutions. The presence of
derivatives in the solved differential equations requires the use of the Faa di Bruno
formula for the derivatives of the composite functions. Using composite functions, we
can transform the solved equations into equations which are constructed by functions
which are solutions to more simple equations. There is no need to fix the form of the
composite function and the form of the solutions of the simpler equations at this step.
However, it can be done; one example of a fixation for the needs of SEsM(1,n) is

F = α +
N

∑
i1=1

βi1 gi1 +
N

∑
i1=1

N

∑
i2=1

γi1,i2 gi1 gi2 +
N

∑
i1=1
· · ·

N

∑
iN=1

σi1,...,iN gi1 . . . giN . (4)

In (4), gik are functions that are solutions to more simple equations and
α, βi1 , γi1,i2 , σi1,...,iN . . . are parameters. (4) contains the relationship used by Hirota [72]
as a specific case.

• Step 3: Determine the form of the simpler equations with solutions that can be used to
construct the desired solutions of (1).
The rule is as follows: choose the composite functions and the simple equations in
such a way that we arrive at the relationships (2). In addition, we have to be sure
that the relationships for bij contain more than one term. This requirement leads to
more relationships among the parameters from the relationships for bij. These new
relationships are denoted as balance equations.

• Step 4: Solution of (3).
Solve (3), which is a system of nonlinear algebraic relationships. Any nontrivial
solution to (3) corresponds to a solution to (1)

For specific cases of applications of SEsM, see [26–30,33–38].

3. SEsM and Exact Analytical Solutions for a Sequence of Equations Connected to the
SEIR Model of Epidemics

Below, we apply SEsM to obtain exact solutions to a sequence of nonlinear differential
equations connected to a specific differential equation obtained from the SEIR model in
epidemiology. Several of the discussed solutions are appropriate for describing epidemic
waves caused by different diseases, including COVID-19. The rest of the obtained solutions
are not appropriate for such a purpose.
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The aforementioned nonlinear differential equation is obtained by realizing the idea of
transforming the SEIR model with constant coefficients into a single differential equation.
The idea was proposed by Kermack and McKendrick for the case of the SIR model [73]. This
idea was further developed in [30], and a sequence of nonlinear differential equations was
obtained. Then, SEsM(1,1) was used to obtain exact solutions of several of these equations.
Below, we realize the same idea for the case of the SEIR model of epidemics.

The initial impetus for the SEIR model lay in the specific characteristics of certain
diseases. Specifically, an additional class of individuals in addition to the three classes in
the SIR model is necessary in modeling the evolution of the spread of these diseases. The
individuals in this additional class are infected by the corresponding pathogen, but are
not capable of passing infection to others during a latent period. For example, this kind
of infection is connected to the spread of malaria. Malaria was extensively studied in the
early 20th century [74]. In order to build an SIR-like model similar to [73], the new class of
individuals, called exposed individuals, was introduced, leading to the SEIR model (for
more mathematical models of malaria, see [75]).

The SEIR epidemic model has several versions [42,76–83]. Below, we consider the clas-
sic version of the SEIR model of epidemics in a population. The population is divided into
four groups: susceptible individuals—S; exposed individuals—E; infected individuals—I;
and recovered individuals—R. The model equations for the time change in the numbers of
individuals from the above three groups are as follows:

dS
dt

= − τ

N
SI

dE
dt

=
τ

N
SI − σE

dI
dt

= σE− ρI

dR
dt

= ρI. (5)

In (5), σ is the incubation rate, τ is the transmission rate, and ρ is the recovery rate. We
assume constant values of these rates. From (5), we obtain the relationship

N = S + E + I + R. (6)

N is the total population. We assume that N is a constant. (5) is reduced to a single equation
for R; the reduction is as follows. From the last equation of (5), we obtain

I =
1
ρ

dR
dt

. (7)

Substitution of (7) in the first equation of (5) leads to

S = S(0) exp
{
− τ

ρN
[R− R(0)]

}
. (8)

Here, S(0) and R(0) are the numbers of susceptible individuals and those recovered at
time t = 0. The substitution of (6) and (8) in the last equation of (5) leads to the differential
equation for R:

dR
dt

= ρ

{
N − E− R− S(0) exp

[
− τ

ρN
(R− R(0))

]}
. (9)
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Below, we assume R(0) = 0 (no recovered individuals at t = 0). Next, we reduce (9) to an
equation for R. The reduction is as follows. We write (9) as

dR
dt

= ρ[N − E− R− S]. (10)

(10) is differentiated with respect to t. The result is

d2R
dt2 = ρ

[
−dS

dt
− dE

dt
− dR

dt

]
. (11)

In (11), we substitute dS
dt and dE

dt by the corresponding relationships from the first two
equations of (5). The result is a relationship which relates R and E. From this relationship,
we obtain

E =
1

ρσ

d2R
dt2 +

1
σ

dR
dt

. (12)

We substitute (12) in (9) and obtain

d2R
dt2 + (σ + ρ)

dR
dt

= ρσ

{
N − R− S(0) exp

[
− τ

ρN
R
]}

. (13)

Below, we assume τR
ρN << 1. This happens, for example, when τ > ρ and R << N.

The last relationship indicates that there is an epidemic wave affecting a small percentage
of the population. Here, exp

[
− τ

ρN R
]

can be written as a Taylor series

exp
[
− τ

ρN
R
]
=

M

∑
j=0

(
− τ

ρN
R
)j

. (14)

Although M has infinite value in the full Taylor series, we can truncate it at M = 2, M = 3,...,
if − τ

ρN R is small enough. From (13), we obtain

d2R
dt2 + (σ + ρ)

dR
dt

= ρσ

{
N − R− S(0)

M

∑
j=0

(
− τ

ρN
R
)j
}

, M = 2, 3, . . . (15)

We set

ε = σ + ρ; α0 = ρσ[N − S(0)]; α1 =
τσS(0)

N
− ρσ; αj = −(−1)j τ jσS(0)

ρj−1N j , j = 2, 3, . . . (16)

Then, (15) becomes
d2R
dt2 + ε

dR
dt

=
M

∑
j=0

αjRj (17)

The sequences of Equations (15) and (17) are the orders of approximation of (9) with respect
to M.

The time t is the independent variable in (17). In general, the independent variable of
a differential equation can be a combination of several spatial variables and time. Below,
we use just such an independent variable, denoted as ξ. In this way, we are able to apply
SEsM(1,1) to the equation

d2R
dξ2 + ε

dR
dξ

=
M

∑
j=0

αjRj. (18)

As simple equations, we use the differential equations of Bernoulli and Riccati.
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We begin with the equation of Bernoulli:

dy
dξ

= py + qym, m = 2, 3, . . . , (19)

as a simple equation. The transformation y = u1/(1−m) reduces (19) to a linear equation.
Using this, we can obtain the solution to the equation of Bernoulli:

y(ξ) =
{

p
−q + Cp exp[−(m− 1)pξ]

} 1
m−1

. (20)

In (20), C is a constant of integration.
We skip Step 1 of SEsM. No transformation is needed because the kind of nonlinearity

in (18) is polynomial. In Step 2 of SEsM, we choose the composite function R(y) to be of
the kind

R(y) =
L

∑
l=0

βlyl , (21)

where y(ξ) is the solution to (19) and R(y) is the solution to (18). In Step 3 of SEsM, we
have to obtain the balance equation; (19) and (21) fix the balance equation of (18) to

2(m− 1) = L(M− 1). (22)

Then, a specific solution to (18) is

R(ξ) =
L

∑
l=0

βl

{
p

−q + Cp exp{−[L(M− 1)/2]pξ}

} 2l
L(M−1)

. (23)

Several of the the parameters βl , p, q, and C are fixed during the Step 4 of SEsM.
A specific case exists for which we can obtain an interesting and important solution to

the simple equation, namely, the case of m = 2. Then, we can use the equation of Riccati as
a simple equation:

dy
dξ

= py + qy2 + r, (24)

where p, q, and r are parameters. We know that a specific solution of (24) is

y(ξ) = − p
2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
, (25)

where θ2 = p2 − 4rq > 0 and C is a constant of integration. The specific solution (25) of (24)
allows us to write the general solution to (24) as y = − p

2q −
θ

2q tanh
[

θ(ξ+C)
2

]
+ D

v , where D
is a constant and v(ξ) is the solution to the linear differential equation

dv
dξ
− θ tanh

[
θ(ξ + C)

2

]
v = −qD. (26)

The solution to (26) is

v = cosh2
[

θ(ξ + C)
2

]{
E1 −

2qD
θ

tanh
[

θ(ξ + C)
2

]}
, (27)

where E1 is a constant of integration. Thus, the general solution to (24) is

y(ξ) = − p
2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]} . (28)
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Next, we obtain several solutions of the kind in (18). We begin with M = 2. In this
case, we have to solve the equation

d2R
dξ

+ ε
dR
dξ

= α2R2 + α1R + α0. (29)

The balance equation is L = 2(m− 1). We start with m = 2. In this case, we can use the
equation of Riccati as the simple equation. We have L = 2, and the solution of (29) is of the
kind R = β2y2 + β1y + β0, where y is the specific solution (25) or the general solution (28).
The substitution of the last relationships in (29) leads to the system of nonlinear algebraic
equations in Equation (A1) (see Appendix A); (A1) has two solutions The first solution to
(A1) is (A2); thus, the equation

d2R
dξ

+
5
√

6
6

(α2
1 − 4α0α2)

1/4 dR
dξ

= α2R2 + α1R + α0, (30)

where α2
1 − 4α0α2 ≥ 0 has the specific exact analytical solution

R(ξ) =
6q2

α2

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]}2

+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]}
+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 + 2p
√

6(α2
1 − 4α0α2)

1/4

4α2
(31)

with θ2 = 1
6 (α

2
1 − 4α0α2)

1/2 > 0, along with the more general solution

R(ξ) =
6q2

α2

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}2

+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 + 2
√

6(α2
1 − 4α0α2)

1/4

4α2
(32)

with θ2 = 1
6 (α

2
1 − 4α0α2)

1/2 > 0.
The second solution of (A1) is (A3). For this solution, we obtain the following solutions

of the corresponding differential equation:

d2R
dξ
− 5
√

6
6

(α2
1 − 4α0α2)

1/4 dR
dξ

= α2R2 + α1R + α0, (33)
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where θ2 = 1
6 (α

2
1 − 4α0α2)

1/2 > 0. The first solution is the specific analytical solution

R(ξ) =
6q2

α2

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]}2

+

q
√

6
α2

[
√

6p− (α2
1 − 4α0α2)

1/4]

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]}
+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 − 2p
√

6(α2
1 − 4α0α2)

1/4

4α2
. (34)

The second solution is the more general solution

R(ξ) =
6q2

α2

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}2

+

q
√

6
α2

[
√

6p− (α2
1 − 4α0α2)

1/4]

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 − 2p
√

6(α2
1 − 4α0α2)

1/4

4α2
. (35)

Next, we consider the case of M = 2, L = 4. Here, m = 3. We must use the equation
of Bernoulli as a simple equation. The equation of Bernoulli for this case is dy

dξ = py + qy3,
and the solution to (29) is R = β4y4 + β3y3 + β2y2 + β1y + β0. The substitution of the last
relationships in (29) leads to the system of nonlinear algebraic equations in Equation (A4)
One solution to (A4) is (A5) In this case, the corresponding equation

d2R
dξ

+
5(α2

1 − 4α0α2)
1/4

√
6

dR
dξ

= α2R2 + α1R + α0, (36)

has the specific exact analytical solution

R =
24q2

α2


(α2

1−4α0α2)
1/4

2
√

6

−q + C (α2
1−4α0α2)1/4

2
√

6
exp{−2 (α2

1−4α0α2)1/4

2
√

6
ξ}


2

+

4q
√

6(α2
1 − 4α0α2)

1/4

α2


(α2

1−4α0α2)
1/4

2
√

6

−q + C (α2
1−4α0α2)1/4

2
√

6
exp{−2 (α2

1−4α0α2)1/4

2
√

6
ξ}

−
α1 − (α2

1 − 4α0α2)
1/2

2α2
. (37)

The system of algebraic equations (A4) has three additional solutions. The first of
these solutions is (A6). Then, the corresponding equation

d2R
dξ

+
5(α2

1 − 4α0α2)
1/4

√
6

dR
dξ

= α2R2 + α1R + α0, (38)
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has the specific exact solution

R(ξ) = −
α1 − (α2

1 − 4α0α2)
1/2

2α2
+

24q2

α2


− (α2

1−4α0α2)
1/4

2
√

6

−q− C (α2
1−4α0α2)1/4

2
√

6
exp{2 (α2

1−4α0α2)1/4

2
√

6
ξ}


2

. (39)

The second of the additional solutions is (A7). Then, the corresponding equation

d2R
dξ
−

5(α2
1 − 4α0α2)

1/4
√

6
dR
dξ

= α2R2 + α1R + α0, (40)

has the specific exact solution

R(ξ) = −
α1 − (α2

1 − 4α0α2)
1/2

2α2
−

4q
√

6(α2
1 − 4α0α2)

1/4

α2


− (α2

1−4α0α2)
1/4

2
√

6

−q− C (α2
1−4α0α2)1/4

2
√

6
exp{2 (α2

1−4α0α2)1/4

2
√

6
ξ}

+

24q2

α2


− (α2

1−4α0α2)
1/4

2
√

6

−q− C (α2
1−4α0α2)1/4

2
√

6
exp{2 (α2

1−4α0α2)1/4

2
√

6
ξ}


2

. (41)

The third of the additional solutions is (A8). Then, the corresponding equation

d2R
dξ
−

5(α2
1 − 4α0α2)

1/4
√

6
dR
dξ

= α2R2 + α1R + α0, (42)

has the specific exact solution

R(ξ) = −
α1 − (α2

1 − 4α0α2)
1/2

2α2
+

24q2

α2


(α2

1−4α0α2)
1/4

2
√

6

−q + C (α2
1−4α0α2)1/4

2
√

6
exp{−2 (α2

1−4α0α2)1/4

2
√

6
ξ}


2

. (43)

Next, we consider the case of M = 2, L = 6. In this case, m = 4. We have to solve the
equation

d2R
dξ2 + ε

dR
dξ

= α2R2 + α1R + α0 (44)

and the desired solution has the form R(ξ) =
6
∑

l=0
βly(ξ)l , where y(ξ) is the solution of the

Bernoulli equation dy
dξ = py + qy4, which is

y(x) =
{

p
−q + Cp exp[−3pξ]

} 1
3
. (45)

The use of SEsM(1,1) leads to the system of algebraic equations (A9). This system
has four solutions. These solutions lead to equations and solutions which are identical to
the equations and solutions for the case of M = 2, L = 4, m = 3. As an an example, the
solution (A10) of (A9) leads to the solution (37) of the Equation (36).



Computation 2023, 11, 129 10 of 30

Because of the above, we continue with a discussion of the case of M = 3. Here, we
have to solve the equation

d2R
dξ2 + ε

dR
dξ

= α3R3 + α2R2 + α1R + α0. (46)

For the case of a simple equation of the same kind as the Bernoulli equation, the bal-
ance equation for SEsM(1,1) is m = L + 1. Thus, the simple equation of Bernoulli is
dy
dξ = py + qyL+1 and its solution is y(ξ) =

{
p

−q+Cp exp[−Lpξ]

} 1
L . The solution to (46) is of

the kind R(ξ) =
L
∑

l=0
βly(ξ)L.

We start with L = 1, meaning that m = 2. As we know, in this case we can use the
equation of Riccati dy

dξ = py + qy2 + r as the simple equation for SEsM(1,1). In this case, we
can use the specific solution (25) and the general solution (28). In this case, SEsM(1,1) leads
to the system of nonlinear algebraic relationships (A11) One of the solutions to this system
is (A12). Thus, the corresponding equation

d2R
dξ2 +

−25/6

4
−21/3α3T2/3

2 − 2α2
2 + 6α1α3

α3T1/3
dR
dξ

= α3R3 + α2R2 + α1R + α0, (47)

has the specific solution

R(ξ) =
√

2q√
α3

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]}
+

25/6 25/6α3T2/3 + 2
√

2α2
2 − 6

√
2α1α3 + 6 22/3 pα3T1/3 − 4α2

√
α321/6T1/3)

24α3/2
3 T1/3

(48)

Here,

θ2 = p2 − 4rq =

p2 − 22/3

24α5/2
3 T2/3

2

(
12 21/3α5/2

3 T2/3
2 + 2 22/3α3T1/3

2 α3
2 − 9 22/3α2

3T1/3
2 α1α2 +

27 22/3α3
3T1/3

2 α0 + 33/2 22/3α5/2
3 T1/3

2 T1/2
1 − 4 21/3α2

2α3/2
3 T2/3

2 +

12 21/3α5/2
3 T2/3

2 + 4α4
2α1/2

3 − 24α2
2α1α3/2

3 + 36α2
1α5/2

3

)
(49)

with (48) being based on the solution (25) to the equation of Riccati. Another specific
solution is

R(ξ) =
√

2q√
α3

{
− p

2q
− θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}+

25/6 25/6α3T2/3 + 2
√

2α2
2 − 6

√
2α1α3 + 6 22/3 pα3T1/3 − 4α2

√
α321/6T1/3)

24α3/2
3 T1/3

. (50)

with (50) being based on the general solution (28) to the equation of Riccati.
The second solution of system (A11) is (A13). Thus, the corresponding equation

d2R
dξ2 +

−25/6

4
21/3α3T2/3

2 + 2α2
2 − 6α1α3

α3T1/3
dR
dξ

= α3R3 + α2R2 + α1R + α0, (51)
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has the specific solution

R(ξ) =
√

2q√
α3

{
p

2q
+

θ

2q
tanh

[
θ(ξ + C)

2

]}
−

25/6 25/6α3T2/3 + 2
√

2α2
2 − 6

√
2α1α3 + 6 22/3 pα3T1/3 + 4α2

√
α321/6T1/3)

24α3/2
3 T1/3

(52)

Here,

θ2 = p2 − 4rq =

p2 − 22/3

24α5/2
3 T2/3

2

(
12 21/3α5/2

3 T2/3
2 − 2 22/3α3T1/3

2 α3
2 + 9 22/3α2

3T1/3
2 α1α2 −

27 22/3α3
3T1/3

2 α0 + 33/2 22/3α5/2
3 T1/3

2 T1/2
1 − 4 21/3α2

2α3/2
3 T2/3

2 +

12 21/3α5/2
3 T2/3

2 + 4α4
2α1/2

3 − 24α2
2α1α3/2

3 + 36α2
1α5/2

3

)
(53)

The solution (52) leads to profiles which are appropriate for description of epidemic
waves. The epidemic waves are connected to bell-shaped profile forms. These waves
represent the number of infected individuals, and this number is proportional to dR

dt .
Figure 1 shows several profiles of dR

dt which are connected to (52). The characteristic
bell-shaped form of the profile is evident.

0 10 20 30 40 50

t

0

500

1000

1500

2000

d
R

/d
t

1

2

3

4

Figure 1. Influence of the parameters of the solution (52) on the profile of dR
dt . In this case, the

coordinate ξ is the time t. The parameters of the profiles are as follows. Profile 1: α0 = 10−8,
α1 = 10−7, α2 = −2× 10−7, α3 = 10−7, p = 3, q = 7, C = −20. Profile 2: α0 = 10−6, α1 = 1.2× 10−6,
α2 = −2× 10−6, α3 = 1.1× 10−6, p = 3, q = 7, C = −25. Profile 3: α0 = 10−5, α1 = 1.2× 10−5,
α2 = −2× 10−5, α3 = 1.15× 10−5, p = 3, q = 7, C = −30. Profile 4: α0 = 1.1× 10−4, α1 = 1.2× 10−4,
α2 = −2.1× 10−4, α3 = 1.15× 10−4, p = 3, q = 7, C = −35.
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Above, we have seen that (52) is based on the solution (25) of the equation of Riccati.
Another specific solution of (51) is

R(ξ) =
√

2q√
α3

{
p

2q
+

θ

2q
tanh

[
θ(ξ + C)

2

]
+

D

cosh2
[

θ(ξ+C)
2

]{
E1 − 2qD

θ tanh
[

θ(ξ+C)
2

]}}−
25/6 25/6α3T2/3 + 2

√
2α2

2 − 6
√

2α1α3 + 6 22/3 pα3T1/3 + 4α2
√

α321/6T1/3)

24α3/2
3 T1/3

.

(54)

with (54) being based on the general solution (28) to the equation of Riccati.
System (A11) has two additional solutions, which the interested reader can easily

obtain. We proceed to a solution obtained by using the equation of Bernoulli as a simple
equation.

Next, we consider the case L = 2. From the balance equation m = L+ 1 we have m = 3.
The simple equation is the equation of Bernoulli dy

dξ = py+ qy3. The solution to this equation

is y(ξ) =
{

p
−q+Cp exp[−2pξ]

} 1
2 . The solution of (46) is of the kind R(ξ) =

2
∑

l=0
βly(ξ)L. The

application of SEsM(1,1) leads to the system of nonlinear algebraic equations in (A14). This
system has four solutions. The first solution is (A15). The corresponding equation

d2R
dξ2 + ε

dR
dξ

= α3R3 + α2R2 + α1R +

−3
√

2α2
2α1/2

3 ε− 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

, (55)

has the specific solution

R(ξ) =
2
√

2q
α1/2

3

{ [−α3(6α1α3+α3ε2−2α2
2)]

1/2

2
√

3α3

−q + C [−α3(6α1α3+α3ε2−2α2
2)]

1/2

2
√

3α3
exp[− [−α3(6α1α3+α3ε2−2α2

2)]
1/2

√
3α3

ξ]

}
+

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 −

√
2α2α1/2

3

3
√

2α3/2
3

(56)

The second solution of (A14) is (A16). Then, the corresponding equation

d2R
dξ2 + ε

dR
dξ

= α3R3 + α2R2 + α1R−

−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε− 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

, (57)

has the specific solution

R(ξ) = −2
√

2q
α1/2

3

{ [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3

−q + C [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3
exp[− [−α3(6α1α3+3α3ε2−2α2

2)]
1/2

√
3α3

ξ]

}
−

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 +

√
2α2α1/2

3

3
√

2α3/2
3

. (58)

Figure 2 shows several profiles of R connected to the solution (58). These profiles are
appropriate for modeling processes that have a level of saturation; dR

dt for these profiles
decreases.
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Figure 2. Influence of the parameters of the solution (58) on the profile R. In this case, the coordinate
ξ is the time t. Profile1: alpha1 = 10−3, α2 = 10−2, α3 = 10−3, r = 0.5, q = −10−2, C = 10−1,
ε = 10−3. Profile2: alpha1 = 10−3, α2 = 10−2, α3 = 10−4, r = 0.5, q = −10−2, C = 10−1, ε = 10−3.
Profile3: alpha1 = 10−3, α2 = 10−2, α3 = 4× 0−4, r = 0.5, q = −10−2, C = 10−1, ε = 10−3. Profile4:
alpha1 = 10−3, α2 = 10−2, α3 = 4× 0−4, r = 0.5, q = −10−2, C = 10−2, ε = 10−5.

The third solution of system (A14) is (A17). Thus, the corresponding equation

d2R
dξ2 + ε

dR
dξ

= α3R3 + α2R2 + α1R +

−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

, (59)

has the specific solution

R(ξ) =
2
√

2q
α1/2

3

{ − [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3

−q− C [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3
exp[ [−α3(6α1α3+3α3ε2−2α2

2)]
1/2

√
3α3

ξ]

}
−

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 −

√
2α2α1/2

3

3
√

2α3/2
3

. (60)

The fourth solution of system (A15) is (A18). Thus, the corresponding equation

d2R
dξ2 + ε

dR
dξ

= α3R3 + α2R2 + α1R−

−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

, (61)
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has the specific solution

R(ξ) = −2
√

2q
α1/2

3

{ − [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3

−q− C [−α3(6α1α3+3α3ε2−2α2
2)]

1/2

2
√

3α3
exp[ [−α3(6α1α3+3α3ε2−2α2

2)]
1/2

√
3α3

ξ]

}
+

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 +

√
2α2α1/2

3

3
√

2α3/2
3

. (62)

Next, we consider the case of M = 4. In this case, we have to solve the equation

d2R
dξ2 + ε

dR
dξ

= α4R4 + α3R3 + α2R2 + α1R + α0. (63)

For the case of a simple equation of the same kind as the equation of Bernoulli, the balance
equation for SEsM(1,1) is 2(m− 1) = 3L. Thus, the simple equation of Bernoulli is dy

dξ = py+

qy1+3L/2 and its solution is y(ξ) =
{

p
−q+Cp exp[− 3L

2 pξ]

} 2
3L

. The solution of (46) is of the kind

R(ξ) =
L
∑

l=0
βly(ξ)L.

We next consider the case of L = 2, for which m = 4. SEsM(1,1) leads to the system of
Equation (A19), which has the following two solutions. The first solution is (A20); thus, the
corresponding equation

d2R
dξ2 + ε

dR
dξ

= α4R4 + α3R3 +
3α2

3
8α4

R2 −
−49α3

3 + 160ε2α2
4

784α2
4

R−
α3(−49α3

3 + 640ε2α2
4)

12544α3
4

, (64)

has the specific solution

R(ξ) = β2

{
− ε

7

− β2(α4β2)1/2
√

10
− C ε

7 exp[3 ε
7 ξ]

}1/3

− α3

4α4
(65)

The second solution is (A21); thus, the equation

d2R
dξ2 + ε

dR
dξ

= α4R4 + α3R3 +
3α2

3
8α4

R2 −
−49α3

3 + 160ε2α2
4

784α2
4

R−
α3(−49α3

3 + 640ε2α2
4)

12544α3
4

, (66)

has the specific solution

R(ξ) = β2

{
− ε

7
β2(α4β2)1/2
√

10
− C ε

7 exp[3 ε
7 ξ]

}1/3

− α3

4α4
(67)

We stop the description of the solutions here, as the list becomes long. Additional
solutions are discussed elsewhere.

4. The Obtained Solutions to the Studied Set of Equations from the Point of View of
Modeling Epidemic Waves

In the previous section, we obtained several exact solutions to equations that are con-
nected to the SEIR model of epidemic spread. The solutions are of two classes: (i) solutions
that can be used for modeling of epidemic spread, and (ii) solutions that are not appropriate
for modeling epidemic spread. We begin by discussing the solutions that can be used for
modeling the spread of epidemics.
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Below, we consider the specific case when the general coordinate ξ is the time t. We
obtain solutions to the number of recovered people R(t) for the SEIR model. Then, we
calculate the time evolution of infected people I by means of (7):

I =
1
ρ

dR
dt

.

The number of exposed and susceptible people is

E =
1

ρσ

d2R
dt2 +

1
σ

dR
dt

,

S ≈ S(0)
M

∑
i=0

(
− τ

ρN
R
)i

.

In addition, we have
ε = σ + ρ; α0 = ρσ[N − S(0)]

α1 =
τσS(0)

N
− ρσ; αj = (−1)j τ jσS(0)

ρj−1N j , j = 2, 3, . . .

Then, we can calculate the relative growth rate

σ(t) =
1
I

dI
dt

, (68)

which can be written as
σ(t) = ρ(Rn − 1). (69)

In (69),

Rn(t) = 1 +
σ(t)

ρ
(70)

is the time-varying effective reproduction number. The notation Rn is used for the effective
reproduction number in order to distinguish it from the number of recovered people, which
is denoted by R; (69) shows that there is an important value Rn = 1. For Rn < 1, we have
σ(t) < 0, and the relative growth rate is negative. Then, dI/dt is negative; the number of
infected individuals decreases, and the epidemic shrinks. For Rn > 1, we have σ(t) > 0,
and the relative growth rate is positive. Thus, dI/dt is positive; the number of infected
individuals increases, and the epidemic expands.

Note that our assumption for reducing the SEIR model to a sequence of equations is(
τR
ρN

)M+1
<< 1. This means that we can describe epidemic waves for which R << N. In

other words, such epidemic waves affect a small percentage of the entire population. If the
last condition is not true, we have to solve the SEIR model numerically. For the rest of this

section, we assume that the assumption
(

τR
ρN

)M+1
<< 1 holds.

The solutions obtained in the previous section can be classified as follows:

I. Solutions that can be used to describe specific cases of the evolution of epidemic waves
within the scope of the SEIR model.

II. Solutions that can be used to describe specific cases of the part of the evolution of
the epidemic wave or solutions that are not appropriate for the case of description of
evolution of epidemic wave within the scope of the SEIR model.

The solutions in class I are the solutions generated by using the equation of Riccati
as the simple equation in SEsM(1,1). Among these solutions are (31), (32), (34), (35),
(48), (50), and (52). Below, we write the quantities corresponding to the SEIR model for
one of these solutions, (31). This is the solution of Equation (30) which has a quadratic
nonlinearity with respect to R. We note that α2

1 − 4α0α2 ≥ 0, meaning that we have the
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requirement S(0) ≥ 4N/5. We first consider the solution (31). The relationship for ε leads
to a requirement for ρ:

ρ =
5√
6

τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ > 0. (71)

where (71) is a necessary condition for existence of the waves (31) and (32). This condition
reduces the probability of the waves occurring. The positive point is that the analytical
relationship for the waves allows us to calculate and study the corresponding quantities for
epidemics. Thus, we can gain better understanding of the processes. For example, on the
basis of solution (31) we obtain a relationship for the behaviour over time of the number of
infected

I =
1
ρ

dR
dt

= −
(α2

1 − 4α0α2)
1/2

24q
[

5√
6

τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ
]{12q2

α2

[
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)]
+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

}
sech2

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]
(72)

Recall that C is an integration constant which is determined by the initial condition.
The corresponding number of exposed is

E =
1

σ
[

5√
6

τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ
]{ (α2

1 − 4α0α2)

32qα2
sech4

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)
+

(
q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]− 12q
α2

{
p

2q
+

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)})(
(α2

1 − 4α0α2)
3/4

48
√

6q
sech2

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]
tanh

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

])}
−

(α2
1 − 4α0α2)

1/2

24qσ

{
12q2

α2

[
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)]
+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

}
sech2

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]
(73)

The number of susceptible persons is approximately
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S ≈ S(0)

{
1− τ[

5√
6

τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ
]

N

{
6q2

α2

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]}2

+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]}
+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 + 2p
√

6(α2
1 − 4α0α2)

1/4

4α2

}
+

τ2[
5√
6

τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ
]2

N2

{
6q2

α2

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]}2

+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]}
+

6p2 − 2α1 − (α2
1 − 4α0α2)

1/2 + 2p
√

6(α2
1 − 4α0α2)

1/4

4α2

}2}
(74)

The corresponding relative growth rate is

σ(t) =
1
I

dI
dt

= −
{
(α2

1 − 4α0α2)

48q
sech4

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)
+(

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4] +
12q
α2

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)})(
(α2

1 − 4α0α2)
3/4

48
√

6q
sech2

[
(α2

1 − 4α0α2)(t + C)
2
√

6

]
tanh

[
(α2

1 − 4α0α2)
1/4/(t + C)

2
√

6

])]}/{
(α2

1 − 4α0α2)
1/2

24q

{
12q2

α2

[
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)]
+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

}
sech2

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]}
(75)

The corresponding effective reproduction number is
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Rn(t) = 1−
{
(α2

1 − 4α0α2)

48q
sech4

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)
+(

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4] +
12q
α2

{
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)})(
(α2

1 − 4α0α2)
3/4

48
√

6q
sech2

[
(α2

1 − 4α0α2)(t + C)
2
√

6

]
tanh

[
(α2

1 − 4α0α2)
1/4/(t + C)

2
√

6

])]}/{
[ 5√

6
τ1/2σ1/2S(0)1/4

N1/2 [5S(0)− 4N]1/4 − σ
][ (α2

1 − 4α0α2)
1/2

24q

{
12q2

α2

[
− p

2q
−

(α2
1 − 4α0α2)

1/4

2
√

6q
tanh

(
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

)]
+

q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4]

}
sech2

[
(α2

1 − 4α0α2)
1/4(t + C)

2
√

6

]]}
(76)

The corresponding quantities for the SEIR model on the basis of the other solutions (32),
(34), (35), (48), and (50) can be calculated in a similar manner as above.

We note that solution (32) contains (31) as specific case when the constant of integration
D = 0. Thus, (32) can lead to the same profile as (31), meaning that (32) can be used for the
description of epidemic waves within the scope of the SEIR model. In addition, solution (32)
can produce more complicated profiles in comparison to solution (31), as D can be different
from 0. One of these possible profiles is shown in Figure 3, along with the corresponding
profile for its derivative. The profile from Figure 3a is different from the kink profile for the
evolution of the number of recovered individuals, which is typical for an epidemic wave.
The derivative of this profile shown in Figure 3b is different from the typical bell-shaped
profile associated with the evolution of the number of infected individuals during an
epidemic wave. Such profiles provided by (32) may not be suitable for the description of
epidemic waves, though they may be useful for other applications of Equation (30).

Other solutions that are suitable for the study of a specific case of the evolution of
epidemic waves from the point of view of the SEIR model are some of the ones based on the
use of a simple equation of the Bernoulli kind in SEsM(1,1). Candidates for such solutions
include (37), (39), (43), (41), (56), (58), (60), (62), (65), and (67). From these solutions, the
suitable solutions are these which do not contain more than one relationship connecting the
parameters αi of the solved equations. Such solutions include (37), (39), (43), (41), (56), (58),
(60), and (62). These solutions are constructed by functions with a shape that is similar to
the shape of the logistic function in Figure 2. Because of this, they are suitable for modeling
part of the epidemic wave. For instance, these solutions can model the declining part of the
wave. As an example, we can consider the solution (58). For this solution, σ, ρ, τ and N are
free parameters. The solution is realized for

S(0) =
(T2/3 + 180στ + 8ρ2 + 16σρ + 8σ2 + 2

√
2T1/3ρ + 2

√
2T1/3σ)2

400τσT2/3 N, (77)

where

T = T1T2

T1 = 540
√

2στ(ρ + σ) + 416
√

2(σ3 + ρ3) + 1248
√

2σρ(σ + ρ)

T2 = 60[1440(ρ4σ2 + ρ2σ4 + σ3τρ2)− 1620σ3τ3 + 576(σ5ρ + ρ5σ) +

96(ρ6 + σ6) + 1920ρ3σ3 − 108σ3τ2ρ + 240(στρ4 + σ5τ) +

960(σ2τρ3 + σ4τρ)− 54(σ2τ2ρ2 + σ4τ2)]1/2 (78)
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We have the condition

(T2/3 + 180στ + 8ρ2 + 16σρ + 8σ2 + 2
√

2T1/3ρ + 2
√

2T1/3σ)2

400τσT2/3 < 1. (79)
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Figure 3. One possible profile provided by solution (32) of Equation (30). Figure (a): profile for the
quantity R. Figure (b): Profile for the quantity I. The values of the parameters for the solution are
α0 = 0.1, α1 = 0.5, α2 = −0.1, p = 0.5, q = 0.01, C = −50, D = 4, and E = 0.1.

The last two solutions, (65) and (67), contain three relationships among the parameters
αi of the solved equation. Because of this, it is necessary to fix more parameters of the SEIR
model. This very much limits the area of application of these two solutions for the purpose
of describing part of the epidemic wave within the scope of the SEIR model. Thus, (65) and
(67) are practically unsuitable for the description of epidemic waves.

5. Concluding Remarks

The main goal of this article is the application of the Simple Equations Method (SEsM)
for computing exact solutions of nonlinear differential equations from a sequence of differ-
ential equations connected to the SEIR model of epidemic spread. We compute two kinds
of exact solutions. The first kind of solution is based on the use of the Riccati equation as
a simple equation. These solutions can describe specific cases of epidemic waves given
the condition that the wave does not affect a large part of the corresponding population.
This kind of solution can lead to profiles which are not suitable for description of epidemic
waves, as shown in Figure 3. Such profiles can be useful for other possible applications of
the corresponding equation, however.

The second kind of computed solutions are based on the use of the equation of
Bernoulli as a simple equation. These solutions have profiles that are similar to those of the
logistic function. Several of these solutions can describe specific cases of the evolution of
epidemic waves within the scope of the SEIR model. Other solutions are not appropriate
for modeling the evolution of epidemics. Note that the last solutions are exact solutions of
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the corresponding nonlinear partial differential equations, and can find applications in the
modeling of other phenomena.

The difference between the SIR and the SEIR models of epidemic spread is that
an additional class of individuals is presented in the SEIR model, namely, the class of
exposed individuals. Thus, the SEIR model accounts for the latent period during which
the individuals in this additional class are infected by the pathogen but are not capable
of passing infection to others. The presence of this additional class of individuals leads
to changes in the equation for the evolution of the number of recovered persons. This
equation is

dR
dt

= ρ

{
N − R− S(0) exp

[
− τ

ρN
R
]}

, (80)

for the SIR model of epidemic spread [30], while for the SEIR model of epidemic spread the
equation changes to (13)

d2R
dt2 + (σ + ρ)

dR
dt

= ρσ

{
N − R− S(0) exp

[
− τ

ρN
R
]}

.

This change in the equation leads to different solutions and different behaviour of the
evolution of the epidemic wave I = 1

ρ
dR
dt . Consequently, the evolution of the relative

growth rate σ = 1
I

dI
dt is different for the two models. The time behaviour of the effective

reproduction number Rn = 1 + σ
ρ changes as well.

Finally, we note that this study has shown SEsM to be a very useful methodology
for computing exact analytical solutions of nonlinear differential equations. We have
demonstrated that this methodology leads to numerous exact solutions to various equations,
and that these solutions can be useful for modeling phenomena in various complex systems.
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Appendix A. Systems of Nonlinear Algebraic Equations and Their Solutions

The SEsM methodology leads to systems of nonlinear algebraic equations correspond-
ing to solutions of the solved differential equations. Below, we list those systems and their
solutions which have been used in the main text.

First, we consider the case of differential Equation (29). For the case of the values of
the parameters M = L = m = 2, the system of nonlinear algebraic relations corresponding
to (29) is

β2(6q2 − α2β2) = 0

2εβ2q− 2α2β1β2 + (2β1q + 4β2 p)q + 6β2qp = 0

−α1β2 + ε(β1q + 2β2 p)− α2(2β0β2 + β2
1) + (β1 p + 2β2r)q+

(2β1q + 4β2 p)p + 6β2qr = 0

−α1β1 + (β1 p + 2β2r)p + (2β1q + 4β2 p)r + ε(β1 p + 2β2r)− 2α2β0β1 = 0

(β1 p + 2β2r)r− α1β0 + εβ1r− α2β2
0 − α0 = 0. (A1)
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(A1) has two solutions The first solution to (A1) is

β0 =
6p2 − 2α1 − (α2

1 − 4α0α2)
1/2 + 2p

√
6(α2

1 − 4α0α2)
1/4

4α2
,

β1 =
q
√

6
α2

[
√

6p + (α2
1 − 4α0α2)

1/4],

β2 =
6q2

α2
,

r =
6p2 − (α2

1 − 4α0α2)
1/2

24q
,

ε =
5
√

6
6

(α2
1 − 4α0α2)

1/4 (A2)

The second solution of (A1) is

β0 =
6p2 − 2α1 − (α2

1 − 4α0α2)
1/2 − 2p

√
6(α2

1 − 4α0α2)
1/4

4α2
,

β1 =
q
√

6
α2

[
√

6p− (α2
1 − 4α0α2)

1/4],

β2 =
6q2

α2
,

r =
6p2 − (α2

1 − 4α0α2)
1/2

24q
,

ε = −5
√

6
6

(α2
1 − 4α0α2)

1/4. (A3)

Next, we consider the values of the parameters M = 2, L = 4, m = 3. In this case, the
system of nonlinear algebraic equations corresponding to Equation (29) is

β4(24q2 − α2β4) = 0

β3(15q2 − 2α2β4) = 0

4εβ4q− α2(2β2β4 + β2
3) + 8q(β2q + 2β4 p) + 24β4qp = 0

3εβ3q + 3q(β1q + 3β3 p) + 15β3qp− 2α2(β1β4 + β2β3) = 0

4β2 pq + 8p(β2q + 2β4 p)− α1β4 + 2ε(β2q + 2β4 p)− α2(2β0β4 + 2β1β3 + β2
2) = 0

−α1β3 + β1 pq + 3p(β1q + 3β3 p)− 2α2(β0β3 + β1β2) + ε(β1q + 3β3 p) = 0

−α1β2 + 2εβ2 p + 4β2 p2 − α2(2β0β2 + β2
1) = 0

εβ1 p + β1 p2 − α1β1 − 2α2β0β1 = 0

−α2β2
0 − α0 − α1β0 = 0. (A4)
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System (A4) has the following solutions. The first solution is

β4 =
24q2

α2
β3 = 0

β2 =
4q
√

6(α2
1 − 4α0α2)

1/4

α2
β1 = 0

β0 = −
α1 − (α2

1 − 4α0α2)
1/2

2α2

p =
(α2

1 − 4α0α2)
1/4

2
√

6

ε =
5(α2

1 − 4α0α2)
1/4

√
6

. (A5)

The second solution is

β4 =
24q2

α2
β3 = 0

β2 = 0

β1 = 0

β0 = −
α1 + (α2

1 − 4α0α2)
1/2

2α2

p = −
(α2

1 − 4α0α2)
1/4

2
√

6

ε =
5(α2

1 − 4α0α2)
1/4

√
6

. (A6)

The third solution is

β4 =
24q2

α2
β3 = 0

β2 = −
4q
√

6(α2
1 − 4α0α2)

1/4

α2
β1 = 0

β0 = −
α1 − (α2

1 − 4α0α2)
1/2

2α2

p = −
(α2

1 − 4α0α2)
1/4

2
√

6

ε = −
5(α2

1 − 4α0α2)
1/4

√
6

. (A7)
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The fourth solution is

β4 =
24q2

α2
β3 = 0

β2 = 0

β1 = 0

β0 = −
α1 − (α2

1 − 4α0α2)
1/2

2α2

p =
(α2

1 − 4α0α2)
1/4

2
√

6

ε = −
5(α2

1 − 4α0α2)
1/4

√
6

(A8)

Next, we consider the case M = 2, L = 6. In this case, m = 4. We have to solve Equation (44).
In this case, SEsM(1,1) leads to the system of nonlinear algebraic equations

β6(54q2 − α2β6) = 0

β5(40q2 − 2α2β6) = 0

28β4q2 − α2(2β4β6 + β2
5) = 0

6εβ6q + q(18β3q + 36β6 p) + 54β6 pq− α2(2β4β5 + 2β3β6) = 0

−α2(2β2β6 + 2β3β5 + β2
4) + q(10β2q + 25β5 p) + 5β5q(8p + ε) = 0

2q(β1q + 4β4 p) + 14β4qp− α2(β1β6 + β2β5 + β3β4) + 2εβ4q = 0

ε(3β3q + 6β6 p)− α2(2β0β6 + 2β1β5 + 2β2β4 + β2
3)− α1β6+

9β3 pq + p(18β3q + 36β3 p) = 0

ε(2β2q + 5β5 p) + 4β2 pq + p(10β2q + 25β5 p)−
α2(2β0β5 + 2β1β4 + 2β2β3)− α1β5 = 0

ε(β1q + 4β4 p)− α2(2β0β4 + 2β1β3 + β2
2) + β1 pq + p(4β1q + 16β4 p)− α1β4 = 0

3εβ3 p + 9β3 p2 − α1β3 − α2(2β1β2 + 2β0β3) = 0

4β2 p2 − α2(2β0β2 + β2
1) + 2εβ2 p− α1β2 = 0

β1(−α1 + p2 + εp− 2α2β0) = 0

−α2β2
0 − α0 − α1β0 = 0 (A9)

A solution of this system is

β6 =
54q2

α2
; β5 = β4 = 0

β3 =
6
√

6q
α2

(α2
1 − 4α0α2)

1/4; β2 = β1 = 0

β0 = −
α1 − (α2

1 − 4α0α2)
1/2

2α2
; p =

(α2
1 − 4α0α2)

1/4

3
√

6

ε =
5√
6
(α2

1 − 4α0α2)
1/4, (A10)
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Next, we consider the case of M = 3. We have to solve Equation (46). First of all, we
consider the case L = 1, m = 2. SEsM(1,1) leads to the system of nonlinear algebraic
equations

β1(2q2 − α3β2
1) = 0

β1(εq− 3α3β0β1 + 3pq− α2β1) = 0

β1(p2 + 2qr + εp− 3α3β2
0 − 2α2β0 − α1) = 0

εβ1r− α1β0 + β1 pr− α0 − α3β3
0 − α2β2

0 = 0 (A11)

One of the solutions to this system is

β1 =

√
2q√
α3

β0 = 25/6 25/6α3T2/3 + 2
√

2α2
2 − 6

√
2α1α3 + 6 22/3 pα3T1/3 − 4α2

√
α321/6T1/3)

24α3/2
3 T1/3

r =
22/3

96α5/2
3 T2/3

2 q

(
12 21/3α5/2

3 T2/3
2 + 2 22/3α3T1/3

2 α3
2 − 9 22/3α2

3T1/3
2 α1α2 + 27 22/3α3

3T1/3
2 α0 +

33/2 22/3α5/2
3 T1/3

2 T1/2
1 − 4 21/3α2

2α3/2
3 T2/3

2 + 12 21/3α5/2
3 T2/3

2 + 4α4
2α1/2

3 −

24α2
2α1α3/2

3 + 36α2
1α5/2

3

)

ε =
−25/6

4
−21/3α3T2/3

2 − 2α2
2 + 6α1α3

α3T1/3 , (A12)

where

T =
1

α3/2
3

[
2α3

2 − 9α3α1α2 + 27α2
3α0 + 3

√
3α3

(
− α2

2α2
1 + 4α3

1α3 + 4α3
2α0 −

18α3α2α1α0 + 27α2
3α2

0

)1/2 ]

T1 =
−α2

2α2
1 + 4α3

1α3 + 4α3
2α0 − 18α3α2α1α0 + 27α2

3α2
0

α3

T2 =
2α3

2 − 9α3α2α1 + 27α2
3α0 + 3

√
3T1/2

1 α3/2
3

α3/2
3

.

The second solution of (A11) is
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β1 = −
√

2q√
α3

β0 = −25/6 25/6α3T2/3 + 2
√

2α2
2 − 6

√
2α1α3 + 6 22/3 pα3T1/3 + 4α2

√
α321/6T1/3)

24α3/2
3 T1/3

r =
22/3

96α5/2
3 T2/3

2 q

(
12 21/3α5/2

3 T2/3
2 − 2 22/3α3T1/3

2 α3
2 + 9 22/3α2

3T1/3
2 α1α2 − 27 22/3α3

3T1/3
2 α0 +

33/2 22/3α5/2
3 T1/3

2 T1/2
1 − 4 21/3α2

2α3/2
3 T2/3

2 + 12 21/3α5/2
3 T2/3

2 + 4α4
2α1/2

3 −

24α2
2α1α3/2

3 + 36α2
1α5/2

3

)

ε =
−25/6

4
21/3α3T2/3

2 + 2α2
2 − 6α1α3

α3T1/3 (A13)

where

T =
1

α3/2
3

[
2α3

2 − 9α3α1α2 + 27α2
3α0 − 3

√
3α3

(
− α2

2α2
1 + 4α3

1α3 + 4α3
2α0 −

18α3α2α1α0 + 27α2
3α2

0

)1/2 ]

T1 =
−α2

2α2
1 + 4α3

1α3 + 4α3
2α0 − 18α3α2α1α0 + 27α2

3α2
0

α3

T2 = −
2α3

2 − 9α3α2α1 + 27α2
3α0 − 3

√
3T1/2

1 α3/2
3

α3/2
3

The following case is L = 2, m = 3. The application of SEsM(1,1) leads to the system
of nonlinear algebraic equations

β2(8q2 − α3β2
2) = 0

3β1(q2 − α3β2
2) = 0

12β2 pq− α3[β0β2
2 + 2β2

1β2 + β2(2β0β2 + β2
1)] + 2εβ2q− α2β2

2 = 0

−α3[4β0β1β2 + β1(2β0β2 + β2
1)] + εβ1q + 4β1 pq− 2α2β1β2 = 0

−α1β2 + 4β2 p2 + 2εβ2 p− α3[β0(2β0β2 + β2
1) + 2β2

1β0+

β2β2
0]− α2(2β0β2 + β2

1) = 0

−3α3β2
0β1 + β1 p2 + εβ1 p− α1β1 − 2α2β0β1 = 0

−α2β2
0 − α1β0 − α3β3

0 − α0 = 0 (A14)
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The first solution of (A14) is

β2 =
2
√

2q
α1/2

3

; β1 = 0

β0 =

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 −

√
2α2α1/2

3

3
√

2α3/2
3

α0 =
−3
√

2α2
2α1/2

3 ε− 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

p =
[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2

2
√

3α3
(A15)

The second solution of (A14) is

β2 = −2
√

2q
α1/2

3

; β1 = 0

β0 = −
√

3[−α3(6α1α3 + α3ε2 − 2α2
2)]

1/2 + εα3 +
√

2α2α1/2
3

3
√

2α3/2
3

α0 = −
−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε− 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

p =
[−α3(6α1α3 + 3α3ε2 − 2α2

2)]
1/2

2
√

3α3
(A16)

The third solution of the system (A14) is

β2 =
2
√

2q
α1/2

3

; β1 = 0

β0 = −
√

3[−α3(6α1α3 + α3ε2 − 2α2
2)]

1/2 + εα3 −
√

2α2α1/2
3

3
√

2α3/2
3

α0 =
−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

p = −
[−α3(6α1α3 + 3α3ε2 − 2α2

2)]
1/2

2
√

3α3
(A17)

The fourth solution of (A14) is

β2 = −2
√

2q
α1/2

3

; β1 = 0

β0 =

√
3[−α3(6α1α3 + α3ε2 − 2α2

2)]
1/2 + εα3 +

√
2α2α1/2

3

3
√

2α3/2
3

α0 = −
−3
√

2α2
2α1/2

3 ε + 2α3
2 + 9

√
2α1α3/2

3 ε + 9α1α3α2 + 2
√

2α3/2
3 ε3

27α2
3

p = −
[−α3(6α1α3 + 3α3ε2 − 2α2

2)]
1/2

2
√

3α3
(A18)

Next, we consider the case M = 4, L = 2, m = 4. SEsM(1,1) leads to the system of
equations
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β2(10q2 − α4β3
2) = 0

4β1(q2 − α4β3
2) = 0

β2
2{−α3β2 − α4[2(2β0β2 + β2

1) + 4β2
1]} = 0

β2{14pq + 2εq− 3α3β1β2 − α4[4β0β1β2 + 4(2β0β2 + β2
1)β1]} = 0

−α4[2β2
0β2

2 + 8β0β2
1β2 + (2β0β2 + β2

1)
2]− α3[β0β2

2 + 2β2
1β2 + β2(2β0β2 + β2

1)]+

εβ1q + 5β1 pq− α2β2
2 = 0

−2α2β1β2 − α3[4β0β1β2 + β1(2β0β2 + β2
1)]− α4[4β2

0β1β2 + 4β0β1(2β0β2 + β2
1)] = 0

−α3[β0(2β0β2 + β2
1) + 2β2

1β0 + β2β2
0] + 4β2 p2 − α1β2 − α2(2β0β2 + β2

1)−
α4[2β2

0(2β0β2 + β2
1) + 4β2

0β2
1] + 2εβ2 p = 0

β1(−3α3β2
0 − 2α2β0 − 4α4β3

0 − α1 + p2 + εp) = 0

−α2β2
0 − α1β0 − α3β3

0 − α0 − α4β4
0 = 0 (A19)

(A19) has the following solutions. The first solution is

p = − ε

7

q =
β2(α4β2)

1/2
√

10

β0 = − α3

4α4
β1 = 0

α2 =
3α2

3
8α4

α1 = −
−49α3

3 + 160ε2α2
4

784α2
4

α0 = −
α3(−49α3

3 + 640ε2α2
4)

12544α3
4

. (A20)

The second solution is

p = − ε

7

q = − β2(α4β2)
1/2

√
10

β0 = − α3

4α4
β1 = 0

α2 =
3α2

3
8α4

α1 = −
−49α3

3 + 160ε2α2
4

784α2
4

α0 = −
α3(−49α3

3 + 640ε2α2
4)

12544α3
4

. (A21)
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