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Abstract: The past few decades have witnessed remarkable progress in the application of artificial
intelligence (AI) and machine learning (ML) in medicine, notably in medical imaging. The application
of ML to dental and oral imaging has also been developed, powered by the availability of clinical
dental images. The present work aims to investigate recent progress concerning the application of ML
in the diagnosis of oral diseases using oral X-ray imaging, namely the quality and outcome of such
methods. The specific research question was developed using the PICOT methodology. The review
was conducted in the Web of Science, Science Direct, and IEEE Xplore databases, for articles reporting
the use of ML and Al for diagnostic purposes in X-ray-based oral imaging. Imaging types included
panoramic, periapical, bitewing X-ray images, and oral cone beam computed tomography (CBCT).
The search was limited to papers published in the English language from 2018 to 2022. The initial
search included 104 papers that were assessed for eligibility. Of these, 22 were included for a final
appraisal. The full text of the articles was carefully analyzed and the relevant data such as the clinical
application, the ML models, the metrics used to assess their performance, and the characteristics of
the datasets, were registered for further analysis. The paper discusses the opportunities, challenges,
and limitations found.

Keywords: machine learning; artificial intelligence; oral health; X-ray imaging; diagnosis; convolutional
neural networks; deep learning

1. Introduction

Dental caries and periodontal disease are two of the most common dental conditions
that affect people worldwide. Dental caries, also known as tooth decay, is a multifactorial
disease mainly caused by the interaction of the bacteria present in dental plaque and sugars
from the diet, which produces acids that erode the tooth structure [1]. Periodontitis, on
the other hand, is a chronic inflammatory condition that affects the supporting structures
of the teeth, including the gums, periodontal ligament, dental root cement, and alveolar
bone. It is also multifactorial and is caused by the accumulation of bacterial plaque and
dental calculus around the teeth, which triggers an immune response that leads to tissue
destruction [2].

X-ray exams are essential diagnostic tools in dentistry. They allow oral health pro-
fessionals to visualize the internal structures of the teeth and jaws, which are not visible
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during a clinical examination. There are several types of dental X-ray exams, including
bitewing, periapical, panoramic, and cone beam computed tomography (CBCT). Bitewing
X-rays are used to detect dental caries. Periapical X-rays are used to detect dental caries and
bone loss due to periodontitis and periapical lesions, while panoramic and CBCT X-rays are
used to evaluate the overall condition of the teeth and the upper and lower jaws, including
the presence of periodontal disease and other abnormalities [3].

Dental X-rays have revolutionized the practice of dentistry by providing detailed
information about oral structures. They allow dental professionals to detect dental caries,
periodontal diseases, and other conditions at an early stage, which can prevent further
complications and improve treatment outcomes. Dental X-rays can also reveal other
conditions, such as impacted teeth, tumors, and cysts, which may not be visible during a
clinical examination. Additionally, they are useful in treatment planning and monitoring
the progress of ongoing treatments [4,5].

Fast-emerging artificial intelligence (Al) technology is changing many scenarios in
our society. The oral health field is not an exception, mainly because of its regular use of
digitized imaging and electronic health records which facilitate Al algorithms [6,7]. The
science is recent and caution should be used. Human supervision is needed, but the door
is open and it is important to understand the real benefits of this technology in health
activities [8].

The availability of clinical dental images and the development of deep learning algo-
rithms in recent years has led to significant improvements in the accuracy and robustness
of these algorithms in supporting the diagnosis of various dental conditions.

Convolutional neural networks (CNN) [9] are a type of deep learning neural network
that are considered the most prominent algorithm used, due to their high accuracy and
ability to learn and extract features from images. A CNN consists of multiple layers, in-
cluding convolutional, pooling, and fully connected layers. CNNs have shown remarkable
performance in image classification tasks and have been widely used in a variety of fields,
including medical image analysis, object detection, and natural language processing.

Transfer learning is a machine learning technique that involves the use of a pretrained
model (e.g., a CNN model), which has already learned relevant features from a large image
dataset, such as ImageNet [10], COCO [11], MNIST [12], CIFAR-10/100 [13], or VOC [14].
It is then fine-tuned on a smaller dataset for a specific task. Pretrained image models are
used as a starting point for training the new model and the most popular pretrained image
architectures include GoogLeNet Inception [15], ResNet [16], VGG [17], and Xception [18].
Among these, GoogleLeNEt Inception and ResNet hold special significance in oral health
applications. GoogLeNet Inception-v3 architecture was introduced in 2014 and demon-
strated excellent performance in the ImageNet Large Scale Visual Recognition Challenge. It
was trained with more than a million images of 1000 object categories from the ImageNet
dataset. The original architecture has 22 deep layers, allowing different scale features to be
obtained by applying convolutional filters of different sizes in the same layers.

ResNet was introduced in 2015, and it has since become a foundational architecture
in the field of deep learning, serving as a basis for many subsequent advancements. It
addresses the problem of vanishing gradients that can occur when training very deep
neural networks by using residual connections, where shortcut connections are added to
bypass one or more layers.

Other works use a mixed approach that applies traditional machine learning methods,
such as support vector machine (SVM) [19], k-nearest neighbors (kNN) [20], random
forest [21], or extreme gradient boosting (XGBOOST) [22] for classification, using the image
features previously extracted employing a CNN.

This scoping review aims to explore the current state of the art of Al-assisted diagnosis
in oral health using X-ray-based images, focusing on the last five years. The specific
objectives are to summarize several aspects of the current state of the art in the field and to
identify limitations and research gaps that must be addressed to advance the field.
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By providing a comprehensive overview of the quality and advancements of predictive
models developed using artificial intelligence-based methods for oral X-ray diagnosis, this
scoping review identifies trends, challenges, and gaps in the development and evaluation
of these models. The review’s findings offer valuable insights into the feasibility and
effectiveness of Al-based approaches in dental imaging, potentially improving diagnostic
accuracy and patient outcomes in oral healthcare.

The rest of the paper is organized as follows: Section 2 describes the Methods used
for information search and analysis; Section 3 summarizes the results obtained; Section 4
provides a discussion of the findings and Section 5 presents the Conclusions.

2. Methods

This review aims to obtain important insights into scientific production to identify the
status of machine learning in diagnosis using X-ray-based images in oral health.

Our research questions were built using the PICOT [23] framework. The PICOT
framework is widely used in healthcare research to generate specific research questions
and concisely guide study design. It is an acronym that stands for population, intervention,
control, outcome, and time. The PICOT elements for this review are presented in Table 1.

Table 1. Description of the PICOT elements.

Study Question
Population Oral X-ray diagnostic images of patients (radiography, CBCT)
Intervention Artificial intelligence-based forms of diagnosis
Control Oral health
Outcome Quality of the predictive models
Time Last five years

Therefore, the research question was formulated as follows:

“What is the quality of the predictive models being used for diagnosis in oral health
using X-ray-based images?”

According to the formulated question, the systematic literature search was performed
with the following inclusion criteria:

1.  Studies between 1 January 2018 to 31 December 2022, since the goal was to access the
most recent progress in a rapidly evolving field;

2. Studies with a focus on dental/oral imaging techniques based on X-rays, including
cone beam computed tomography (CBCT);

3. Studies with a focus on diagnostic applications. To our knowledge, this is the first
paper that exclusively reviews the application of ML methods in oral health diagnosis.

The three different databases shown in Table 2 were used for information retrieval.

Table 2. Databases used to conduct the search.

Name Acronym URL

https:/ /ieeexplore.ieee.org/Xplore/home.jsp
(accessed on 6 March 2023)
https:/ /www.sciencedirect.com/
(accessed on 6 March 2023)
https:/ /www.webofscience.com/wos/
(accessed on 6 March 2023)

IEEE Xplore IEEEXplore
Science Direct SciDir

Web of Science WoS

The search strategy was built by logical operators used for query search in the
databases. Since each database uses different syntaxes for queries, a specific query was
built for each one. An example of a query used is as follows:

(Dental OR Dentistry) AND (Imaging OR Images) AND (“Machine Learning” OR
“ Artificial Intelligence”)


https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://www.webofscience.com/wos/
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The search was limited to journal articles written in the English language excluding
conference papers, reviews, and editorials. The search was conducted by one reviewer
(M.V.M.), who also evaluated the search results for relevance based on their title and
abstract. After the remotion of duplicates, the abstracts of the papers selected for screening
were evaluated by blinded pairs of researchers (M.V.M., L.B.,, HL.,, VA, M.RA., VR,
using the web app Rayyan [24]. After individual evaluation, discrepancies were solved
by reaching a consensus. The full text of the selected studies was examined in detail for
eligibility (M.VM., LB., HLL., VA, MR A, V.R.). At this stage, a few papers were excluded
for not meeting the inclusion criteria. Data extraction from the included publications was
then performed (M.V.M,, L.B., HL,, VA, M.R.A,, VR\) and recorded in a spreadsheet. At
all stages, there was complete consensus among the evaluators on the literature selection
process and the classification of the publications.

The study characteristics recorded included the year of publication, country, the aim
of the study, clinical application, type of X-ray images used, data source, size and partition
(training, test, and validation sizes), if augmentation strategies were used, the type of task
(classification, regression), machine learning models used, the metrics used to evaluate the
models and their best reported values, and if human comparators were employed.

3. Results
3.1. Search and Study Selection

The Prisma [23] diagram presented in Figure 1 shows the flowchart for the study
search and selection process. The initial search identified 104 papers. After the remotion
of duplicates, a total of 92 papers were left for screening. During the screening phase,
52 papers were excluded. Reasons for exclusion included the study not dealing with
diagnosis questions; the study did not use X-ray-based images; the metrics of the developed
models were not reported. A total of 40 papers were then accessed for eligibility, and a
further 18 papers were excluded for not dealing with diagnosis issues or not using X-ray
images. A total of 22 papers were included in this review.

S Records identified through database searching
= (n=104)
o WoS (n=52); SciDir (n=23); IEEEXplore (n=29)
.E
=
)
2 5 Duplicate records removed
L (n=12)
] A
Records acessed for screening
(n=92)
o
=
=
@
e
“j, Records excluded (n=52)
3 - Not diagnosis (n=38)
- Not X-ray (n=11)
- Metrics not reported (n=3)
A
Full text manuscripes acessed for eligibility
n=40
2 ( )
S
=
w Records excluded (n=18)
> - Not diagnosis (n=17)
- Not X-ray (n=1)
3 A
'g Manuscripts included in the review
° (n=22)
<

Figure 1. Flowchart of the search, where n represents the number of papers.

3.2. Included Studies

Some of the characteristics of the selected papers are presented in Table 3. The complete
information can be found in Supplementary Table S1.
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Table 3. Characteristics of the selected papers.

. . . Machine .
Study Country, Year Diagnosis of ImageType Data Source Dataset Size Learning Task Metrics Models
. .. . e L. Acc, Sens, Spec, PPV,
[25] South Korea, 2018 Dental caries Periapical Hospital 24,600 Classification NPV, ROC-AUC GoogLeNet
. . . . . e ROC-AUC, Sens, .
[26] Germany, 2019 Apical lesions Panoramic University 2877 Classification Spec, PPV, NPV Proprietary CNN
Acc, ROC-AUC, F1,
[27] Germany, 2019 Periodontal diseases Panoramic University 2538 Classification Sens, Spec, PPV, Proprietary CNN
NPV
[28] India, 2020 Dental caries Periapical University 105 Classification Ace, 11\:/}) Cl? C':PRC’ BPNN
[29] Germany, 2020 Apical lesions Panoramic University 3099 Classification PPV, Sefrlls;; 1, Prec, U-Net
[30] South Korea, 2020 Oral lesions CBCT, . University 170,525 Classification ROC_AI.'].C’. Sens, GoogLeNet
Panoramic Specificity
Apical lesions, Acc, Spec, Prec, Rec
[31] Saudi Arabia, 2020 dental caries, Periapical Database 120 Classification +op Fll T Proprietary CNN
periodontal diseases
[32] USA, 2021 Oral lesions CBCT University 100 Classification Prec, Rec, Dice, Acc Proprietary CNN
Periapical, . e ROC-AUC, Sens, VGG, GoogLeNet,
[33] South Korea, 2020 Implant defects Panoramic Hospital 1,292,360 Classification Spec, Y1 Proprietary CNN
Alexnet, GoogLeNet,
[34] Japan, 2021 Dental caries Panoramic Hospital 533 Classification Acc, S;?ISJ’VSI;?C’ PPV, VGG, ResNet, Xception,
! SVM, KNN, DT, NB, RF
[35] South Korea, 2021 Periodontal diseases Periapical University 708 Classification Prec, Rec, mOKS Mask R-CNN, ResNet
. . Bitewing, . L Generative; Proprietary CNN,
[36] USA, 2022 Periodontal diseases Periapical Private clinic 133,304 Regression MAE, MBE DeepLabV3, DETR
. Periodontal diseases, L . e Sens, Spec, PPV, -
[37] China, 2022 Dental caries Periapical Hospital 7924 Classification NPV, F1, ROC-AUC Modified ResNet-18
. . . . . e L. Sens, Spec, PPV, .
[38] China, 2022 Ectopic eruption Panoramic Hospital 3160 Classification Proprietary CNN

NPV, ROC-AUC, F1
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Table 3. Cont.
Stud Country, Year Diagnosis of ImageType Data Source Dataset Size Machine Metrics Models
uey untry, & gelyp v Learning Task
. . . . . e e Acc, Prec, Rec, Spec, DenseNet, VGG,
[39] Saudi Arabia, 2022 Impacted tooth Panoramic University 416 Classification F1 Inception V3, ResNet-50
[40] China, 2022 Dental caries Periapical University 840 Classification DICE’SI; :CC’ Sens, Proprietary CNN
Proprietary CNN, VGG,
SqueezeNet, GoogleNet,
[41] Turkey, 2022 Dental caries Periapical Private clinic 340 Classification Acc, ROC-AUC, CM ResNet, ShuffleNet,
Xception, MobileNet,
DarkNet
[42] Japan, 2022 Oral lesions Panoramic Hospital 7260 Classification Acc, Sens, Spec, YOLO v3
pan, P Prec, Rec, F1
[43] Germany, 2022 Oral lesions Panoramic University 1239 Classification Prec, ReC’FTPV’ Spec, ResNet, RF
[44] Netherlands, 2022  Periodontal diseases Periapical University 1546 Regression MSE Proprietary CNN
[45] China, 2022 Dental caries Periapical University 800 Classification Prec, F1 Proprietary CNN
X-ray, type not Acc, Sens, Spec AlexNet, SqueezeNet,
[46] Turkey, 2022 Periodontal diseases d};ﬁ}r?; d Database 1432 Classification ,Prec 131p ’ EfficientNet, DT, KNN,

NB, RUSBoost, SVM,

Acc: accuracy; CM: confusion matrix; DT: decision tree; FPR: false positives ratio; KNN: K-nearest neighbor; NB: naive Bayes; MAE: mean absolute error; MBE: mean bias error; MCC:
Matthews correlation coefficient; mOKS: mean object keypoint similarity; MSE: mean squared error; NPV: negative predictive value; Prec: precision; PPV: positive predictive value; PRC:
precision-recall curve; RF: random forest; Rec: recall; ROC-AUC: receiver operator characteristic-area under the curve; Sens: sensitivity; Spec: specificity; SVM: support vector machine;
TPR: true positives ratio; USA: United States of America; YI: Youden index.
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All studies included were published between 2018 and 2022, with a notable increase
in the last year considered, which represented 50% of all studies (Figure 2).

1

w
2
©
=
w
©
g
2 4 4
-
zZ
2
1
2018 2019 2020 2021 2022
Year

Figure 2. Number of included studies per year of publication.

The 22 included studies involved a total number of 153 researchers affiliated with
17 countries. Of these 153 researchers, 65% (1 = 100) had their affiliation with institutions
related to health (colleges or departments of oral health and similar, hospitals and clinics),
and the rest (35%, n = 53) with institutions from areas related to computer science, physics,
engineering and similar. The majority of the first authors were affiliated in China and South
Korea with four papers, and the United States with three papers (Figure 3). These three
countries represent 50% of the included studies.

China
South Korea
’\\ United States of America
. Turkey 2
Saudi Arabia 2
? Germany 2
Japan 24
P4 Austria 1
India 1
Netherlands 1

Figure 3. Geographic distribution of the country affiliation of the first author of the studies.

The studies were published in sixteen different journals, with the Journal of Dentistry
being the one that published the most articles, with 23% of the total (n = 5), and Diagnostics
being the second one with 14% (n = 3). The remaining papers were distributed by the
fourteen other sources shown in Table 4.
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Table 4. Journal sources of the included papers.

Journal n %
Journal of Dentistry 5 23%
Diagnostics 3 14%
Biomedical Signal Processing and Control 1 5%
Scientific Reports 1 5%
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology 1 5%
Informatics in Medicine Unlocked 1 5%
Cluster Computing 1 5%
International Dental Journal 1 5%
Journal of Clinical Medicine 1 5%
Displays 1 5%
Journal of Endodontics 1 5%
Health Information Science and Systems 1 5%
Oral Diseases 1 5%
IEEE Access 1 5%
Applied Sciences 1 5%
IEEE Transactions on Automation Science and Engineering 1 5%

The keywords used in the studies (Figure 4) totalized 120 terms, with the most used
being “artificial intelligence” (n = 13), followed by “machine learning” and “deep learning”
(each nn = 11). Less used keywords were “convolutional neural network” (n = 4), “radiogra-

”ou

phy”, “supervised machine learning”, “dental caries” (each n = 3), “classification”, “digital
Var s s

image/radiology”, “endodontics”, “diagnosis”, “panoramic radiograph” and “cysts” (each
n = 2). The rest of the terms, a total of n = 60, each appeared only in one study.

artificial intelligence

machine learning

deep learning

convolutional neural network

deep lea rnlng radiography

supervised machine learning

artifiCial intelligence dental caries

classification

digital image/radiology

endodontics

. s diagnosis
machine learning parcranc radograph

cysts

N TN NN NN W W w| s

Figure 4. Word cloud of keywords.

3.3. Clinical Applications, Image Types, Data Sources and Labeling

Most of the studies analyzed (n = 8) applied the machine learning models to the diag-
nosis of dental caries, followed by the diagnosis of periodontal diseases (1 = 7), diagnosis
of oral lesions (1 = 4), and diagnosis of apical lesions (1 = 3). A small number of papers
addressed the diagnosis of implant defects (n = 1), ectopic eruption (n = 1), and impacted
teeth (n =1).

The vast majority of the studies considered in this review used periapical (n = 10) or
panoramic images (1 = 10), while one paper used both periapical and bitewing images.
Only two papers used CBCT images. One of these used both CBCT and panoramic images.
One paper did not specify the type of X-ray image being used.

Universities were the most common source of data (n = 12), followed by hospitals
(n = 6). There were also studies based on external datasets (7 = 2) and a small number
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used data from private clinics (7 = 2). The majority of datasets consisted of data from a
single institution. However, there was one particular paper [43] that constructed its dataset
by incorporating information from two different hospitals. The papers that used external
data sources did not include a description of the labeling process. Among the remaining
papers, two did not describe the labeling process. Only 15 papers provided information
regarding the number of annotators. They ranged from one to six annotators, with varying
degrees of experience. Only seven papers provided information regarding the seniority of
the annotators, which ranged from 3 to 33 years of experience. In three of those papers, the
annotators had a minimum of 3 years of experience, while in four they had at least 10 years
of experience.

3.4. Datasets Size, Partitions, and Data Augmentation

The majority of the 22 papers (68%, 15), use data augmentation, namely zooming,
rotation, shearing, flipping, and shifting. For a reliable comparison between papers, the
dataset size must consider the data augmentation process. So, for each paper where
data augmentation was used, we considered the actual number of examples that fed the
machine learning algorithm, instead of the original dataset size. In practical terms, data
augmentation corresponds to an increment in the dataset size.

Table 5 sums up the dataset size distribution. The sizes ranged from small datasets of
one hundred examples to an enormous dataset of 1,292,360 examples. Half of the datasets
were below 1500 instances; only three datasets were above 100,000 instances and all the
other nineteen datasets were below 50,000 instances.

Table 5. Dataset size distribution.

Dataset Size Number of Datasets

<500
500-1000
1000-1500
1500-2000
2000-5000
5000-10,000
10,000-50,000
50,000-100,000
10,000-500,000
500,000-1,000,000
>1,000,000

[6)}

R ONORFRNEBRRFLNKR

Dataset images typically have many teeth, but five (23%) datasets used images with
only one tooth.

Datasets are split into three sets: training, validation, and test. There were two papers
that did not have information regarding the division of the dataset. In these cases, we
assumed that the training set was the dataset. Half of the training sets had sizes above 87%
of the dataset size, and the training set size with the minimum percentage was 60% of the
dataset size.

There were four papers that did not use or had no information regarding the test set.
All the other 18 papers used a test set for evaluating the ML algorithms. Usually, this is a
subset from the original dataset. However, there was a particular paper [38] that used an
external dataset as a test set.

Regarding the validation set, 36% (1 = 8) of the papers had no information, 32% (n = 7)
of the papers used cross-validation and the other 32% (1 = 7) used a validation set.

3.5. Machine Learning Tasks and Models

Most of the papers addressed the machine learning application to the diagnosis
in dental health as a classification task (1 = 20). One study addressed the problem as
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a regression task, and another study used a combination of regression and generative
machine learning models.

The huge majority of studies used exclusively convolutional neural networks (1 = 19),
but three studies used a combination of CNN and traditional algorithms. In these three
studies, the approach was to use CNN for feature extraction and then traditional algorithms,
such as support vector machine (n = 2), k-nearest neighbors (1 = 2), naive Bayes (1 = 2), and
random forest (n = 1) for classification.

Among the papers that used CNN, 41% (n = 9) used exclusively proprietary archi-
tectures. One study used both a proprietary CNN and pretrained CNNs via transfer
learning.

Transfer learning was used by a considerable number of studies (n = 10), usually by
changing the last layers in the original architectures and fine tuning the model with the
dataset used in the paper. The preferred pretrained models were GoogLeNet Inception
(n = 6), ResNet (n = 6), different versions of VGG (n = 4), Xception (n = 2) and AlexNet (n = 2).
Other architectures used were DeepLab [47], Mask R-CNN [48], DETR [47], DenseNet [49],
Yolo [50], MobileNet [51], and DarkNet [51] (each n = 1).

The preferred pretrained model was the GoogLeNet Inception. In several studies,
GoogleLeNet Inception V3 was used as the main model for their respective classification
tasks [25,30,34]. Hashem et al. used the Inception original architecture, and adjusted output
layers to classify the images in one of three kinds of cysts [30]. The weights of the model
were optimized by adjusting the hyperparameters including the learning rate, batch size,
dropout rate, and by using batch normalization. Lee et al. also adapted the last layer for an
adequate number of categories (presence or absence of dental caries), but provided less
detail about the process of hyperparameter tuning [25].

Some papers used the results obtained with GoogleLeNet Inception V3 for comparison
with other models, such as a proprietary model developed in the paper for a specific diagno-
sis task ([33] for the detection and classification of dental implants), a specific model which
was optimized ([41] for AlexNet), or other pretrained models (such as DenseNet, VGG, and
ResNEt-50 in [39]). Very often, when the pretrained model was used for comparison, there
was a lack of detail in the description of the adaptation of the original model to the specific
task being handled.

ResNet was the other preferred pretrained model used in the selected papers. ResNet
was used by Cha et al. for training a classification model created for sorting upper and
lower periapical radiographs [35]. The weights of the pretrained model were used, with the
last connected layer modified to meet the number of classes (upper and lower maxillary).
The radiograph image was then fed into another model trained specially for the upper
or lower maxillary. This second set of models used a version of the R-CNN architecture
for localizing the implants and finding key points, thus allowing the calculation of the
marginal bone loss ratio. Li et al. use a modification of the ResNet-18 to detect the crown
categories (caries or normal) and root categories (periapical periodontitis/normal) of the
tooth. For a single tooth, the model needed to be executed twice: the first time to obtain the
dental root results and the second time to obtain the dental crown results. It was, however,
not clear how the modified model was trained on the available dataset [37].

In the study conducted by Feher et al., the authors employed an approach that com-
bined object detection and image segmentation of anatomical structures to predict two
classes of cysts: odontogenic and non-odontogenic [43]. The object detection model con-
sisted of a feature pyramid network using a pretrained ResNet as the backbone that outputs
a bounding box with the location of the cysts. In parallel, a pretrained U-Net segmentation
model was used to obtain relevant anatomical structures, such as the maxilla, mandible,
mandibular canal, maxillary sinuses, dentition, and individual teeth. The overlap of the de-
tection boxes and segmented anatomical structures was computed, and fed into a random
forest classifier for cyst classification. Tsoromokos et al. used an architecture named faster
R-CNN, an object detection network based on R-CNN and fast-RCNN [45]. The objective
was to classify teeth in periapical images as caries or non-caries. The main architecture was
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composed of a feature extraction network, a regional proposal network, and a prediction
and localization network. The feature extraction component used the pretrained weights of
ResNet, and the global model was trained with a small dataset of 720 instances. The paper
omitted the details of how validation was performed.

Bui et al. focused on extracting pertinent features to optimize the classification of tooth
images as either caries or non-caries [34]. Several well-known pretrained models, such
as AlexNet, Inception, VGG, ResNet, and Xception were used to extract deep-activated
features. Experiments were performed to find out which deep layer (before the prediction
layer) provided the highest performance features. At this stage, it is worth noting that no
details were provided regarding the parameters used for feature extraction with each model.
The extracted features were then fused with statistical and texture features computed at
the pixel level, such as mean, contrast, entropy, or correlation. The fused set of features
was fed into traditional machine learning algorithms, such as SVM, NB, KNN, DT, and
RF to obtain a prediction of the two categories. Sunnetci et al. had a similar approach but
with the aim of classifying the images as periodontal bone loss or non-periodontal bone
loss [46]. The paper used pretrained AlexNet and SqueezeNet to extract features from a
defined deep layer in each model. The deep image features were then fed to algorithms
such as kNN, NB, SVM, and tree ensemble algorithms that performed the classification
task. The paper also referred to the use of efficient net for comparison purposes, but no
further details were provided. Geetha et al. had a similar but simpler approach, where a
segmentation algorithm using an adaptive threshold and morphological processing was
used for statistical feature extraction [28]. The extracted features were then fed into a neural
network with one hidden layer used to classify the images as either caries or normal. The
results were compared with the results from methods such as SVM, kNN, and XGBoost. It
is worth mentioning that this was one of the papers where it was not possible to identify
the test set used. It was also one of the papers with the smallest training dataset, which
justified the simple neural network used.

In the study conducted by Endres et al.,, a 26-layer U-net-based architecture was
employed for image segmentation [29]. This methodology was specifically designed
to detect radiolucent alteration in panoramic images. Those alterations are common
radiographic findings that have a differential diagnosis including infections, granuloma,
cysts, and tumors. The model outputs an intensity map indicating regions of high or low
confidence for containing a radiolucent periapical alteration.

The YOLO algorithm was used by Tajima et al. to detect cyst-like radiolucent le-
sions of the jaws [42]. The YOLO algorithm has gained significant attention in the field
of computer vision and medical imaging, as it predicts the bounding boxes and class
probabilities directly from the full image in one pass. The model described in the paper
used 75 convolutional layers and the ResNet structure for feature extraction, followed by a
deep learning network to generate the bounding boxes where the lesions were present. The
metrics reported were all above 90%, but few details were provided regarding the deep
network employed.

Ekert et al. developed a seven layer neural network to classify panoramic images into
apical or non-apical lesions [26]. The network contained four convolutional layers and
two dense layers. The architecture was optimized for the numbers of neuronal units, the
number of filters for each particular convolutional layer, the kernel sizes, the configurations
of the max pooling layers and the dropout layers. A relatively small dataset with fewer than
3000 images was used. The authors justified the preference for custom-made architecture
by the fact that more complex, state-of-the-art pretrained models caused overfitting with
their limited-size dataset. Similar work was performed by Kros et al., but for the task of
detecting periodontal bone loss [27].

In the study conducted by Hashem et al., conventional procedures for image segmen-
tation and feature extraction were employed [31]. Subsequently, these extracted features
were then fed into neural networks to classify the images and determine the presence of
infection. The authors referred to the use of four different models of deep neural networks.
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However, the information provided does not allow us to understand the architectures, or
how the models were trained with a small dataset of 80 images.

Liu et al. devised a deep neural architecture specifically designed for the identification
of ectopic eruptions from panoramic images [38]. It consisted of one first and three last
plain convolutional layers, with middle layers for feature extraction. These middle layers
used specific kernels for position-wise and channel-wise feature extraction. The model
was trained with defined parameters with a dataset of 2960 region images from children’s
panoramic images. No information was provided on how the validation was performed.
Interestingly, this paper used an independent dataset collected from another hospital as an
external testing set.

The authors of [32] used a simplified adaptation of DenseNet to develop a model for
segmentation and lesion detection with CBCT images. The input for the model was both
images and oral-anatomical knowledge, such as constraints regarding the spatial location
of lesions, the connection of restorative material, or the location of the background. The
rationale behind the incorporation of anatomical knowledge was to limit the search space
for the deep learning algorithm to find the optimal parameters. The model was trained on
a very small dataset of 100 slices of CBCT images. It is not clear what test set was used.

One paper employed generative adversarial networks (GAN) to facilitate the mea-
surement of clinical attachment levels [36]. GANs are a class of machine learning models
that consist of a generator and a discriminator, competing against each other to generate
realistic data and distinguish it from real data, respectively. The authors developed a GAN
to predict the out-of-view anatomy in bitewing images for the measurement of clinical
attachment levels. The generative adversarial network with partial convolutions comprises
two generators and three discriminator CNNs. An encoder-decoder generator focuses
the network on the missing regions of the images and fills in missing anatomy, while an
encoder-decoder generator encourages the overall realism of the image and helps refine the
predictions. The intermediate prediction images resulting from the GAN are fed into a re-
fined encoder-decoder generator, a pretrained VGG discriminator and a final discriminator.
The resulting images are then fed into deep learning open-source prediction algorithms
(DETR and DeepLab). The model was trained, validated, and tested in a large set of some
thousand teeth images.

A deep neural network based on UNet and Trans-UNET was developed by Ying
et al. for carie segmentation [40]. Trans-UNet is an extension of UNet introduced in
2001 [52] that incorporates transformer modules, inspired by the success of transformers in
natural language processing tasks. Trans-UNet combines convolutional and self-attention
mechanisms to improve the modeling capability of UNet. The proposed model was trained
with a small dataset of 800 teeth images extracted from periapical images. Despite the high
metric values obtained, the authors recognized that the training set might be too small to
train the deep architecture. There was no information on how validation was performed.

3.6. Outcome Metrics and Model Performance

The studies based on classification tasks all used a combination of two or more metrics
to evaluate the model’s performance. The minimum number of metrics used was two,
the maximum was seven, and the mean was 4.75. Recall, also referred to as sensitivity or
true positive rate (n = 17), precision, also referred to as positive predictive value (n = 16),
specificity, also referred to as true negative rate (n = 14), and F1 score, also referred to
as the Dice coefficient (n = 13), were the most used metrics. Other metrics commonly
used were accuracy (n = 9), receiver operating characteristic-area under curve (n = 8),
and negative predictive value (n = 7). Confusion matrices, false positive rate, precision-
recall curve, Youden’s index, and Matthews correlation coefficient were also used in the
classification studies.

The regression studies used a smaller group of metrics to access model performance,
namely mean absolute error, mean bias error (n = 1), and mean squared error (1 = 1).
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The values reported for model performance vary widely. Table 6 presents the average,
minimum, and maximum values of the most used metrics, computed over the best reported
values in each study. Average values were above 0.81 and below 0.93; maximum values
were very high and between 0.96 and 1.0; minimum values ranged between 0.51 and 0.85.
The lowest average values were obtained for precision and F1 score and the highest was
obtained for ROC-AUC.

Table 6. Average, minimum, and maximum values of the most used metrics, considering the best
reported values in each manuscript.

Metric n Average Minimum Maximum
Recall 17 0.84 0.51 0.96
Precision 16 0.81 0.67 0.99
Specificity 14 0.85 0.51 1.00
F1 score 13 0.81 0.58 0.97
Accuracy 9 0.92 0.81 0.98
ROC-AUC * 8 0.93 0.85 0.98
NPV ** 7 0.83 0.68 0.95

* ROC-AUC: receiver operating characteristic-area under curve; ** NPV: negative predictive value.

The lowest values for recall, precision, and F1 score were obtained in a study using
panoramic images for the diagnosis of apical lesions and a dataset size of 3099. The lowest
values of specificity and negative predictive value were reported in a study using panoramic
images for the diagnosis of oral lesions and a dataset of 800 images. The lowest values of
accuracy and ROC-AUC were also obtained with panoramic images, for the diagnosis of
periodontal diseases (dataset size 2538), and of oral lesions (dataset size 120), respectively.

The highest value of recall was obtained in a study that used CBCT images for the
diagnosis of oral lesions, and a dataset size of 170,525. The highest values of precision,
specificity, F1 score, and accuracy were obtained in a study using panoramic images for
the diagnosis of oral lesions, with a dataset size of 1546. The best value for ROC-AUC was
reported in a study using periapical images for the diagnosis of implant defects, with a
dataset size of 533. The highest value of NPV was reported in a study using panoramic
images for the diagnosis of apical lesions, with a dataset size of 2877.

The study that used both CBCT and panoramic images obtained higher performance
metrics for the models that used CBCT images. The study that used periapical and
panoramic images obtained higher performance models using the periapical images.

3.7. Human Comparators

Only a small number of studies (n = 5) compared the machine learning model’s
performance with human performance. Those were all classification tasks, with dataset
sizes ranging from 708 to 7924 instances, and using either proprietary CNN or pretrained
models via transfer learning [10-14]. The number of dentists ranged from one junior
dentist to twenty-four oral and maxillofacial surgeons (OMF). The reported experience
ranged from 3 to 10 years. Most of the studies (1 = 4) concluded that the machine learning
models reached a similar diagnostic performance to experienced dentists. One of the
studies that used a high number of experts [29] additionally concluded that the ML model
outperformed 58% of OMF surgeons. Another of these studies [38] additionally found
that the ML algorithm was much faster at reaching a similar to human performance
and that the best detection performance was obtained by human experts assisted by the
automatic model.

One study [37] found that the ML model achieved significantly higher performance
than that of young dentists, and, with the assistance of the model, the experts not only
reached a higher diagnostic accuracy but also increased interobserver agreement.
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4. Discussion

The growth in the number of published studies that investigate the use of machine
learning techniques in X-ray diagnostics for oral health demonstrates the growing interest
that the field has aroused in the scientific community. Most of the researchers involved in
these publications are affiliated with clinical institutions and the majority of the papers were
published in clinical journals, as opposed to technical journals. Moreover, the majority of
those clinical journals belong to the specific clinical field of oral health (Journal of Dentistry,
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, International Dental
Journal, Journal of Endodontics, Oral Diseases). These facts are in contrast with previous
literature reviews [53], and seem to indicate an evolution in the maturity of the field. The
focus of the research is slowly being displaced from the technical development of the
models to an initial stage in the evaluation of their use as a potential clinical tool.

The sizes of the datasets and the ML strategies used vary widely in the studies
analyzed in this review. There seems to be a relation between the dataset sizes and the use
of pretrained machine learning models. For instance, the average size of the datasets when
pretrained models were used was above 21,000, instances; even if the largest dataset was
not considered, while slightly below 2000 instances when proprietary architectures were
used. Interestingly, there were two small datasets with less than 500 instances that used
pretrained models with accuracy results above 0.95.

Several limitations regarding the data were identified in the reviewed studies. Some
of these problems are common in the application of ML to other areas of medical imaging
as well. One major limitation is that datasets are often constructed using data from a single
institution, which limits their generality and heterogeneity. To minimize potential biases,
datasets should be as diverse as possible. Additionally, a significant number of studies rely
on small datasets with poorly described curation processes. There is often a lack of adequate
description of dataset characteristics, such as category distribution. For large datasets
collected over long periods of time, the diversity of data acquisition (clinical protocols and
equipment) was not always clear. The issue of labeling is also relevant. Usually, multiple
annotators are necessary to obtain a gold standard label for the data. In the revised studies,
it was not always identified how the quality of the labeling process through multiple
annotators was assured. For instance, in some cases the task was performed by a single
annotator. In other cases, it was unclear how disagreements were resolved. Additionally,
some studies lacked information on the annotation procedures employed.

The analysis of the performance of the models did not allow us to draw plain con-
clusions, either concerning the type of image being used, the ML approach, the clinical
application or the dataset size. For instance, some of the best results were obtained for
panoramic images, and some of the worst results were also obtained for panoramic images.
Some of the highest performance models were obtained with big datasets, but some others
with datasets with as low as 533 instances, data augmentation included. On the other hand,
some of the worst performance models were obtained with datasets with several thousand
instances. These results are in line with the findings of other reviews [53] and seem to
indicate the need for the standardization of procedures.

Some of the studies analyzed displayed a few limitations in their described method-
ology. Frequently, there was a lack of information regarding the validation procedure or
the nature of the test set used. These are two aspects that serve as reference in machine
learning, ensuring the prevention of data leakage that can lead to falsely inflated metric
values. The absence of such information raises concerns about the actual quality of the
reported models. It was also observed that the information provided on model training
was not always sufficiently comprehensive. In some cases, there was a lack of information
on the hyperparameters used or the strategy employed to select specific parameters.

No single ML approach could be identified as “the best” approach in the analyzed
papers. They encompass a wide range of ML methods, including vanilla methods using
transfer learning from pretrained models, as well as custom state-of-the-art approaches
using transformers or GANSs. Due to the diverse characteristics of the datasets, tasks, and
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metrics employed, making meaningful comparisons becomes challenging. Unlike other
areas where ML is used in medical imaging, the absence of large, curated datasets that can
serve as benchmarks also hinders any comparison. The lack of reporting standards further
complicates this task.

Indeed, the lack of standardized experimental design and reporting in machine learn-
ing research, including oral health applications, contrasts with the presence of reporting
guidelines commonly used in the medical field. While existing standards, such as TRI-
POD [54] and PROBAST [55], might not perfectly fit ML research in medical imaging,
efforts should be made to adhere to reporting guidelines. The upcoming extension to
TRIPOD and PROBAST for Al applications [56], which are also relevant for oral health
applications, is a positive development. In the meantime, there are checklists available
that can and should serve as guidance for researchers and reviewers [57,58]. One approach
that might contribute to the progressive adoption and acceptance of ML technology in oral
health is the application of formal methods [59]. Formal verification techniques can provide
guarantees on the robustness and generalizability of the models, aiding in the detection of
potential biases, and therefore contributing to enhancing the reliability, explainability and
trustworthiness of the diagnostic systems. However, collaboration and further research
are necessary to refine and expand the use of formal methods of ML in healthcare, namely
in oral health diagnosis. Only a small number of studies compared the performance of
the machine learning models with dentists. Notably, in all cases, the models matched
or outperformed the dentists. The main conclusion to be drawn is that the assistance of
Al seems to help experts improve their diagnosis performance, especially in interpreting
difficult cases [38]. These are very interesting results, which need to be confirmed by future
investigations, along with their implications in the clinical setting.

Indeed, the majority of studies focused primarily on the technical aspects of the au-
tomated diagnosis of oral conditions, with limited exploration of the broader healthcare
implications. While the technical components of these systems are unquestionably impor-
tant, it is crucial to also consider the impact of these innovations on patient care and clinical
decision-making as the field progresses. Adopting a more comprehensive approach that
takes into account both technological advancements and healthcare perspectives could be
beneficial for future research endeavors.

Finally, it is crucial to address the complex ethical considerations surrounding pri-
vacy and algorithm biases. These issues require careful attention and consideration to
ensure that patient privacy is protected and that the algorithms used do not perpetuate
biases. Addressing these ethical concerns is essential for the responsible development and
deployment of Al technologies in oral healthcare.

This paper acknowledges some limitations. First, our query, although capturing a
considerable number of papers, was relatively simple, might not have captured some
relevant articles on the subject while including many unrelated papers not pertaining to
diagnosis in oral health. Second, the omission of more specific terms in the query may have
resulted in overlooking potentially relevant literature that could have provided further
insights into our research topic. Additionally, to enhance the comprehensiveness of the
review, it would have been beneficial to supplement the systematic search with snowballing
techniques. These techniques involve reviewing the reference lists of identified articles and
conducting citation searches to identify additional relevant studies that may have been
missed in the initial search. Moreover, by not including the PubMed database, we may
have overlooked papers published in biomedical or clinical journals. Future work should
consider incorporating both snowballing techniques and a more specific query, including
a search in the PubMed database, to address these limitations and enhance the quality of
the research.

5. Conclusions

The application of Al in the diagnosis of oral health issues using X-ray-based images
is a rapidly developing field. There is still a clear need for further investigation of the
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role of Al in dental diagnosis in the clinical setting. The present review of the literature
seems to indicate that the field should naturally evolve toward the use of predictive
models as an effective, stable and sustainable beneficial tool for oral health professionals
performing diagnosis.
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