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Abstract: We present novel methods for computing the online dynamic mode decomposition (online
DMD) for streaming datasets. We propose a framework that allows incremental updates to the DMD
operator as data become available. Due to its ability to work on datasets with lower ranks, the
proposed method is more advantageous than existing ones. A noteworthy feature of the method
is that it is entirely data-driven and does not require knowledge of any underlying governing
equations. Additionally, we present a modified version of our proposed approach that utilizes a
weighted alternative to online DMD. The suggested techniques are demonstrated using several
numerical examples.
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1. Introduction

Dynamic mode decomposition (DMD) has become increasingly popular in studying
complex dynamical systems. Since it was introduced for the first time by Schmid [1], it
has been successfully applied to a wide range of problems, such as video processing [2],
epidemiology [3], neuroscience [4], financial trading [5–7], robotics [8], cavity flows [9,10],
and various jets [11,12]. For a review of the DMD literature, we refer the reader to [13–17].
For some recent modifications of DMD for non-uniformly sampled data, the higher-order
DMD method, parallel implementations of DMD, and some derivative DMD techniques,
we recommend [18–29].

In this work, we are interested in a recently developed modification of the DMD
method called online dynamic mode decomposition (online DMD) [30] (see also [31,32]). We
introduce an alternative online DMD method that is applicable for both overconstrained
and underconstrained datasets.

The outline of this paper is as follows. In the rest of this section, we give a brief
summary of the online DMD and alternative online DMD methods. In Section 2, we
introduce and discuss the new approach of the online DMD method. In Section 3, we
present examples demonstrating the new algorithm. The conclusion is in Section 4.

1.1. Online Dynamic Mode Decomposition (Online DMD)

In this subsection, the Algorithm 1 of so-called online dynamic mode decomposition
(online DMD) is introduced, following the description in [30].

It requires a dataset of snapshot pairs

{(xi, yi)}k
i=1, where xi, yi ∈ Rn, (1)

spaced a fixed time interval apart. Then, the snapshots are stacked into the following pair
of matrices:

Xk = [x1, . . . , xk] and Yk = [y1, . . . , yk]. (2)

The following assumptions are made:
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• The number of snapshots k is large compared with the state dimension n (i.e., we
consider the overconstrained case of the dataset, where k > n).

• The matrix Xk has full row rank (i.e., rank(Xk) = n).

The objective of the online DMD method is to provide an alternative way of computing
the DMD operator such that it can be updated incrementally as new snapshots become
available. The algorithm of online DMD proceeds as follows [30]:

Algorithm 1 Online DMD Method [30]

1. Collect k snapshot pairs (xj, yj), j = 1, . . . , k, where k > n is large enough that
rank(Xk) = n, where Xk is given by (2).

2. Compute Ak and Pk from

Ak = YkX†
k and Pk = (XkXT

k )
−1

3. When a new snapshot pair (xk+1, yk+1) becomes available, update Ak and Pk:

Ak+1 = Ak + γk+1(yk+1 − Ak+1xk+1)x
T
k+1Pk

and
Pk+1 = Pk − γk+1Pkxk+1xT

k+1Pk,

where
γk+1 =

1
1 + xT

k+1Pkxk+1
.

1.2. Alternative Online DMD

A novel approach was introduced in [33] to overcome the main shortcomings of online
DMD. The new scheme is designed to work with low-rank data, and the condition n < k
has been relaxed.

Consider a time series of data xi with k + 1 snapshots organized into the following
two data matrices:

Xk = [x1, . . . , xk] and Yk = [x2, . . . , xk+1].

Then, the truncated SVD Xk = UkΣkV∗k is performed, where Uk ∈ Rn×r, Vk ∈ Rk×r,
Σk ∈ Rr×r, and r = rank(Xk) is the truncation value. The low-dimensional DMD operator
is calculated using the formula Ãk = U∗k YkVkΣ−1

k .
A single iteration of the modified algorithm can be summarized as follows [33].
In this study, we aim to improve the alternative online DMD method (Algorithm 2)

from a computational perspective. The next section shows how matrix Ãk+1 can be ex-
pressed by using a diagonal-plus-rank-one matrix (DPR1 matrix) instead of matrix Bk (or B̄k)
in Step 1 of Algorithm 2. As a result, the eigendecomposition of a DPR1 matrix can be used
instead of the SVD of a matrix of the same dimension.
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Algorithm 2 Alternative Online DMD Method

Input: Matrices Ãk, Uk, Σk, scalar rmax, last 3 snapshots xk, xk+1, xk+2.
Compute zk+1 = (I −UkU∗k )xk+1 and proceed:
If ‖zk+1‖/‖xk+1‖ < ε :
1. Construct the matrix: Bk = [Σk | U∗k xk+1].
2. Compute the compact SVD: Bk = ŨkΣ̃kṼ∗k .
3. Compute the left singular vectors and singular values of Xk+1

Uk+1 = UkŨk and Σk+1 = Σ̃k.

4. If the DMD modes are required, then compute spectral decomposition of

Ãk+1 = Ũ∗k
(

ÃkΣ2
k + U∗k yk+1x∗k+1Uk

)
ŨkΣ−2

k+1,

If wj is the jth eigenvector of Ã, then Uk+1wj is jth DMD mode.
Else If ‖zk+1‖/‖xk+1‖ ≥ ε :

1. Construct the matrix: B̄k =

[
Σk U∗k xk+1
0T ‖zk+1‖

]
.

2. Compute the truncated SVD: B̄k = ŨkΣ̃kṼ∗k , with truncation value
min(rank(Bk), rmax).

3. Compute the left singular vectors and singular values of Xk+1:

Uk+1 = ŪkŨk, Σk+1 = Σ̃k, where Ūk = [Uk | ur+1] and ur+1 =
zk+1
‖zk+1‖

.

4. If the DMD modes are required, then compute the spectral decomposition of

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0
b∗k 0

]
+ Ū∗k yk+1x∗k+1Ūk

)
ŨkΣ−2

k+1,

where
b∗k = (u∗r+1xk+1)x

∗
k UkΣ−∗k Σk and yk+1 = xk+2.

If wj is the jth eigenvector of Ã, then Uk+1wj is the jth DMD mode.

2. Improved Online DMD

Through analogy with the online DMD, let us consider the k snapshot pairs (xj, yj) for
j = 1, . . . , k as in Equation (1). We form matrices

Xk = [x1, . . . , xk] and Yk = [y1, . . . , yk], (3)

which both have dimensions of n× k. Then, the truncated SVD

Xk = UkΣkV∗k , (4)

is performed, where Uk ∈ Rn×r, Vk ∈ Rk×r, and Σk ∈ Rr×r. The truncation value r is
such that r = min(rank(Xk), rmax), and it is a predefined value. From the pseudoinverse
X†

k = VkΣ−1
k U∗k , we express the DMD operator

Ak = YkX†
k = YkVkΣ−1

k U∗k . (5)

The projected DMD operator has the form

Ãk = U∗k AkUk = U∗k YkVkΣ−1
k , (6)
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which is of dimension r × r. We can perform the leading eigendecomposition of Ak by
using the eigendecomposition of Ãk.

Suppose now that we have already computed Ãk (or Ak) for a given dataset. Whenever
a new pair of snapshots becomes available (xk+1, yk+1), we would like to compute matrix
Ak+1 more efficiently than how it is usually carried out (Equation (6)).

Let us denote the augmented matrices

Xk+1 = [Xk | xk+1] and Yk+1 = [Yk | yk+1]. (7)

Suppose that the singular value decomposition of Xk+1 has the form

Xk+1 = Uk+1Σk+1V∗k+1. (8)

From Equation (8), we express Vk+1 as

Vk+1 = X∗k+1Uk+1Σ−∗k+1. (9)

Then, the updated DMD operator has the form

Ak+1 = Yk+1X†
k+1 = Yk+1Vk+1Σ−1

k+1U∗k+1
= Yk+1X∗k+1Uk+1Σ−2

k+1U∗k+1.
(10)

By substituting Equation (7) into the last expression, we obtain

Ak+1 = [Yk | yk+1]

[
X∗k

x∗k+1

]
Uk+1Σ−2

k+1U∗k+1

=
(
YkX∗k + yk+1x∗k+1

)
Uk+1Σ−2

k+1U∗k+1.
(11)

Using the SVD of Xk, we obtain

Ak+1 =
(
YkVkΣ∗k U∗k + yk+1x∗k+1

)
Uk+1Σ−2

k+1U∗k+1. (12)

By applying Equation (5), the last expression yields

Ak+1 =
(

AkUkΣ2
kU∗k + yk+1x∗k+1

)
Uk+1Σ−2

k+1U∗k+1 (13)

Equation (13) gives a rule for computing Ak+1 given Uk, Σk, Uk+1, Σk+1, and the new
snapshot pair (xk+1, yk+1).

In what follows, we will show that matrices Uk+1 and Σk+1 can be expressed from
matrices Uk and Σk. For this purpose, we consider the covariance matrix

Ck+1 = X∗k+1Xk+1, (14)

which has the following presentation:

Ck+1 = XkX∗k + xk+1x∗k+1 = UkΣ2
kU∗k + xk+1x∗k+1. (15)

by using Equation (7) and the SVD of Xk. It is well known that the leading left singular
vectors and singular values of Xk+1 can be computed by the eigendecomposition of Ck+1.
We will consider two scenarios in order to obtain an alternative representation of the SVD
of Xk+1, depending on whether xk+1 ∈ range(Uk):

(1) If xk+1 ∈ range(Uk), then the expression

xk+1 = UkU∗k xk+1 (16)
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is valid, and the covariance matrix Ck+1 can be presented as

Ck+1 = Uk

(
Σ2

k + U∗k xk+1x∗k+1Uk

)
U∗k = UkBkU∗k , (17)

where we define
Bk = Σ2

k + U∗k xk+1x∗k+1Uk (18)

as a diagonal-plus-rank-one (DPR1) matrix of a dimension r× r. In this case, the eigen-
decomposition of Ck+1 can be reduced to that of a DPR1 matrix Bk plus two matrix mul-
tiplications. Assume that the eigendecomposition of the r × r matrix Bk has the form

Bk = ŨkΣ̃kŨ∗k (19)

where Ũk ∈ Rr×r is unitary and Σ̃k ∈ Rr×r is diagonal. Then, for the left singular vectors
and singular values of Xk+1, we obtain

Uk+1 = UkŨk, and Σk+1 =
(
Σ̃k
)1/2. (20)

Now, from Equation (13), we can express the matrix Ãk+1 = U∗k+1 Ak+1Uk+1 as

Ãk+1 = Ũ∗k
(

ÃkΣ2
k + U∗k yk+1x∗k+1Uk

)
ŨkΣ−2

k+1. (21)

(2) If xk+1 6∈ range(Uk), then let us define

zk+1 = (I −UkU∗k )xk+1 (22)

and
ur+1 =

zk+1
‖zk+1‖

. (23)

We denote the matrix
Ūk = [Uk | ur+1]. (24)

It is straightforward that

ŪkŪ∗k Uk = Uk and ŪkŪ∗k xk+1 = xk+1.

By applying the last two expressions in Equation (15), the formula for Ck+1 becomes

Ck+1 = Ūk

(
Ū∗k UkΣ2

kU∗k Ūk + Ū∗k xk+1x∗k+1Ūk

)
Ū∗k , (25)

which is an n× n hermitian matrix. From Equation (24) and the definition of ur+1 follows
the identity

U∗k Ūk = U∗k [Uk | ur+1] = [I | 0], (26)

where 0 ∈ Rr is a zero vector and I ∈ Rr×r is the identity matrix.
By substituting Equation (26) into Equation (25), we obtain

Ck+1 = Ūk

([
Σ2

k 0
0T 0

]
+ Ū∗k xk+1x∗k+1Ūk

)
Ū∗k = Ūk B̄kŪ∗k , (27)

where

B̄k =

[
Σ2

k 0

0T 0

]
+ Ū∗k xk+1x∗k+1Ūk (28)
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is a diagonal-plus-rank-one (DPR1) matrix of the dimensions (r + 1)× (r + 1). Assume
that the eigendecomposition of Bk is

B̄k = ŨkΣ̃kŨ∗k (29)

where Ũk ∈ R(r+1)×(r+1) is unitary and Σ̃k ∈ R(r+1)×(r+1) is diagonal. Then, for the left
singular vectors of Xk+1 (or the eigenvectors of Ck+1) and singular values of Xk+1, we obtain

Uk+1 = ŪkŨk and Σk+1 = (Σ̃k)
1/2. (30)

Furthermore, we can compute the reduced-order approximation of Ak+1:

Ãk+1 = Ũ∗k
(

Ū∗k AkUkΣ2
kU∗k Ūk + Ū∗k yk+1x∗k+1Ūk

)
ŨkΣ−2

k+1, (31)

which is an (r + 1) × (r + 1) matrix. An equivalent representation of Ãk+1 using the
expression in Equation (26) and the definition of Ũk is

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0

u∗r+1 AkUkΣ2
k 0

]
+ Ū∗k yk+1x∗k+1Ūk

)
ŨkΣ−2

k+1, (32)

where the following expression holds:

u∗r+1 AkUkΣ2
k = u∗r+1YkVkΣk.

In the particular case of yi = xi+1 for i = 1, . . . , k, from the orthogonality of ur+1 and
x2, . . . , xk, it follows that

u∗r+1Yk = [0, . . . , 0, u∗r+1xk+1].

Therefore, we have
u∗r+1YkVk = (u∗r+1xk+1)v

lr
k ,

where vlr
k is the last row of matrix Vk. From the SVD of Xk, it follows that

V∗k = Σ−1
k U∗k Xk,

which yields the last column of V∗k :(
vlr

k

)∗
= Σ−1

k U∗k xk.

Then, the expression in Equation (32) takes the form

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0

b∗k 0

]
+ Ū∗k yk+1x∗k+1Ūk

)
ŨkΣ−2

k+1, (33)

where
b∗k = (u∗r+1xk+1)x

∗
k UkΣ−∗k Σk and yk+1 = xk+2.

The next paragraph summarizes the obtained results as an improved variant of
Algorithm 2.

Algorithm for Improved Alternative Online DMD

Let us consider a time series of data xi with k + 1 snapshots organized into the
following two data matrices:

Xk = [x1, . . . , xk] and Yk = [x2, . . . , xk+1]. (34)
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Then, we compute the truncated SVD of Xk = UkΣkV∗k as in Equation (4), where
r = rank(Xk) is the truncation value, and compute the matrix Ãk = U∗k YkVkΣ−1

k as in
Equation (6).

For each new data point xk+2, the first task is to determine whether the basis contained
in Uk should be expanded. To accomplish this, the residual zk+1 = xk+1 −UkU∗k xk+1 is
computed, and if ‖zk+1‖ is greater than some pre-specified tolerance ε, then we expand Uk
by appending zk+1/‖zk+1‖.

A single iteration of the updated algorithm can be summarized as follows.
The main advantages of the presented algorithm over Algorithm 2 are in Step 1 and

Step 2. Algorithm 3 uses a matrix with a simpler structure in Step 1 (in both parts), namely
the DPR1 matrix Bk (or B̄k, respectively). In addition, at Step 2 in Algorithm 3, spectral
decomposition of a DPR1 matrix is used instead of SVD of a regular matrix.

Algorithm 3 Improved Online DMD Method
Input: Matrices Ãk, Uk, Σk, scalar rmax, last 3 snapshots xk, xk+1, xk+2.
Output: Matrices Ãk+1, Uk+1, Σk+1.
Compute zk+1 = (I −UkU∗k )xk+1 and proceed:
If ‖zk+1‖ < ε :

1. Construct the DPR1 matrix:
Bk = Σ2

k + U∗k xk+1x∗k+1Uk

2. Compute the spectral decomposition:

Bk = ŨkΣ̃kŨ∗k .

3. Compute the left singular vectors and singular values of Xk+1

Uk+1 = UkŨk and Σk+1 =
(
Σ̃k
)1/2.

4. If the DMD modes are required, then compute the spectral decomposition of

Ãk+1 = Ũ∗k
(

ÃkΣ2
k + U∗k yk+1x∗k+1Uk

)
ŨkΣ−2

k+1.

If wj is the jth eigenvector of Ã, then Uk+1wj is the jth DMD mode.

Else If ‖zk+1‖ ≥ ε :

1. Construct the DPR1 matrix:

B̄k =

[
Σ2

k 0
0T 0

]
+ Ū∗k xk+1x∗k+1Ūk

2. Compute the truncated SVD:
B̄k = ŨkΣ̃kŨ∗k ,

with truncation value: min(rank(B̄k), rmax).
3. Compute the left singular vectors and singular values of Xk+1:

Uk+1 = ŪkŨk and Σk+1 =
(
Σ̃k
)1/2 ,

where
Ūk = [Uk | ur+1] and ur+1 =

zk+1
‖zk+1‖

.

4. If the DMD modes are required, then compute the spectral decomposition of

Ãk+1 = Ũ∗k

([
ÃkΣ2

k 0
b∗k 0

]
+ Ū∗k xk+2x∗k+1Ūk

)
ŨkΣ−2

k+1,

where
b∗k = (u∗r+1xk+1)x

∗
k UkΣ−∗k Σk.

If wj is the jth eigenvector of Ã, then Uk+1wj is the jth DMD mode.
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The main advantages of Algorithm 3 (as well as Algorithm 2) over Algorithm 1
are that it does not require full rank data matrix, and unlike Algorithm 1, Algorithm 3
(and Algorithm 2) does not require the number of snapshots to be greater than the state
dimension.

In the next section, we present the framework with which Algorithm 3 (and Algorithm 2)
can be modified to a weighted alternative.

3. Weighted Modifications to Online DMD

The algorithms described above are suitable for time-varying systems. They allow
the DMD matrix Ak to be updated in real time. In such cases, we may want to give more
weight to recent snapshots and less weight to older snapshots. This can be achieved by
using a modified cost function. As is known in the standard DMD method, for the given
data matrices Xk and Yk in Equation (3), the DMD operator Ak is found by minimizing the
following cost function:

Pk =
k

∑
i=1
‖yi − Akxi‖2 = ‖Yk − AkXk‖2

F, (35)

where ‖.‖ denotes the Euclidean norm on the vectors and ‖.‖F denotes the Frobenius norm
on the matrices.

In cases where the system changes over time to give more weight to newer snapshots
than older snapshots, we can use the modified cost function

P̂k =
k

∑
i=1

ρk−i‖yi − Akxi‖2, (36)

for some constant ρ where 0 < ρ ≤ 1. In fact, for ρ = 1, the two formulas match, and for
ρ < 1, errors in past snapshots are discounted.

We will show below that Algorithm 3 can easily be modified to use this weighting
scheme (i.e., to minimize a cost function of the form in Equation (36) instead of the original
cost function in Equation (35)). For convenience, let us denote ρ = σ2, where 0 < σ ≤ 1,
and write the cost function (2) as

P̂k =
k

∑
i=1
‖σk−iyi − Akσk−ixi‖2. (37)

Let us define the matrices based on scaled versions of the snapshots as

X̂k = [σk−1x1, σk−2x2, . . . , xk] and Ŷk = [σk−1y1, σk−2y2, . . . , yk]. (38)

Then, the cost function in Equation (37) can be written as

P̂k = ‖Ŷk − AkX̂k‖2
F. (39)

The DMD operator Ak, which is a unique solution that minimizes this cost function, is
given by

Ak = YkX†
k = YkVkΣ−1

k U∗k ,

where the truncated SVD X̂k = UkΣkV∗k is used. Then, the reduced-order DMD operator
will have the form

Ǎk = U∗k YkVkΣ−1
k .

On the next ((k + 1)th) step, we want to compute Ak+1. Let us denote

X̂k+1 = [σkx1, σk−1x2, . . . , σxk, xk+1] = [σX̂k xk+1]
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and
Ŷk+1 = [σky1, σk−1y2, . . . , σyk, yk+1] = [σŶk yk+1].

By analogy with Section 2, we can repeat the expressions from Equation (8) to
Equation (12) to obtain

Ak+1 =
(

ρAkUkΣ2
kU∗k + yk+1x∗k+1

)
Uk+1Σ−2

k+1U∗k+1 (40)

for the updated DMD matrix, where Uk+1 and Σk+1 are the singular vectors and value
matrices of X̂k+1, respectively.

In a similar way to that in Equations (14) and (15), we can extract the singular vectors
and singular values of X̂k+1 through the eigendecomposition of

Ĉk+1 = X̂∗k+1X̂k+1 = σ2X̂kX̂∗k + xk+1x∗k+1 = ρUkΣ2
kU∗k + xk+1x∗k+1. (41)

Matrix Ĉk+1 differs from Ck+1 in Equation (15) only by a factor of ρ. Again, we will
have two scenarios, depending on whether xk+1 ∈ range(Uk). At each step, we have to
factorize one of the following two matrices:

B̂k = ρΣ2
k + U∗k xk+1x∗k+1Uk (42)

or

B̌k =

[
ρΣ2

k 0

0T 0

]
+ Ū∗k xk+1x∗k+1Ūk, (43)

where Ūk = [Uk | ur+1], ur+1 =
zk+1
‖zk+1‖

, and zk+1 = (I −UkU∗k )xk+1. The matrices B̂k and

B̌k differ only by a factor of ρ from the corresponding matrices Bk and B̄k in Equations (18)
and (28), respectively. Then, the singular vectors and values of X̂k+1 are given by

Uk+1 = UkŨk, Σk+1 =
(
Σ̃k
)1/2 or Uk+1 = ŪkŨk, Σk+1 =

(
Σ̃k
)1/2, (44)

where Ũk and Σ̃k are from the eigendecomposition of B̂k or B̆k.
The reduced order DMD matrix is then given by

Ǎk+1 = Ũ∗k
(

ρǍkΣ2
k + U∗k yk+1x∗k+1Uk

)
ŨkΣ−2

k+1 (45)

or

Ǎk+1 = Ũ∗k

(
ρ

[
ǍkΣ2

k 0

u∗r+1 ÂkUkΣ2
k 0

]
+ Ū∗k yk+1x∗k+1Ūk

)
ŨkΣ−2

k+1 (46)

for the two considered scenarios. Observe that the updates in Equations (45) and (46) for
the reduced order approximation Ǎk+1 are similar to the updates in Equations (31) and (32).
The only difference is the factor of ρ.

Therefore, the algorithm for weighted alternative online DMD follows the same steps
as in Algorithm 3. The only difference is the calculation of matrices B̂k (or B̆k) and Ǎk+1,
where Equations (42), (43) and (45), (46) are used, respectively. We have to note that the
choice of the weighting factor ρ matters. Therefore, for example, choosing ρ−1/m will
ensure that snapshots have a half-life of m samples [30]. In practice, the choice of ρ depends
on the rate of change of the dynamics. Choosing a smaller ρ value will result in faster
tracking while making the model more sensitive to noise in the data.

4. Numerical Illustrations

The new algorithm (Algorithm 3), introduced in Section 2, offers the advantage of
being more cost-effective than the alternative algorithm (Algorithm 2). Considering that
Algorithms 2 and 3 produce identical results, in this part, we will mainly present the results
of the application of Algorithm 3 and its comparison with standard methods.
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Example 1. An illustrative example of a toy.

We consider a simple example of incrementally updated DMD in a toy problem. In this
example, we have an arbitrary n-dimensional dynamical system with two characteristic
frequencies. A total of m snapshot pairs are measured sequentially and are subject to
additive zero-mean Gaussian noise with covariance:

xj = v1 cos(2π f14tj) + v2 cos(2π f24tj)+

v3 sin(2π f14tj) + v4 sin(2π f24tj) +N (c),
(47)

where vi ∈ Rn are random state directions, f1, f2 ∈ R are the characteristic frequencies,4t
is the time sampling, and N (c) ∈ Rn is the independent identically distributed zero-mean
Gaussian noise with covariance c ∈ R.

For the simulation, we set the parameters as follows: n = 200, m = 100, f1 = 5.2,
f2 = 1,4t = 0.01, and c = 0.01. By using the built-in function randn in Matlab, we defined
the vectors vi and N (c) via the following syntax:

vi = randn(n, 1) and N (c) = c ∗ randn(n, 1). (48)

The 3D visualization of the dynamics is illustrated in Figure 1. The singular values of
data matrix X, illustrated in Figure 1, show that the data can be adequately represented by
the rank-four (r = 4) approximation.
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Figure 1. Spatiotemporal dynamics of signal defined by Equation (47) (left panel) and first 10 singular
values of the generated data (right panel).

The standard online DMD method (Algorithm 1) is not applicable in this case because
m > n. Therefore, here we will compare the standard DMD method and improved online
DMD method (Algorithm 3). We initialized the improved online DMD algorithm with the
first three snapshots (k = 2) (i.e., the initial matrices Xk and Yk have the form Xk = [x1, x2]
and Yk = [x2, x3], respectively).

We performed both methods with rank reduction of r = 4. The two algorithms,
standard DMD and Algorithm 3, were applied to different numbers of snapshots in the
interval from 50 to 100. All runs of both algorithms yielded the same DMD eigenvalues
shown in Figure 2.

To make quantitative comparisons among alternative online DMD and standard DMD,
we computed the l2 norm of the difference between the spatial modes extracted by the two
algorithms. We computed the residual errors as follows:

erri = ‖φDMD(i)− φaltDMD(i)‖

for i = 1, 2, 3, 4, where φDMD and φaltDMD denote the DMD modes computed by both
algorithms. The error values for two cases at 50 and 100 snapshots are shown in Table 1.
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Figure 2. The two characteristic frequencies computed by Algorithms 1 and 3 (left panel). The DMD
eigenvalues computed by online DMD (‘o’) and improved online DMD (‘+’) (right panel).

Table 1. Residual errors erri = ‖φDMD(i)− φaltDMD(i)‖.

Snapshots err1 err2 err3 err4

m = 50 0.0052 0.0052 0.0042 0.0042
m = 100 0.0024 0.0024 0.0010 0.0010

Example 2. Flow around a cylinder wake (Re = 100).

In this example, we consider a dataset representing a time series of fluid vorticity
fields for the wake behind a circular cylinder at Reynolds number Re = 100. The data
for this example are publicly available at www.siam.org/books/ot149/flowdata (see [15]).
The collected data consisted of m = 150 snapshots at regular intervals in time 104t, where
4t = 0.02, sampling five periods of vortex shedding.

Each vorticity field snapshot from the finest computational domain was reshaped into
a large vector xk, and these vectors comprised columns of matrices X and Y, as described
in Equation (34). A snapshot example of the cylinder wake data is shown in Figure 3.
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Figure 3. An example of a vorticity field (left panel) and first 20 singular values of data matrix X
(right panel).

Here, we compare the standard DMD method and the improved online DMD method,
since online DMD (Algorithm 1) is not applicable. In order to capture the low-dimensional
dynamic, we performed rank-seven truncation. We used Algorithm 3 to obtain the DMD
reconstruction of the data. The two algorithms reproduced the same DMD eigenvalues and
modes. We compared the results with the standard DMD algorithm for the same rank-seven
truncation. The DMD eigenvalues computed by the improved alternative online DMD and
standard DMD algorithms are shown in Figure 4.

The first 6 DMD modes computed by the improved online DMD and standard DMD
algorithms are shown in Figure 5 and Figure 6, respectively.
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Figure 4. DMD eigenvalues computed by standard DMD (‘o’) and improved online DMD (‘+’).
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Figure 5. First 6 DMD modes computed by the improved online DMD algorithm (Algorithm 3).

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2
−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2
−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2
−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2
−1 0 1 2 3 4 5 6 7 8

2

1

0

−1

−2

Figure 6. First 6 DMD modes computed by the standard DMD algorithm.

In Figure 7, some examples of data reconstruction by the standard DMD and improved
online DMD methods are shown.
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Figure 7. Reconstructed data (three example snapshots) computed by improved online DMD in the
top row and by standard DMD in the bottom row.

There was no distinction between the DMD modes and eigenvalues generated by the
standard DMD algorithm (Algorithm 1) and Algorithm 3.

Example 3. Flow around a cylinder wake with added noise.

It is well known that the DMD method’s performance depends on the cleanliness
of the data collected. The noise in the collected data can affect the discovered model’s
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accuracy. In this example, we consider the same fluid vorticity fields for the wake behind a
circular cylinder at Reynolds number Re = 100, as in Example 2. Measurement noise was
generated by adding Gaussian white noise to the data matrix.

As in Example 2, the data-set consisted of m = 150 snapshots xk, where each snapshot
had n = 89, 351 coordinates (i.e., the data matrix X ∈ R89,351×150).

The updated snapshots were generated by

x̃k = xk + µk(ε),

where µk(ε) is a zero-mean Gaussian white noise process with unit standard deviation. In
this example, we kept the noise variance fixed at ε = 0.2.

Here, we compare the standard DMD method and the improved online DMD method.
As in Example 2, we performed rank-seven truncation. We used Algorithm 3 to obtain
the DMD reconstruction of the data. The two algorithms reproduced the same DMD
eigenvalues and modes. Figure 8 shows some examples of data reconstruction by the
standard DMD and improved online DMD methods for the noisy flow data.
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Figure 8. Reconstructed data (three example snapshots) computed by improved online DMD in the
top row and by standard DMD in the bottom row for the noisy flow data.

The first four DMD modes computed by the improved online DMD and standard
DMD algorithms are shown in Figure 9 and Figure 10, respectively.
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Figure 9. Four consecutive DMD modes computed by the improved online DMD algorithm
(Algorithm 3) for the noisy flow data.
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Figure 10. Four consecutive DMD modes computed by the standard DMD algorithm for the noisy
flow data.

Note again that there was no distinction between the modes generated by the standard
DMD algorithm and Algorithm 3. The visualizations of the DMD eigenvalues calculated
by the improved alternative online DMD method and the standard DMD method were
omitted as they matched those shown in Figure 4.

Example 4. Linear time-varying system.

We now illustrate the improved alternative online DMD algorithm in a simple linear
system that slowly varies over time:

ẋ(t) = A(t)x(t), (49)

where x(t) ∈ R2, and the time-varying matrix A(t) is given by

A(t) =
(

0 ω(t)
−ω(t) 0

)
,

where ω(t) = 1+ 0.1t (see [30]). The eigenvalues of A(t) are±iw(t), and ‖x(t)‖ is constant
in t. We simulated the system for 0 < t < 10 from the initial condition x(0) = (1, 0)T , and
the snapshots were taken with a time step of4t = 0.1, as shown in Figure 11.
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Figure 11. Linear time-varying system defined by Equation (49).

With the snapshots as input, we applied standard DMD, online DMD (Algorithm 1),
and improved alternative online DMD (Algorithm 3) and compared the results. The three
methods used the first k = 10 snapshot pairs to initialize and start iterating from time
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k + 1. The discrete-time eigenvalues µDMD computed by the algorithms were converted to
continuous-time DMD eigenvalues λDMD by the formula

µDMD = eλDMD4t,

where4t = 0.1 is the time spacing between snapshot pairs. Observe from Figure 12 that
the eigenvalues computed by the alternative online DMD algorithm agreed with those
identified by the standard DMD and online DMD algorithms. The true eigenvalues are
also shown for comparison. The DMD modes calculated by the three algorithms were also
identical, as can be seen from Figure 12.

The alternative weighted online DMD algorithm was applied under the same condi-
tions. A comparison was made between the results of the weighted variant of Algorithm 3
and the weighted online DMD algorithm introduced in [30].
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Figure 12. DMD eigenvalues (left panel) and DMD modes (right two panels) computed by standard
DMD, online DMD and improved online DMD.

As before, the results show identical DMD modes and DMD eigenvalues for both
algorithms. Figure 13 shows the eigenvalues and modes computed by the weighted online
DMD and alternative weighted online DMD methods with a factor ρ = 0.9.
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Figure 13. DMD eigenvalues (left panel) and modes (right two panels) computed by weighted
online DMD and alternative weighted online DMD with ρ = 0.9.

5. Discussion

The introduced variants of online dynamic mode decomposition approximate the
Koopman operator as well as its eigenvalues and modes by processing continuous data
streams. Online DMD has applications in various fields, including control systems, sensor
networks, weather forecasting, and monitoring dynamic systems in real time. By providing
up-to-date decomposition of the data, it allows for the identification of evolving patterns,
prediction of future behavior, and monitoring system health in real time.

Online DMD offers several advantages over the standard DMD method when analyz-
ing streaming or real-time data:

• Computational efficiency and reduced memory requirements: By processing data incremen-
tally, online DMD avoids redundant computations of previously analyzed data, which
results in improved efficiency. It only requires storage for the most recent data rather
than the entire dataset, which reduces the memory requirements.

• Continuous monitoring and prediction: Online DMD allows for continuous monitoring
of evolving systems and the ability to make predictions based on the estimated modes.
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This is valuable for applications where forecasting or early detection of anomalies is
essential, such as in weather forecasting or fault detection.

• Flexibility in data input: Online DMD can handle data streams with missing or irregu-
larly spaced samples, accommodating the challenges often encountered in real-time
data acquisition and processing.

• Adaptability to changing dynamics: Streaming data often exhibit time-varying or non-
stationary behavior. Online DMD and the weighted online DMD modifications con-
tinuously update the decomposition using the most recent data, allowing them to
capture and adapt to changes in the underlying dynamics.

In this paper, we introduced extended modifications of the standard online DMD
method introduced by Zhang et al. in [30]. The main advantages of the proposed modifi-
cations over the standard online DMD scheme are that they are applicable regardless of
whether the data system is full-rank or not. In addition, the requirement that the number
of snapshots be larger than the state dimension is dropped.

The ability of the introduced techniques to handle streaming data and provide real-
time insights make them valuable in various scientific domains where continuous monitor-
ing, prediction, and analysis of dynamic systems are essential. Such areas of application
include structural health monitoring, biomedical research, weather forecasting, and robotics
and control systems. Additionally, these techniques can be useful in scenarios where there
are large snapshots and real-time analysis is required. Such areas of application include
image and video processing, computational biology and genomics, financial markets, and
social media and web analytics. Some related papers include [34–37].

We believe that there is a scope for further research and applications of the presented
methods for online DMD. Potential directions for further research and development in-
clude adaptive and data-driven parameter selection, online DMD for multi-modal and
heterogeneous data, and integration of online DMD with machine learning techniques.
Some related papers include [38–41].

6. Conclusions

This study presents efficient alternative algorithms for computing online DMD and
weighted online DMD. In contrast to conventional DMD algorithms, the algorithms un-
der consideration use much less memory. They are helpful for engineering applications
requiring a large amount of data, as they can be run with a small amount of memory and
without storing the flow field data on a storage device. Both of the proposed algorithms
work for either over-constrained or under-constrained problems (i.e., regardless of the
ratio between the snapshots and state dimensions). The proposed techniques are also
applicable to low-rank systems, unlike standard online DMD or weighted online DMD
methods. The algorithms were also demonstrated on a variety of examples, such as a linear
time-varying system and wake flow data. The obtained results indicate that the proposed
approach produces identical results to those obtained by the online DMD method as well
as the alternative online DMD method. As a result, we can conclude that the algorithms
introduced can capture dynamics that are time-varying effectively.
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