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Abstract: Critical linear buckling load calculation is one of the possible ways to check structural
stability. Structural analysis programs usually model beams and columns with just one element, but
this is not enough to obtain an accurate value of the critical buckling load when the buckling mode
is associated with an effective length that is less than twice the element length. This paper presents
a method for the accurate calculation of the buckling load of frames modeled with only one finite
element per structural element. For this purpose, a local correction is applied to some elements a few
times until convergence is achieved. The validity of the presented method is confirmed by several
examples ranging from simple canonical cases to large structures.
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1. Introduction

Buckling linear analysis is one of the possible methods used to study structural
stability. The most used structural software packages such as ETABS, Robot or Staad, to
name a few, provide it as an option. Structural codes such as Eurocode [1] or the Spanish
Structural Code [2] admit its use when the critical load is far enough from the actual
load. The American code AISC [3] accepts the effective length method, which is a way of
approximating the buckling linear analysis, and, as such, can be replaced advantageously
by exact calculation [4].

Linear structural analysis can be carried out using one element per member (beam
or column), but several elements are needed to carry out linear buckling analysis with
good accuracy [5,6]. This increases the calculation time as well as the memory require-
ments, which is more noticeable for large building models, but is also an issue for smaller
structures because of the high number of load cases and design and analysis iterations.
In addition, it makes programming more complex because of the diversity of the models
employed, one for the static analysis and another for buckling. Because of this, several
methods and element types have been proposed to reduce the buckling model size without
losing accuracy [7,8].

Xie and Steven [9] adapted a method developed by Mackie [10] to reduce the dis-
persion error in beams in order to reduce the error in natural frequency calculations of
beam/column elements, and later extended this approach to structural linear buckling [11].
The method works well for beams and can also reduce the error for structural frames made
of many elements by using a weighted correction of individual element results.

Huttelmaier [12] and Huang and Wang [13] applied substructuring techniques [14–16]
to reduce the computational load of linear buckling analysis. Following this approach,
each beam/column in the model is modeled with several elements, a modal analysis is
performed and the model is condensed, retaining the lowest eigenvalues and eigenmodes.

It is also possible to apply condensation techniques [17,18] to model nonlinear buckling
analysis, either with a tangent or secant stiffness matrix. Condensation techniques can
be applied to reduce the problem size in static analysis by substituting inner structural
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member variables in terms of end variables [19]. They can also be used in the P-∆ method
iteratively. However, this technique cannot be applied to linear buckling analysis because
it requires solving an eigenvalue problem rather than a system of linear equations.

Another popular approach for modeling structural members apt for geometrically
nonlinear buckling analysis with just one element is to use richer approximations of the
displacement field and, consequently, more variables. This approach is accurate if enough
additional variables are introduced, but each new variable increases the complexity of
the model as well as the computational cost. So and Chan [5] added a displacement
degree of freedom to the mid-length of the element for this purpose. Chan and Zhou [20]
used fifth-order polynomials to capture the P-δ effect, which cannot be captured by cubic
elements. In their subsequent work, they enhanced their element with other features
needed for geometrically nonlinear analysis such as initial imperfections [21], flexible
joints [22] and loads along members [23,24]. Additional improvements made the element
apt for plastic analysis and shear deformation modeling [25]. Other authors [26–28] also
proposed higher-order elements that show good buckling performance.

Some researchers define elements that can model plasticity by adding hinges on both
ends of the element [29], or inside the element at one point [30] or at three points [31].
The uncertainty associated with material and geometric properties can also be taken into
account if stochastic approaches are applied [32,33]. Extensive work was also performed
following approaches that fall outside the range of linear buckling analysis using force
elements or mixed elements [8].

The same idea of using more variables and a richer displacement field was applied to
model buckling phenomena in thin-walled beams [34]. In this case, deformation shapes
must take account of the more complex patterns of buckling in thin-walled geometries
where sections do not show homogeneous deformation modes.

In this paper, a novel approach is introduced which allows us to model a structure
using one finite element per member as in the static analysis. This analysis yields important
errors if the buckling mode is highly localized, i.e., it affects mainly one structural member,
and can even be noticed if it is only moderately localized in several elements. To reduce
this error, a locally refined analysis is carried out in those elements, and the buckling shape
is modified locally, which results in a more accurate value of the buckling load. If necessary,
successive rounds of local corrections can be carried out, which leads to a very low error.

The key novel aspects of the proposed method are the following: (1) The same struc-
tural model used for the static analysis can be used for the buckling analysis. (2) The
correction procedure is highly parallelizable and therefore apt for modern GPU architec-
tures. (3) The approach is general enough to be extended to various types of beam elements.

This paper is structured as follows. First, linear buckling analysis is performed for
some canonical cases of one beam/column structural elements (also referred to as “bars” in
the following sections) in order to observe the error, and the local refinement technique is
applied to reduce it. Second, the procedure is generalized for cases with more than one
structural member. Next, some validation examples taken from Xie [9] are studied to prove
the validity of the method. After that, building structures of various types and sizes are
calculated to prove the validity of the technique for highly demanding cases, as those often
arise in reality. Finally, the results, discussion and conclusions are presented.

2. Linear Buckling Analysis of Canonical Cases Using a Single Element

Next, we study the calculation of linear buckling loads in columns in the canonical
cases that can be found in various structural engineering references such as Galambos and
Surovek [35]. These cases can be seen in Figure 1, classified by their support conditions
at both ends, including clamped–clamped (CC), clamped–pinned (CP), clamped–mobile-
clamped (CM), pinned–pinned (PP) and clamped–free (CF). The effective buckling length
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ratio Lk/L is also shown, which makes it possible to calculate the exact value of the critical
load Ncr as follows:

Ncr =
π2EI

L2
k

(1)

where E is the elastic Young modulus of the material and I is the inertia moment of the
beam section.
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Figure 1. The five canonical column buckling cases.

Now, we calculate these eigenvalues using between one and four cubic elements to
model the structural element. This involves solving the eigenvalue problem.(

K− λKg
)
φ = 0 (2)

where K is the structure stiffness matrix, Kg is its geometric stiffness matrix, λ is the
critical load factor (the lowest eigenvalue) and φ is the associated buckling shape (the
corresponding eigenvector).

In Table 1, we can see that the calculation of buckling loads with a single element
presents significant relative errors in all cases except for the case of the column that is
clamped at one end and free at the other. We can then interpret that discretizing the
eigenvalue problem with a single element only gives an engineeringly acceptable error if
the buckling mode is not moderately localized in the structural element, i.e., if the buckling
length is greater than or equal to twice the length of the element.

Table 1. Relative error of the buckling load calculation in percentage as a function of the number of
elements in the discretization for each of the five canonical cases.

Nel CC CP PP CM CF

1 - 48.94% 21.59% 1.32% 0.75%
2 1.32% 2.81% 0.75% 0.75% 0.05%
3 2.19% 0.86% 0.16% 0.16% 0.01%
4 0.75% 0.45% 0.05% 0.05% 0.00%
5 0.32% 0.33% 0.02% 0.02% 0.00%
6 0.16% 0.28% 0.01% 0.01% 0.00%

The structural codes prescribe various safety factors to account for the uncertainty in
the mechanical properties and loads which range from 5% to 50%. Therefore, a numerical
error of 1% is considered as engineeringly acceptable. In addition, accepted methods for
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the buckling load calculation such as the effective length method rely on ideal structural
models which can differ significantly from the real behavior.

In structural design programs for building and civil engineering structures such as
Staad, Sap2000, etc., it is recommended to use two or three beam elements per structural
element in those cases where the buckling mode is very localized on a structural element,
and then repeat the eigenvalue calculation. In this article, we use an alternative calculation
method in which we apply a correction on those elements where the mode is moderately
localized. In this way, it is possible to achieve an accurate value of the critical load factor
without repeating the calculation for the entire structure.

3. Corrected Calculation of Critical Buckling Load in Canonical Cases Using
a Single Element

Considering the results of the previous section, we see that in the case of moderately
localized buckling modes Lk < 2L on a structural member, it is not enough with an element
to calculate an accurate value of critical buckling load, but it is necessary to use up to four
elements for that purpose. In this work, we propose an approximate approach that also
provides accurate results. To improve the local approximation inside the structural element,
we use a discretization of the bar with four elements and five nodes (1–5) as seen in Figure 2.
Table 1 shows that at least four elements are needed to calculate the buckling loads with
less than 1% error, so our approximate correction will need at least that many elements. In
addition, the approximate nodal displacements ur (r: 1–5) will be expressed as the sum of
two terms.
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Figure 2. Bar element “global” displacement ug (from 1–5 to 1′–5′).

The first term, ug, as shown in Figure 2, which we designate as the global displace-
ments, consists of the displacements from a static analysis in which the values of the
internal nodal displacements ug

i (i: 3–5) are obtained as a function of the external ones ug
e (e:

1–2). The internal global displacements are calculated using the well-known condensation
procedure [18].

Here, we make an approximation and express the external nodal displacements as
the product of the modal values calculated with one element, φ, multiplied by a modal
amplitude variable, η.

ug
e = φeη (3)

ug
i = (Kii)

−1Kieuge
e = (Kii)

−1Kieφeη = φiη (4)
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where we define φi as
φi = (Kii)

−1Kieφe (5)

The second term (see Figure 3), which we designate as local displacements ∆ul , re-
sults from an incremental displacement of the internal nodes, keeping the external nodal
displacements (which for a beam include rotations) at zero.

∆ul =

{
0

∆uri

}
(6)
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Figure 3. Bar incremental local displacements ∆ul (from 1–5 to 1′–5′).

In Figure 4, we can see the total nodal displacements of the refined bar, ur, obtained as
the sum of the two terms mentioned above. We name P the projection matrix that relates the
refined nodal displacements to a reduced set of variables made up of the global amplitude
η and the internal nodal incremental displacements ∆uri.

ur =

[
φe 0

(Kii)
−1Kieφe I

]{
η

∆uri

}
=

[
φe 0
φi I

]{
η

∆uri

}
= P

{
η

∆uri

}
(7)

where I is the identity matrix.

Computation 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

𝑢𝑒
𝑔

= 𝜙𝑒𝜂 (3) 

𝑢𝑖
𝑔

= (𝐾𝑖𝑖)−1𝐾𝑖𝑒𝑢𝑒
𝑔𝑒

= (𝐾𝑖𝑖)
−1𝐾𝑖𝑒𝜙𝑒𝜂 = 𝜙𝑖𝜂 (4) 

where we define 𝜙𝑖 as 

𝜙𝑖 = (𝐾𝑖𝑖)−1𝐾𝑖𝑒𝜙𝑒 (5) 

The second term (see Figure 3), which we designate as local displacements Δ𝑢𝑙 , re-

sults from an incremental displacement of the internal nodes, keeping the external nodal 

displacements (which for a beam include rotations) at zero. 

Δ𝑢𝑙 = {
0

Δ𝑢𝑟𝑖
} (6) 

 

Figure 3. Bar incremental local displacements Δ𝑢𝑙 (from 1–5 to 1′–5′). 

In Figure 4, we can see the total nodal displacements of the refined bar, 𝑢𝑟, obtained 

as the sum of the two terms mentioned above. We name 𝑃 the projection matrix that re-

lates the refined nodal displacements to a reduced set of variables made up of the global 

amplitude 𝜂 and the internal nodal incremental displacements Δ𝑢𝑟𝑖. 

𝑢𝑟 = [
𝜙𝑒 0

(𝐾𝑖𝑖)−1𝐾𝑖𝑒𝜙𝑒 𝐼
] {

𝜂
Δ𝑢𝑟𝑖

} = [
𝜙𝑒 0
𝜙𝑖 𝐼

] {
𝜂

Δ𝑢𝑟𝑖
} = 𝑃 {

𝜂
Δ𝑢𝑟𝑖

} (7) 

where 𝐼 is the identity matrix. 

 

Figure 4. Refined bar total displacements 𝑢𝑟 (global from 1–5 to 1′–5′ and local to 1″–5″). 

1=1’ 

2=2’ 

3’ 4’ 

5’ 3 

4 

5 

 

1’=1” 

2’=2” 

3’ 

4’ 

5’ 

3” 

5” 

1 

2 

3 

4 
5 

4” 

Figure 4. Refined bar total displacements ur (global from 1–5 to 1′–5′ and local to 1′ ′–5′ ′).

We now solve the stability eigenvalue problem for this reduced set of variables and
obtain a corrected critical load factor λc as follows:

PTKrPφc = λcPTKgrPφc (8)

Algorithm 1 shows the procedure used to calculate the corrected buckling load factor.
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Algorithm 1. Calculation of the corrected critical load factor of a bar.

Calculate Kr as a four-element refinement of the bar stiffness matrix;
Calculate Kgr as a four-element refinement of the bar geometric stiffness matrix;
Calculate the projection matrix P in Equation (7);
Solve the projected eigenvalue problem in Equation (8) for λc.

Table 2 displays the errors encountered in the critical load calculations after applying
the correction process. The obtained results are deemed sufficiently accurate from an
engineering perspective, notwithstanding the approximations employed.

Table 2. Relative error in critical load factor calculation with one element per member after applying
the proposed correction.

Nel CC CP PP CM CF

1 0.75% 0.45% 0.05% 0.05% 0.00%

The subsequent section outlines the extension of this correction process to structures
with multiple bars.

4. Correction of Buckling Load Factor for Multiple-Bar-Element Frames

In order to generalize the procedure of the previous section to the case where the
structure has more than one bar element, we introduce the following three basic ideas that
will later be developed in detail:

1. The local correction of the buckling shape that we applied in the previous section to a
single bar can be applied sequentially to all the bars in the frame, thereby obtaining
local improvements of the buckling shape inside each bar.

2. The reduced modeling of the refined bar of the previous section can account for
the stiffness and geometric stiffness of the whole frame by expressing all the nodal
displacements outside the bar being corrected as the product of the frame buckling
shape φ times an amplitude variable η.

3. The overall corrected frame buckling factor can be obtained by dividing the frame
stiffness quadratic form by the geometric stiffness quadratic form calculated for the
corrected buckling shape.

Figure 5 shows the buckling shape of a flat-roof portal frame subjected to two vertical
loads calculated with a single element per member. After applying local corrections to the
buckling shape inside each of the bars (that do not change the end nodal displacements of
the bar), we obtain a locally corrected buckling shape.

In order to calculate the local correction of the buckling shape for a certain bar, AB,
we keep one-element discretizations of all the bars except the one being corrected, whose
mesh we refine up to four elements (see Figure 6). It is important to note that the whole
frame participates in the local correction of bar AB.

To calculate this local buckling shape correction, we need to solve an eigenvalue
problem that we will develop next.

The quadratic form that is associated with the frame stiffness of the whole frame
calculated with one element can be expressed as follows:

V = uTKu (9)

where u is the frame nodal displacement vector and K is the frame stiffness matrix.
It does not change if we subtract and add the contribution of the bar being studied

as follows:
V = uTKu− uT

b Kbub + uT
b Kbub (10)

where Kb and ub are the stiffness matrix and the nodal displacement vector of the bar
calculated with one element.
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Figure 6. Frame discretization used to correct AB bar buckling shape.

Now, we can substitute the refined bar contribution for the one-element contribution
as follows:

V = uTKu− uT
b Kbub + uT

r Krur (11)

where Kr and ur are the refined bar stiffness matrix and nodal displacement vector (using
four elements and five nodes). For the sake of convenience, we express Kr and ur in the
local coordinate system of the bar.

Now, we can express the nodal displacements in terms of a modal amplitude η and
the incremental internal nodal displacements of the bar being studied ∆uri, similarly to the
actions we performed for a single bar.

u = φη (12)

ub = φbη (13)

ur =

{
φeη

φiη + ∆uri

}
(14)

A similar procedure can be applied to develop a quadratic form for the geometric
stiffness as follows:

Vg = uTKgu− uT
b Kgbub + uT

r Kgrur (15)



Computation 2023, 11, 109 8 of 17

Now, we can lay out the eigenvalue problem that we will solve to find the local
buckling shape correction as follows:

Kcφcb = λcbKgcφcb (16)

where

Kc =

[
φTKφ− φT

b Kbφb + φT
r Krφr φT

e Kei + φT
i Kii

Kieφe + Kiiφi Kii

]
(17)

Kgc =

[
φTKgφ− φT

b Kgbφb + φT
r Kgrφr φT

e Kgei + φT
i Kgii

Kgieφe + Kgiiφi Kgii

]
(18)

φr =

{
φe
φi

}
(19)

φcb =

{
φce
φci

}
(20)

If we divide the corrected mode by φce, we obtain

φ∗cb =

{
1

φci
φce

}
(21)

So, we end up with a mode φ∗cb, which is the sum of φ and a local correction term ∆φcb,
which only applies to the internal nodes of the bar being studied

∆φcb =
φci
φce

(22)

Now, we can calculate the corrected stiffness quadratic form for the bar, and the same
for the geometric stiffness. We will use these quantities later to calculate the corrected load
critical factor for the whole frame.

Vcb = φT
r Krφr + 2∆φT

cbKieφe + ∆φT
cbKii(2φi + ∆φcb) (23)

Vgcb = φT
r Kgrφr + 2∆φT

cbKgieφe + ∆φT
cbKgii(2φi + ∆φcb) (24)

In Algorithm 2, we show the steps to calculate the corrected quadratic forms of a bar
in Equations (23) and (24).

Algorithm 2. Calculation of the corrected quadratic forms of a bar.

Receive as inputs one-element frame magnitudes φTKφ, φTKgφ;
Receive as inputs one-element bar magnitudes φT

b Kbφb, φT
b Kgbφb, φb;

Calculate Kr as a four-element refinement of the bar stiffness matrix in bar reference frame;
Perform the same step for Kgr;
Transform φb to bar reference frame as follows: φe = RT

b φb (Rb: bar rotation matrix);
Calculate φi, φr in Equations (5) and (19);
Partition Kr matrix according to external nodes (e) and internal ones (i) as follows: Kee, Kei, Kie, Kii;
Perform the same step with Kgr, Kgee, Kgei, Kgie, Kgii;
Calculate Kc, Kgc in Equations (17) and (18);
Solve projected eigenvalue problem in Equation (16) for φcb;
Calculate corrected quadratic forms Vcb, Vgcb by applying Equations (22)–(24).

After calculating the corrected quadratic forms for all the bars in the frame, the
corrected load critical factor of the whole frame can be calculated as follows:

λc =
∑b Vcb

∑b Vgcb
=

Vc

Vgc
(25)
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where we define Vc and Vgc as
Vc = ∑

b
Vcb (26)

Vgc = ∑
b

Vgcb (27)

This corrected eigenvalue is better than the one calculated with one element per
member, as we will see in the validation examples, but it can be improved in succes-
sive iterations in which we will replace the values of the modal stiffnesses of the bars
(Vb = φT

b Kbφb and Vgb = φT
b Kgbφb) with the corrected values (Vcb and Vgcb). We can inter-

pret that after calculating the corrected modal stiffnesses for each bar that depend on the
neighboring modal stiffnesses of all the other bars in the frame, a better value will be
obtained when we update the neighboring bar values with the modal correction. Therefore,
we rewrite Kc and Kgc as follows:

Kc =

[
Vc −Vcb + φT

r Krφr φT
e Kei + φT

i Kii
Kieφe + Kiiφi Kii

]
(28)

Kgc =

[
Vgc −Vgcb + φT

r Kgrφr φT
e Kgei + φT

i Kgii
Kgieφe + Kgiiφi Kgii

]
(29)

Taking these ideas into account, we can redefine Algorithm 2 as follows (Algorithm 3):

Algorithm 3. Calculation of improved corrected quadratic forms of a bar.

Receive as inputs frame magnitudes Vc, Vcg;
Receive as inputs bar magnitudes Vcb, Vcgb, φb;
Calculate Kr as a four-element refinement of the bar stiffness matrix in bar reference frame;
Perform the same step for Kgr;
Transform φb to bar reference frame as follows: φe = RT

b φb (Rb: bar rotation matrix);
Calculate φi, φr in Equations (5) and (19);
Partition Kr matrix according to external nodes (e) and internal ones (i) as follows: Kee, Kei, Kie, Kii
Perform the same step with Kgr, Kgee, Kgei, Kgie, Kgii;
Calculate Kc, Kgc in Equations (28) and (29);
Solve projected eigenvalue problem in Equation (16) for φcb;
Update corrected quadratic forms Vcb, Vgcb by applying Equations (22)–(24).

Now, we can write the iterative algorithm to calculate the corrected load critical factor
of the whole frame as follows in Algorithm 4:

Algorithm 4. Iterative calculation of corrected load critical factor of whole frame.

Receive as inputs one-element frame magnitudes K, Kg, φ, λ;
For all bars, receive as inputs one-element bar magnitudes Kb, Kgb, φb;
Initialize Vc = φTKφ, Vgc = φTKgφ, λc = λ;
Perform
For b = 1:nbars;
If b is not in compression, go to End;
If first iteration, set Vcb = φT

b Kbφb, Vgcb = φT
b Kgbφb;

Update Vcb, Vgcb with Algorithm 3;
End;
Update Vc, Vgc with Equations (26) and (27);
Calculate λc = Vc/Vgc;
While relative change in λc does not fall below 0.01.

The algorithm can be optimized by correcting only those members for which the
following is true.

λcNcomp
b > NCF

b (30)
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where Ncomp
b is the bar compression load and NCF

b is the bar buckling load when isolated
from the frame and supported as a cantilever (case CF above).

NCF
b =

π2EIb

4L2
b

(31)

The reason is that in these bars, the mode is less localized than in a cantilever (CF),
and therefore, the modeling error in them is small.

We can also take advantage of the fact that the axial stiffness of the structural members
is much higher than the other stiffnesses. Therefore, when calculating the corrected mode
in each element, we can keep only the transverse displacements and their corresponding
stiffnesses. In this way, the cost of the calculation is reduced.

It is interesting to note that the eigenvalue and eigenvector problems we are solving
for each element use linear and geometric stiffnesses of the whole structure, and not just the
element being corrected, although they project mostly to the element’s internal variables
and to a single modal amplitude variable spanning the whole structure.

5. Results
5.1. 2D Building Portal Frame

Figure 7 shows a sample 2D building portal frame whose horizontal beams support
distributed loads of 1 kN/m. The beams of the structure have an area of 40 cm2, a moment
of inertia of 1000 cm4 and a length of 4 m. The “exact” buckling load factor was calculated
via Abaqus using 10 elements per member. The Abaqus calculation was also used to
validate our program in Matlab, in which we coded the proposed novel algorithm. The
buckling shape is shown in the same figure with red dashed lines.
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Figure 7. 2D sway portal frame buckling.

The numerical results are shown in Table 3 after one iteration and correcting 36% of
the bar frames. The relative error is decreased by a factor of 30, although the one-element
calculation is quite accurate in this case because it is a sway frame, and the buckling shapes
are not localized.
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Table 3. Corrected calculation statistics (2D sway portal frame).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

75.331 75.851 0.69% 75.351 0.027%

Now, we repeat the calculation, restraining the horizontal displacement of each floor
to prevent the side-sway frame failure as shown in Figure 8.
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Figure 8. 2D non-sway portal frame buckling.

The numerical results are shown in Table 4 after three iterations and correcting 57%
of the frame bars. The relative error is decreased to an acceptable 0.97% by applying the
correction. The one-element calculation is quite inaccurate in this case because the frame is
non-sway and the buckling shapes are very localized.

Table 4. Corrected calculation statistics (2D non-sway portal frame).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

217.33 373.10 71.67% 219.44 0.97%

We repeat the calculation using diagonal bars as a more realistic type of bracing, as
shown in Figure 9, with similar results, as shown in Table 5.

Table 5. Corrected calculation statistics (2D braced portal frame).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

227.11 408.79 80.00% 229.97 1.08%
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Figure 9. 2D framed portal frame buckling.

5.2. 3D Stand Structure

Figure 10 shows a stand structure, taken from [9], that is made up of four columns,
four horizontal beams and four slanted beams with one end at the top of each column,
and the other at the highest point of the frame. On the highest point of the frame, there is
a vertical load of 1 kN. The bars of the structure have an area of 40 cm2 and an isotropic
moment of inertia of 1000 cm4. The columns are 4 m high; the highest point lies at a height
of 7 m, and the column bases are on the vertices of a 4 m sided square.
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The “exact” buckling load factor was calculated via Abaqus using 10 elements per
member. The Abaqus calculation was also used to validate our 3D program in Matlab, in
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which we coded the proposed novel algorithm. The buckling shape is shown in the same
figure with red dashed lines.

The numerical results are shown in Table 6 after two iterations and correcting 67% of
the bar frames. The relative error is decreased by a factor of 12. The one-element calculation
error is low but not neglectable in this case because the side sway is not restrained and the
buckling shapes are not localized.

Table 6. Corrected calculation statistics (3D stand).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

4655.4 4800.8 3.12% 4667.42 0.26%

5.3. 3D Building Structure

Figure 11 shows a sample 3D building structure which is made up of four portals,
like the one we studied in the 2D example, laid out on planes parallel to xz. The portal
horizontal beams support distributed loads of 1 kN/m, but the other horizontal bars do
not, as is typical in building structures. The beams of the structure have an area of 40 cm2,
an isotropic moment of inertia of 1000 cm4 and a length of 4 m. The “exact” buckling load
factor was calculated with our program using 10 elements per member. The buckling shape
is shown in the same figure with red dashed lines.
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Figure 11. 3D sway building structure buckling.

The numerical results are shown in Table 7 after two iterations and correcting 25% of
the bar frames. The relative error is decreased by a factor of 37, although the one-element
calculation is quite accurate in this case because the frame is not braced and, therefore, the
buckling shapes are not localized.
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Table 7. Corrected calculation statistics (3D sway building structure).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

74.336 74.889 0.74% 74.317 0.02%

Now, we repeat the calculation using bracing diagonal bars, as in the 2D case, to
restrain the side-sway failure in two orthogonal horizontal directions, as shown in Figure 12.
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The numerical results are shown in Table 8 after six iterations and correcting 33% of
the frame bars. The relative error is decreased to an acceptable 0.38% by applying the
correction. The one-element calculation is very inaccurate in this case because the frame is
non-sway, and the buckling shapes are very localized.

Table 8. Corrected calculation statistics (3D braced building structure).

Exact λ 1-Elem λ Relative Error Corrected λ Relative Error

206.30 338.64 64.15% 207.08 0.38%

6. Discussion

The approach proposed by Xie and Steven [9], when applied to structures with multi-
ple bars, requires the use of a weighted criterion that makes sense, but has less physical
basis than the sum of the corrections from quadratic forms that we used here. Their method
can be applied to calculate more than one eigenvalue, which is not strictly necessary to
prevent the buckling failure of a structure. In addition, the structural members were
discretized with more than one element in the cases presented.

Substructuring-based methods such as those in [12,13] require the calculation of the
buckling modes of all bars in the substructure, while in the presented method, it is only
necessary to do so for a fraction of them. Additionally, in their methods, it is necessary
to condense the components retaining several modal amplitudes as variables for good
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accuracy, whereas when following our approach, only one mode per bar is calculated,
if necessary.

Stiffness matrix condensation [17,18] is a very useful method for linear structural
analysis or for incrementally solving nonlinear calculations, but it is not directly applicable
to eigenvalue problems, although we have applied it as a part of the solution procedure.

The improved approximations of displacement and force fields presented by So and
Chan [5] and Chan and Zhou [20], among others, give good results, but they are not gen-
erally compatible with beams modeled using the most common elements. The approach
presented here is, in principle, applicable to any type of beam. It only requires the calcu-
lation of the local linear and geometric stiffness matrices of the subelements as well the
buckling load of a cantilever used as a correction criterion. The latter can be replaced by
an analytical value in many cases or calculated directly as a small-sized problem for the
considered element.

The inclusion of flexible links [22], initial imperfections [21] and different types of
loads [23,24] are topics of interest that would undoubtedly improve the quality of the results
obtained and would be interesting to study in the future within the presented method.

Programs such as Abaqus suggest using several elements per beam/column member
when carrying out a buckling analysis, whereas programs such as Staad, Sap2000, etc.
suggest using two or three elements per member when the P-δ effects are relevant. The
first approach means that a separate larger model should be used for the buckling analysis
instead of the simpler one-element model of static analysis. The second approach involves
an a posteriori experience-based judgment of the results of the buckling analysis to decide
which elements should be refined. In addition, the methods used in these software packages
to solve the eigenvalue problem are highly optimized but do not exploit the physical and
topological properties of trusses, which can provide an additional increase in performance.

With respect to the efficiency of our method, the presented correction algorithm can
be parallelized, and the local matrices of the refined bars’ subelements can be efficiently
calculated either directly through a finite element formulation or by applying scaling
factors to the transversal, torsional and axial submatrices of the one-element matrices. The
calculation of the eigenvalues for the correction can be performed simply and efficiently,
for example, by using the power method or any high-performance open domain software.

The analysis of the results reveals that the method is particularly advantageous for
calculating non-sway structures, for which it is also possible to obtain accurate results for
2D frames by modeling the bar being studied and the stiffness of the neighboring bars [1–3],
but in reality, it is not easy to know to what extent a structure is non-sway, and it may
only be partially so. The proposed method solves this problem without relying on the
sometimes-incorrect judgment of the structural engineer. Additionally, it allows for the
solving of cases which are not perfectly sway or non-sway.

7. Conclusions

A new method was presented which makes it possible to calculate frame buckling
loads accurately with the usual one-element-per-member models of structural elements
that are common in commercial programs. Therefore, there is no need to use a model that
is larger than the static one to calculate the critical buckling load. The method is easily
parallelizable and is based on a correction of the overall buckling shape that affects only
the inner degrees of the displacements of those elements where the compression loads are
below the cantilever buckling load. As a result, one can take advantage of modern GPUs to
perform the instability analysis at a fraction of the cost.

The method presented here models each structural member with a single element,
which is then refined, if necessary, into four subelements, but it would be possible to use
other combinations such as two elements per member and two refined subelements per
primary element. In addition, the beam/column elements of the frame can, in principle,
be of any type, even though the examples presented here only include cubic elements.
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This would make it possible to take advantage of a more descriptive modeling of the
displacement field that would, in turn, require less demanding subsequent refinement.
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