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Abstract: Hepatitis C is a liver infection caused by a virus, which results in mild to severe inflam-
mation of the liver. Over many years, hepatitis C gradually damages the liver, often leading to
permanent scarring, known as cirrhosis. Patients sometimes have moderate or no symptoms of
liver illness for decades before developing cirrhosis. Cirrhosis typically worsens to the point of
liver failure. Patients with cirrhosis may also experience brain and nerve system damage, as well
as gastrointestinal hemorrhage. Treatment for cirrhosis focuses on preventing further progression
of the disease. Detecting cirrhosis earlier is therefore crucial for avoiding complications. Machine
learning (ML) has been shown to be effective at providing precise and accurate information for use
in diagnosing several diseases. Despite this, no studies have so far used ML to detect cirrhosis in
patients with hepatitis C. This study obtained a dataset consisting of 28 attributes of 2038 Egyptian
patients from the ML Repository of the University of California at Irvine. Four ML algorithms were
trained on the dataset to diagnose cirrhosis in hepatitis C patients: a Random Forest, a Gradient
Boosting Machine, an Extreme Gradient Boosting, and an Extra Trees model. The Extra Trees model
outperformed the other models achieving an accuracy of 96.92%, a recall of 94.00%, a precision of
99.81%, and an area under the receiver operating characteristic curve of 96% using only 16 of the
28 features.

Keywords: hepatitis C; cirrhosis; ensemble learning; sequential feature selection; explainable artificial
intelligence

1. Introduction

Hepatitis C is a blood-borne virus-related infection triggered by the hepatitis C virus
(HCV) that mostly damages the liver. HCV infections are a significant cause of liver dis-
eases, including cirrhosis and hepatocellular carcinoma, making it an important public
health concern globally. HCV infections are a prominent cause of liver disease, cirrhosis,
and hepatocellular cancer around the globe. As stated by the World Health Organiza-
tion, 58 million individuals worldwide are infected with hepatitis C at its extreme stages,
representing 3% of the global population, and that 1.5 million new cases occur annually.
In 2019, almost 290,000 infected patients died from cirrhosis or liver cancer [1]. A 2018
meta-analysis estimated that HCV antibody prevalence in Egypt was 11.9%, making it the
country with the highest HCV prevalence worldwide [2]. Therefore, HCV is estimated
to be a leading public health dilemma worldwide, which must be addressed with solid
program interventions.

Currently, hepatitis C can be cured with direct-acting antiviral (DAA). Nevertheless,
many patients still have chronic hepatitis C infection and run the danger of experiencing
its associated complications, including cirrhosis and liver cancer. Furthermore, obstacles
still stand in the way of attaining widespread access to these medications, particularly in
low- and middle-income nations where the hepatitis C epidemic is most severe. According
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to a study by Elgharably et al. [3], although recent medicines have shown an efficiency
rate greater than 90%, access to these new medications is significantly restricted by cost.
Additionally, extensive DAA therapy would not eliminate all the issues caused by the HCV
pandemic in Egypt. Hepatocellular carcinoma and the sequelae of decompensated cirrhosis
continue to place a significant burden on Egyptian society and require sufficient allocation
of healthcare resources.

Liver cirrhosis is an advanced stage of liver fibrosis that develops due to the long-term
effects of various chronic liver diseases. This condition is characterized by transforming
healthy liver tissue into abnormal lesions, accompanied by tissue fibrosis, which can
be detected through a medical examination [4]. In the initial stages of cirrhosis, most
patients do not experience noticeable symptoms, and the disease is frequently discovered by
accident during routine medical examinations for other conditions [5]. When a healthy liver
experiences ongoing fibrosis and scarring, intrahepatic resistance in the liver increases, and
portal hypertension develops, leading to decreased liver function and fatal consequences [6].
Sepanlou et al. [4] found that, in 2017, cirrhosis was responsible for over 1.32 million
fatalities worldwide, with 33.3% of these deaths occurring among females and 66.7% among
males. There was a 1.9% mortality rate from cirrhosis in 1990, which has been increasing
ever since, reaching 2.4% in 2017. Furthermore, according to the study, Egypt had the
highest age-standardized death rate due to cirrhosis, which has remained consistently high
since 1990.

Currently, the most accurate way to diagnose cirrhosis is by liver biopsy. However,
this is expensive, invasive, and risky. Less invasive tests, such as transient elastography,
have therefore been introduced. Transient elastography is a good predictor of HCV and its
stages, offering a sensitivity between 72–84% and a specificity between 82–95%. However,
it is not widely available [6]. As an alternative to imaging techniques, there are several
simple and non-invasive clinical laboratory tests, such as the aspartate aminotransferase-
to-platelet ratio index (APRI), aspartate aminotransferase (AST)/alanine aminotransferase
(ALT) ratio, alkaline phosphatase, the Naples prognostic score, the Lok score, and the
fibrosis index. Those tests have proven to help assess cirrhosis or fibrosis. Yet, they suffer
from some limitations and can be used only for certain cases [6–8]. These limitations
include unpredictability, insufficient accuracy, and risk factors for error. Additionally, the
development of new biomarkers for fibrosis may be constrained by the inherent sample
error associated with the current reference standard [9]. Furthermore, FibroTest is a tool
that has been widely used for assessing liver fibrosis. Nevertheless, FibroTest is a static
examination that offers a single score instantly. As a result, it would not be able to record
changes in liver fibrosis over time, which might be crucial for tracking the development
of the illness and directing treatment choices [10]. Moreover, due to technical restrictions,
FibroTest cannot be used on all patients, including those with ascites, those who are
morbidly obese, and/or those with a lot of chest wall fat [11].

The rise of high computational power, the progresses in machine learning (ML) al-
gorithms and the abundance of available data have established artificial intelligence (AI)
as a prominent factor in healthcare. ML models have demonstrated remarkable potential
in delivering precise diagnostic assessments, identifying appropriate treatment options,
and predicting patient outcomes [12]. Several studies have therefore used ML models to
diagnose patients with different HCV stages. A recent study by [13] assessed the accuracy
of real-time shear wave elastography in identifying liver cirrhosis. The study concluded
that this technique reached 92.86% sensitivity, 89.66% specificity, and 91.23% accuracy.
However, to the best of our knowledge, no study has focused on developing an ML model
to detect the development of cirrhosis in hepatitis C patients. Accordingly, this paper
proposes an ML model that detects the presence of cirrhosis in HCV patients to assist
medical specialists in recommending timely treatment plans.

Despite the success that ML algorithms have reached in many classification problems,
they are still distrusted by end users and people without technical expertise. This is
because they have little understanding of how AI models work. To build trust in ML
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models, researchers have adopted explainable artificial intelligence (XAI) to demonstrate
and explain how their models reach a decision [14,15]. This study used Shapley additive
explanations (SHAP) and local interpretable model-agnostic explanations (LIME) to explain
the outcomes of the best-performing model.

The subsequent sections of this paper are structured as follows. Section 2 comprises a
comprehensive literature review. Section 3 outlines the materials and methods employed,
encompassing the dataset, the ML algorithms utilized, the performance metrics utilized
to assess the proposed models, and the optimization strategy. Section 4 elaborates on
the study’s findings and the technique used for feature selection. Section 5 describes the
models’ outcomes using XAI techniques. Finally, Section 6 contains the conclusion and
discussion of potential future research avenues.

Contribution

Given the gravity of the consequences associated with cirrhosis in individuals with
Hepatitis C, it is imperative to reduce unnecessary medical check-ups and optimize time
utilization for both medical professionals and patients. Below is a summary of the study’s
contribution:

• Compare the performance of ensemble learners in diagnosing cirrhosis in hepatitis
C patients;

• Apply SFS to minimize the number of features required to form the diagnosis;
• Utilize XAI techniques to explain the outcomes of the best-performing model;
• Utilize XAI techniques to identify the most significant attributes for diagnosing cirrho-

sis in hepatitis C patients.

2. Literature Review

Mostafa et al. [16] used supervised ML algorithms, including an artificial neural
network (ANN), a support vector machine (SVM), and an RF, for early diagnosis of hep-
atitis C. The classifiers were trained using an HCV dataset gathered from the (UCI) ML
Repository [17]. The authors found that RF was the best-performing model, achieving an
accuracy of 98.14%. Despite the promising results, the model could not be generalized to
replace expert knowledge to determine diagnostic paths since the data include numerous
missing values.

Similarly, Oladimeji et al. [18] proposed ML models automatically classifying hepatitis
C using the same UCI dataset. The authors used several classifiers, including decision tree
(DT), RF, k-nearest neighbors (KNN), logistic regression (LR), and naive Bayes (NB). After
evaluating all five algorithms, the results indicated that RF outperformed other models
with a precision-recall curve of 1.00, an F-measure of 0.99, a Matthews correlation coefficient
of 0.99, a receiver operating characteristic area under the curve (ROC-AUC) of 0.99, and an
accuracy of 98.97%.

Likewise, Safdari et al. [19] used several classification algorithms to categorize in-
dividuals with suspected HCV. Six classification algorithms were used, including SVM,
Gaussian naive Bayes (GNB), RF, DT, LR, and KNN, and they were trained using the same
UCI dataset. After evaluating the six models according to various measures, the authors
found that the RF classifier surpassed the others with an accuracy of 97.29%.

Kaunang [20] also attempted to predict HCV using ML approaches on the UCI dataset.
The five categories in the original dataset were reduced to two: the blood donor and
suspect blood donor categories were combined into a non-hepatitis category, while the
hepatitis, fibrosis, and cirrhosis categories were combined into a hepatitis category. The
ML algorithms used were KNN, SVM, RF, ANN, NB, and LR. The LR approach surpassed
the other algorithms with an accuracy of 97.9%. However, this study required additional
analysis because of a data imbalance between the two classes.

Similarly, Li et al. [21] developed an AI-driven model that has the potential to diagnose
HCV and detect the disease at an early stage for potential future treatments. By leveraging
the UCI dataset, the researchers used a two-stage cascade strategy that combined the RF



Computation 2023, 11, 104 4 of 17

and LR algorithms. The artificial bee colony algorithm was utilized to establish the ideal
threshold needed for filtering and partitioning. The approach was able to predict the
probability of HCV incidence across multiple classes, achieving a high level of accuracy
96.19%, precision 96.94%, recall 96.19%, and F1-score 95.92%.

Ghazal et al. [22] presented an effective and efficient method for assisting healthcare
professionals in the early detection of HCV using ML algorithms. A Gaussian SVM model
was trained using the Egyptian cohort from the UCI repository [23]. The dataset contained
1385 patient entries, each with 29 distinct attributes. The model achieved an accuracy
of 97.9%.

Butt et al. [24] proposed an Intelligent Hepatitis C Stage Diagnosis System that uses
an ANN to predict the stage of hepatitis C in a patient using the dataset in [23]. Using 70%
of the dataset during training and 30% during validation, the proposed system achieved a
precision of 98.89% and 94.44%, respectively.

Mamdouh et al. [25] aimed to detect HCV among healthcare staff in Egypt. Two
experiments were conducted, one with feature selection and the other without. The
features were chosen using SFS. Then, four algorithms, namely, RF, NB, KNN, and LR, were
trained in each experiment. The dataset used for this study was developed at Menoufia
University based on records obtained from the National Liver Institute. The dataset
included 12 different attributes of 859 participants. It was found that using only four
features, RF reached the highest accuracy of 94.88%. However, the dataset was limited to
Egyptian patients working in risky environments. In addition, the size of the dataset and
the features included were not enough to generalize the model to newly infected patients.

Barakat et al. [26] aimed to build an intelligent diagnostic system using ML to predict
and assess fibrosis in children affected with chronic hepatitis C. They used a clinical
dataset collected from 166 Egyptian children with this condition. The authors used the
RF algorithm to predict the type of fibrosis (no fibrosis, mild, or advanced). The system
achieved an accuracy of 87.5% and an AUC-ROC of 90.3%. The prediction of mild fibrosis
attained an accuracy of 66% and an AUC of 71%. For advanced fibrosis, it achieved an
accuracy of 80% and an AUC of 89.4%. However, the dataset had a limited size and suffered
from imbalance.

Similarly, Tsvetkov et al. [27] aimed to develop and test an ML model that detects
fibrosis in the liver of individuals with chronic hepatitis C using private data collected from
routine clinical examinations. The authors examined data on 1240 patients with chronic
hepatitis C, of which 686 were males and 554 were females. A total of 689 patient data
were used to develop and test the ML model to obtain the liver fibrosis stage level, and
only 9 out of the 28 features were considered. The model attained an accuracy of 80.56%,
a sensitivity of 66.67%, and a specificity of 94.44%. Although the study did not employ
abnormal or unbalanced samples, did not reject data at random, and tested accuracy with
two separate test samples, the ML model still needed external validation.

ML algorithms have had a significant impact in aiding healthcare providers to detect
HCV at earlier stages [16]. Detecting individuals with early cirrhosis is critical for prevent-
ing severe complications. There have been a few studies that attempted to distinguish the
cirrhosis stage from the fibrosis stage. However, there is room for improving the results
obtained by their models and reducing their computational complexity using feature selec-
tion techniques. Additionally, the outputs of these ML models are not easily understood by
medical professionals. Accordingly, in this study, XAI techniques were used to ensure that
specialists can understand the model’s decisions.

3. Materials and Methods

In this study, Python programming language (version 3.9.12) was utilized. First,
pre-processing techniques were conducted before building the models. First, binarization
focused on predicting only HCV patients with cirrhosis. Consequently, the cirrhosis class
was converted to 1 and all other classes were converted to 0. Next, two outliers were
identified using a box-plot graphical representation and the interquartile range (IQR)
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method by comparing the lower bound (first quartile) and upper bound (third quartile)
of the data. The values below the first quartile and above the third quartile by 1.5 times
the IQR were considered outliers and were removed to improve subsequent analyses or
modeling accuracy. Thereafter, the data were normalized using the min-max scaler from
the scikit-learn library (version 1.1.1). Due to the conversion of the target class, the data
imbalance issue has appeared. Therefore, random oversampling was applied using the
imblearn library (version 0.9.1). Subsequently, a stratified k-fold cross-validation approach
was used to evaluate four ML algorithms, namely, RF, GBM, XGBoost, and ET, using
10-folds. GridSearchCV from the scikit-learn library was used to tune the algorithms’
hyperparameters, and SFS from the mlxtend (version 0.21.0) library was used for feature
selection. After building the models, their performance was evaluated and compared using
four metrics: accuracy, precision, recall, and AUC-ROC. Lastly, XAI techniques were used
to explain the outputs of the best-performing model. Figure 1 illustrates the framework of
the study.
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Figure 1. Framework of the study.

3.1. Dataset Description and Analysis

The present study is based on the HCV dataset from the UCI ML repository [23]. This
dataset includes 29 features of 1385 Egyptian patients, including the target class, who had
HCV therapy for approximately 18 months. There are four identifiable stages of hepatitis C
virus (HCV) included in the dataset: portal fibrosis without septa, portal fibrosis with a
small number of septa, portal fibrosis with many septa, and cirrhosis. Figure 2 shows the
sample distribution for each category. More details about the dataset are present in [23,28].

Tables 1 and 2 outline the statistical analysis of the numerical and categorical attributes.
The tables show that the dataset has a nearly equal distribution of cases for each categor-
ical feature, which may guarantee the model’s generalizability utilizing those features.
Moreover, some outliers are indicated from the statistical analysis applied to the numerical
features, using the IQR method.
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Table 1. Numerical attributes statistical analysis.

Feature Mean std min 25% 50% 75% max

Age 46.32 8.78 32.00 39.00 46.00 54.00 61.00

Body mass index (BMI) 28.61 4.08 22.00 25.00 29.00 32.00 35.00

White blood cells (WBC) 7533.39 2668.22 2991.00 5219.00 7498.00 9902.00 12,101.00

Red blood cells (RBC) 4,422,129.61 346,357.71 3,816,422.00 4,121,374.00 4,438,465.00 4,721,279.00 5,018,451.00

Hemoglobin (HGB) 12.59 1.71 10.00 11.00 13.00 14.00 15.00

Platelets (Plat) 158,348.06 38,794.79 93,013.00 124,479.00 157,916.00 190,314.00 226,464.00

Aspartate transaminase ratio (AST 1) 82.77 25.99 39.00 60.00 83.00 105.00 128.00

Alanine transaminase ratio 1 week
(ALT 1) 83.92 25.92 39.00 62.00 83.00 106.00 128.00

Alanine transaminase ratio 4 week
(ALT4) 83.41 26.53 39.00 61.00 82.00 107.00 128.00

Alanine transaminase ratio 12 week
(ALT 12) 83.51 26.06 39.00 60.00 84.00 106.00 128.00

Alanine transaminase ratio 24 week
(ALT 24) 83.71 26.21 39.00 61.00 83.00 107.00 128.00

Alanine transaminase ratio 36 week
(ALT 36) 83.12 26.40 5.00 61.00 84.00 106.00 128.00

Alanine transaminase ratio 48 week
(ALT 48) 83.63 26.22 5.00 61.00 83.00 106.00 128.00

Alanine transaminase after 24 weeks
(ALT after 24 w) 33.44 7.07 5.00 28.00 34.00 40.00 45.00

RNA Base 590,951.22 353,935.36 11.00 269,253.00 593,103.00 886,791.00 1,201,086.00

RNA after 4 weeks (RNA4) 600,895.65 362,315.13 5.00 270,893.00 597,869.00 909,093.00 1,201,715.00

RNA after 12 weeks (RNA12) 288,753.61 285,350.67 5.00 5.00 234,359.00 524,819.00 3,731,527.00

RNA end-of-treatment (RNAEOT) 287,660.34 264,559.53 5.00 5.00 251,376.00 517,806.00 808,450.00

RNA elongation factor (RNAEF) 291,378.29 267,700.69 5.00 5.00 244,049.00 527,864.00 810,333.00

Baseline histological Grading 9.76 4.02 3.00 6.00 10.00 13.00 16.00
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Table 2. Categorical attributes statistical analysis.

Feature Value Count

Gender
1 707

2 678

Fever
1 671

2 714

Nausea/Vomiting
1 689

2 696

Headache
1 698

2 687

Diarrhea
1 689

2 696

Fatigue and generalized bone ache
1 694

2 691

Epigastric pain
1 687

2 698

Jaundice
1 691

2 694

To detect the presence of cirrhosis in hepatitis C patients, patients with stages 1, 2, and
3 were considered negative (portal fibrosis), whereas patients with stage 4 were considered
positive (cirrhosis). The random oversampling technique was used to balance the data.
Table 3 shows the data before and after outlier removal and random oversampling.

Table 3. Number of samples after outlier removal and random oversampling.

Stage Number of Samples Number of Samples after Removing Outliers Number of Samples after Using Random Oversampling

0 1023 1021 1021
1 362 360 1021

3.2. Description of the Utilized Machine Learning Techniques

Ensemble algorithms involve training multiple models and combining their results.
The bagging classifiers combine several independent predictors using weighted averages
or majority votes. In contrast, the boosting classifiers are iterative ensemble methods
that modify an observation’s weight depending on the most recent classification. If an
observation was mistakenly classified, it attempts to enhance the weight of that observation.
In this study, two bagging (ET and RF), and two boosting (XGBoost and GBM) techniques
were used.

3.2.1. Random Forest

The RF classifier was first introduced by Leo Breiman and Adele Cutler [29]. It
is a supervised ML algorithm used in classification and regression problems. An RF
consists of an ensemble of many distinct decision trees running parallel as a committee [30].
Incorporating such models improves the performance of the RF classifier, making it more
effective than models that operate individually [29]. In classification problems, each
decision tree selects a class as an output. The final outcome returned by the RF classifier
is produced by taking the highest vote among all trees’ outputs. The majority voting
formula is:

C(x) = mode{h1(x), h2(x), . . . , hn(x)}, (1)
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where C(x) represents the predicted class and h1(x), h2(x), . . . , hn(x) are the n classification
models of the data sample x [31].

3.2.2. Gradient Boosting Machine

Leo Breiman first introduced GBM in 1998, where adaptive boosting was defined as a
gradient descent with a specific loss function. A year later, Jerome Friedman developed
GBMs, which generalize boosting algorithms for regression and classification problems [32].
A common framework for GBM typically involves three fundamental components: an
optimized loss function, a weak learner that generates predictions, and an additive model
that integrates base learners to decrease the loss function and create a prediction model that
is both robust and dependable. Boosting techniques differ from standard ML algorithms
because optimization is not included in the function space. However, an optimal function
F(X) is reached after m iterations [33],

F(X) =

m

∑
i=0

fi(x), (2)

where fi(x) (i = 1, . . . , M) represents a feature increment and fi(x) is calculated using

fi(x) = −pigm(x) (3)

where pi is the loss function and gm is the negative gradient for the mth iteration.

3.2.3. Extreme Gradient Boosting

XGBoost is an ML classifier that employs a combination of gradient boosting and
ensembling methods, and it is built upon decision trees as its base learners [34]. XGBoost
was initially developed in 2016 by Tianqi Chen and Carlos Guestrin as part of a research
project at the University of Washington. The boosting strategy employed by XGBoost
involves aggregating multiple models to create a group of predictors that work together to
enhance the accuracy of predictions, regardless of whether the problem being addressed is
related to classification or regression [34]. The prediction outcome generated by XGBoost is
the sum of the scores predicted by the individual decision trees [35],

ŷ =

K

∑
k=1

fk(xi), fkεF (4)

where K is the number of trees, fk(xi) is the score of the kth tree, and F is the set of space
functions that include all gradient-boosted trees.

XGBoost tackles the issue of overfitting, which can be a considerable concern for
ensemble models, by including additional regularization in its objective function. This reg-
ularization element punishes the intricacy of the model, enhancing its ability to generalize
and decreasing the possibility of overfitting [35]. It is given by:

L(t) = ∑
i

l(yi, ŷi) +∑
k

Ω( fk), (5)

The equation involves the loss function l(yi, ŷi), which quantifies the difference be-
tween the target value yi and the predicted value ŷi, and the regularization term Ω( fk),
which evaluates the complexity of the model.

3.2.4. Extra Trees

The extra trees (ET) algorithm operates by picking a subset of features at random and
then using them to train a decision tree. After that, the tree is pruned to include only the
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most valuable features for making predictions. ET is a similar algorithm to RF in that it
makes a final prediction about which class or category a data point belongs to by using a
collection of decision trees. ET differs from RF because it uses the entire original sample
rather than sub-sampling and replacing data as RF does. Another distinction is how the
nodes are divided. ET chooses random splits, whereas RF always chooses the best possible
split. ET and RF are both designed to improve the final output [36]. Decision trees, RF and
ET also differ in performance: the variance is high in decision trees, medium in RF, and low
in ET [37].

3.3. Performance Measures

Four measures assessed classification performance: accuracy, precision, recall, and
AUC-ROC. In addition, to assess the performance of the models, a confusion matrix was
formed for each model, which evaluates their true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN). TP represents the number of correctly classified pa-
tients with cirrhosis-HCV, while FP represents the number of patients incorrectly classified
as cirrhosis-HCV. FN is the number of patients incorrectly classified as non-cirrhosis-HCV,
and TN is the number of correctly classified non-cirrhosis-HCV patients.

Accuracy is the ratio of accurately classified observations to total observations,

Accuracy =
TP + TN

TP + FP + FN + TN
. (6)

Precision is the ratio of accurately classified positive observations to the total number
of positively classified observations,

Precision =
TP

TP + FP
. (7)

Recall is the ratio of accurately predicted positive observations in a class to the total
number of observations,

Recall =
TP

TP + FN
. (8)

3.4. Optimization Strategy

The hyperparameters of an algorithm must be modified in order to generate models
that can solve problems optimally. Grid search with stratified 10-fold cross-validation was
utilized in this study for this purpose. Grid search is used to define a search space by
specifying the hyperparameters and their range of potential values. After defining the
hyperparameter grid, the GridsearchCV technique generates every possible combination
of the values to identify the optimal set of hyperparameters. To assess the efficacy of
each hyperparameter combination, 10-fold cross-validation is conducted to evaluate the
performance of the model. Table 4 highlights the optimal hyperparameters for models
using the datasets before and after oversampling.

Table 4. The optimal hyperparameters for each classifier using original and oversampled data.

Classifier Hyperparameter Without Oversampling With Oversampling

RF

n_estimators 100 450
max_depth 23 24

max_features sqrt log2
max_samples_leaf 1 1

GBM

n_estimators 50 110
learning_rate 0.01 0.3
max_depth 1 10

loss log_loss exponential
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Table 4. Cont.

Classifier Hyperparameter Without Oversampling With Oversampling

XGBoost

n_estimators 50 170
booster gblinear gbtree

learning_rate 0.01 0.1
gamma 0 0.4

ET

n_estimators 50 200
max_depth None 11

max_features log2 log2
min_samples_leaf 1 1

4. Results and Discussion

This section presents the proposed models’ outcomes after applying the GridsearchCV
method to the models, using both the original and sampled data. Table 5 assesses the
performance of the constructed models through stratified 10-fold cross-validation.

Table 5. The results of the proposed models before and after random oversampling was applied.

Classifier Dataset Mean of Accuracy Std of Accuracy Precision Recall AUC-ROC

RF
Original 74.22% 0.0047 3.00% 1.00% 0.49

Oversampled 96.48% 0.0417 99.27% 93.64% 0.96

GBM
Original 73.93% 0.0006 0.00% 0.00% 0.45

Oversampled 95.70% 0.0439 97.49% 93.74% 0.97

XGBoost
Original 73.93% 0.0006 0.00% 0.00% 0.52

Oversampled 90.99% 0.0396 88.00% 94.81% 0.96

ET
Original 74.22% 0.0060 45.00% 1.66% 0.51

Oversampled 96.82% 0.0413 100% 93.64% 0.97

The results demonstrate significant differences in the accuracy, precision, and recall
before and after applying the random oversampling algorithm. It is important to consider
the increase in precision and recall rates, which concentrate on the number of FP and FN,
since cirrhosis is a chronic disease that must be detected early to prevent complications.
Table 5 shows that the boosting models failed to predict any positive cases without over-
sampling, attaining a recall and precision rate of 0%. ET produced the best results before
random oversampling, with an accuracy of 74.22%, a precision of 45%, and a recall of 1.6%.
It also attained the highest accuracy of 96.82% after the random oversampling. Although
random oversampling is known to increase the possibility of oversampling, it considerably
improved the performance of all models. This method may be useful for ML algorithms
that are impacted by skewed distributions and where the model fit may be influenced by
several duplicate samples for a particular class. This may include algorithms that iteratively
learn coefficients and that seek good splits of data, such as decision trees. In the subsequent
experiments, the models trained on the oversampled data were used.

4.1. Feature Selection

Feature selection is critical to developing efficient models since it eliminates irrelevant
features that might negatively influence their performance. The SFS technique from the
mlxtend library was used to reduce the number of features [38]. This algorithm trains
a model using the optimal features selected by a particular criterion function. The SFS
algorithm selects the feature that enhances the chosen criterion function, which is included
in the feature subset in every subsequent forward step. The most suitable feature subset
identified by the SFS algorithm is presented in Table 6. As can be seen in this table, the
SFS algorithm did not affect the performance of the ensemble boosting models. However,
there was a slight reduction in features for the RF model and a significant reduction for
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the ET model. The accuracy of both classifiers was improved by 0.1% by SFS, despite a
considerable difference in the number of removed attributes.

Table 6. SFS results.

Classifier Number of
Features Selected Features Selected Mean of

Accuracy

RF 27

{Jaundice, Age, Gender, Fatigue & generalized bone ache, ALT 48, RNA 48,
RNA base, BMI, HGB, ALT 12, RNA EOT, ALT 4, Nausea/Vomiting, ALT 1,

Epigastric pain, Fever, Plat, AST 1, RNA EF, Headache, Baseline
histological grading, ALT 24, RBC, ALT after 24 w, WBC, ALT 36,

RNA 4, Diarrhea}

96.58%

GBM 28 All features 95.70%

XGBoost 28 All features 90.99%

ET 16 {Age, BMI, Diarrhea, Jaundice, RBC, HGB, Plat, AST 1, ALT 12, ALT 24,
ALT 36, ALT 48, ALT after 24 w, RNA base, RNA 4, RNA 12} 96.92%

4.2. Further Discussion of the Results

After analyzing and applying SFS to all proposed models, it has been shown that ET
surpassed all other algorithms, achieving 96.92% accuracy, as shown in Table 7, followed
by RF, with 96.58% accuracy. XGBoost achieved the lowest accuracy of 90.99%; however,
it achieved the highest recall of 94.81%. ET obtained the highest precision of 99.81%. To
further evaluate the results in terms of TP, FP, FN, and TN counts, confusion matrices were
constructed. These are displayed in Figure 3.

Table 7. The performance of the models after SFS.

Classifier Mean of Accuracy Std of Accuracy Recall Precision

RF 96.58% 0.0399 93.74% 99.39%
GBM 95.70% 0.0439 93.74% 97.49%

XGBoost 90.99% 0.0396 94.81% 88.00%
ET 96.92% 0.0380 94.00% 99.81%
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According to the findings illustrated in Figure 3, XGBoost displayed the lowest count
of FN, followed by ET. On the other hand, ET demonstrated the lowest number of FP,
with RF ranking second. RF and GBM obtained the highest number of FNs. Meanwhile,
XGBoost had the highest FP count of 131. FNs have a significant impact on healthcare,
but minimizing the number of FPs is also essential to avoid unnecessary interventions.
Misdiagnosis of cirrhosis wastes medicine and time, and it damages patients’ mental health.
Consequently, to determine the best-performing model, the tradeoff between FPs and
FNs should be considered. Overall, ET surpassed other models in detecting cirrhosis in
HCV patients.

The study’s objective was to evaluate the models’ capability to differentiate between
patients with cirrhosis and those who did not have the condition, using stratified 10-fold
cross-validation to construct an AUC-ROC curve for each model. To assess the ability of
the models to differentiate between patients with cirrhosis and without, an AUC-ROC
curve was constructed for each model using stratified 10-fold cross-validation. The results,
presented in Figure 4, indicate how effectively the proposed models can distinguish between
different classes to generate correct predictions. The results indicated that all models
obtained an outstanding AUC-ROC of 96%.
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5. Explainable Artificial Intelligence

ML has gained widespread popularity and has been applied to numerous domains
and use cases. However, specific measures need to be implemented to ensure that society
accepts and trusts ML-powered systems. To build this trust, it is necessary to visualize
and explain how ML models make their decisions. XAI can be used to ensure that an
algorithm’s decision-making process and the data used for training are easily understood
by users. This study uses two XAI techniques, SHAP and LIME.

5.1. Shapley Additive Explanations

In 2017, Lundberg and Lee introduced the SHAP algorithm, which utilizes an additive
feature attribution method with a linear model to calculate the contribution of each attribute
to a prediction. Specifically, SHAP presents the Shapley value explanation, which allows
for the prediction of an instance. The SHAP explanation approach employs coalitional
game theory to calculate the Shapley values. In this method, the feature values of data
instances are treated as individual actors participating in a coalition. By treating the feature
values of a data instance as actors in the coalition, researchers can use Shapley values to
distribute the prediction equally across the features. The explanation is calculated using:

g(z′) = ∅0 +

M

∑
j=1

∅jz′ j, (9)

This equation involves the explanatory model, g, the coalition vector, z′ ∈ {0, 1}M,
where M represents the maximum coalition size. The feature attribution for a given feature,
j, is represented by the Shapley value ∅j ∈ R. The Shapley values of the ET model are
demonstrated in Figure 5, where positive contributions are displayed on the left side and
negative contributions are displayed on the right side [39].

Based on the observations made in Figure 5, it is evident that RNA 4, BMI, RNA 12, and
AST 1 are the features with the greatest importance. Conversely, the features with the lowest
importance are jaundice and diarrhea. It can also be observed that high RNA 4 values have
low negative contributions, while the opposite is true for patients with high RNA 12 values.
On the other hand, high BMI and AST 1 values have high positive contributions.
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5.2. Local Interpretable Model-Agnostic Explanations

LIME is a commonly used algorithm that provides the ability to interpret machine
learning models by creating a comprehensive explanation for a single prediction. LIME’s
prediction is based on a simpler interpretable model, such as a linear classifier. In this
technique, random perturbation is used to simulate data around an instance, and spe-
cific selection techniques are used to determine the importance of certain features. The
popularity of LIME and similar local algorithms can be attributed to its ease of use. Still,
the generated explanations are unstable because of the random perturbation and feature
selection approaches, which can produce many explanations for the same prediction [40].
Figure 6 illustrates the results of LIME for a positive and a negative prediction.
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Figure 6a explains a positive prediction made by the ET model, in which the positive
probability prediction was 77%. It is indicated that the BMI, RNA Base, ALT 48, RNA 4,
and ALT36 contributed to the positive prediction. On the other hand, Figure 6b explains a
negative prediction made by the ET model, in which the negative probability prediction
was 83%. It can be observed that all features except RNA Base, RNA 12, and RNA 4
contributed to the negative prediction.

6. Conclusions and Recommendations

Cirrhosis, caused by extensive liver fibrosis or scarring, is frequently discovered after
decompensation when its associated consequences have occurred. The performance of
current non-invasive testing for the early detection of advanced liver cirrhosis is poor,
with many categories being uncertain. Healthcare professionals can detect the presence of
cirrhosis and chronic liver diseases using invasive tests, including liver biopsy. However,
ML algorithms can be applied to analyze clinical data to detect the presence of cirrhosis to
assist healthcare providers. This study aimed to use ML algorithms to identify cirrhosis
in HCV patients. Four algorithms were trained using the Egyptian HCV patient’s dataset
from UCI, namely, RF, GBM, XGBoost, and ET. The ET classier outperformed the other
algorithms using only 16 out of 29 features, with an accuracy of 96.92%, a recall of 94.00%, a
precision of 99.81%, and an AUC-ROC of 96%. Although XGBoost achieved a higher recall
value, ET had the highest accuracy value. This would result in less clinical testing, possibly
contributing to cost savings.

In addition, the use of XAI was implemented in order to guarantee that healthcare
experts could comprehend how the algorithm makes decisions and the information utilized
to train it. The results of SHAP revealed that the features with the highest importance
were RNA 4, BMI, RNA 12, and AST 1. On the other hand, LIME indicated that BMI, RNA
Base, ALT 48, RNA 4, and ALT36 contributed to the positive predictions of the model. The
results of this study were promising, but more data on patients with cirrhosis are needed to
train the model on real data rather than synthetic data. Furthermore, other stages of HCV
could be investigated in the future to develop a generalized model that can predict HCV
progression earlier.
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