
Citation: Garcia-Hernandez, J.J.;

Morales-Sandoval, M.;

Elizondo-Rodríguez, E. A Flexible

and General-Purpose Platform for

Heterogeneous Computing.

Computation 2023, 11, 97.

https://doi.org/10.3390/

computation11050097

Academic Editor: Demos T. Tsahalis

Received: 19 April 2023

Revised: 4 May 2023

Accepted: 5 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

A Flexible and General-Purpose Platform for
Heterogeneous Computing
Jose Juan Garcia-Hernandez † , Miguel Morales-Sandoval *,† and Erick Elizondo-Rodríguez †

Center for Research and Advanced Studies of the IPN-CINVESTAV, Unidad Tamaulipas,
Ciudad Victoria 87130, Mexico; jjuan.garcia@cinvestav.mx (J.J.G.-H.)
* Correspondence: miguel.morales@cinvestav.mx
† These authors contributed equally to this work.

Abstract: In the big data era, processing large amounts of data imposes several challenges, mainly
in terms of performance. Complex operations in data science, such as deep learning, large-scale
simulations, and visualization applications, can consume a significant amount of computing time.
Heterogeneous computing is an attractive alternative for algorithm acceleration, using not one but
several different kinds of computing devices (CPUs, GPUs, or FPGAs) simultaneously. Accelerating
an algorithm for a specific device under a specific framework, i.e., CUDA/GPU, provides a solution
with the highest possible performance at the cost of a loss in generality and requires an experienced
programmer. On the contrary, heterogeneous computing allows one to hide the details pertaining
to the simultaneous use of different technologies in order to accelerate computation. However,
effective heterogeneous computing implementation still requires mastering the underlying design
flow. Aiming to fill this gap, in this paper we present a heterogeneous computing platform (HCP).
Regarding its main features, this platform allows non-experts in heterogeneous computing to deploy,
run, and evaluate high-computational-demand algorithms following a semi-automatic design flow.
Given the implementation of an algorithm in C with minimal format requirements, the platform
automatically generates the parallel code using a code analyzer, which is adapted to target a set of
available computing devices. Thus, while an experienced heterogeneous computing programmer
is not required, the process can run over the available computing devices on the platform as it is
not an ad hoc solution for a specific computing device. The proposed HCP relies on the OpenCL
specification for interoperability and generality. The platform was validated and evaluated in terms
of generality and efficiency through a set of experiments using the algorithms of the Polybench/C
suite (version 3.2) as the input. Different configurations for the platform were used, considering
CPUs only, GPUs only, and a combination of both. The results revealed that the proposed HCP was
able to achieve accelerations of up to 270× for specific classes of algorithms, i.e., parallel-friendly
algorithms, while its use required almost no expertise in either OpenCL or heterogeneous computing
from the programmer/end-user.

Keywords: heterogeneous computing; OpenCL; automated algorithm deployment

1. Introduction

The amount of data generated in the world has increased exponentially in recent
decades [1], leading to the big data era [2]. This has also increased the need to process such
data and obtain useful information in a timely manner, which has created a higher demand
for computational power and associated tools. The training of deep learning models [3]
or large-scale simulations such as flood simulations for real-time disaster prevention and
mitigation responses [4] are examples of practical use cases for high-performance comput-
ing. However, the existing physical barriers have limited the enhancement of transistors
in processors and, hence, computing power. Because of this, since the beginning of the

Computation 2023, 11, 97. https://doi.org/10.3390/computation11050097 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11050097
https://doi.org/10.3390/computation11050097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-1249-5413
https://orcid.org/0000-0003-1702-8467
https://doi.org/10.3390/computation11050097
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11050097?type=check_update&version=1

Computation 2023, 11, 97 2 of 15

2000s, alternative techniques and methods have been used to improve performance in the
execution of algorithms [5].

Most parallel computing approaches optimize implementation for a single device
using a specific implementation framework: for example, Python/HLS for FPGAs [6],
Python/CUDA for GPUs [7], or C/HLS for ASICs/FPGAs [8,9]. Ad hoc solutions do
not allow changes to the originally defined computing architecture to support algorithms
other than those for which they were created. The adaptation of an existing solution to
execute other algorithms requires internal changes in the coding or drastic changes that
even require modifications to the programming logic. Thus, highly optimized solutions
present the following disadvantages: the parallel solution cannot be reused, and they
demand a programmer who is experienced in the underlying implementation frameworks.

Heterogeneous computing is an approach to high-performance computing and an
attractive alternative for executing computationally demanding algorithms. The acceler-
ation capacity arises because, in heterogeneous computing, the tasks in the algorithms
are distributed in parallel over multiple devices, such as central processing units (CPUs),
graphics processing units (GPUs), and field-programmable gate arrays (FPGAs), taking
advantage of their different computing capabilities. All of these devices are used simul-
taneously. This could result in a more flexible computation approach than developing a
solution for a specific device using a custom design flow, as presented in [6–9]; the main
advantage of heterogeneous computing lies in its flexibility and generality, possibly at the
cost of performance.

However, in heterogeneous computing, there are several problems associated with
the implementation and parallel deployment of algorithms using various computational
devices simultaneously: for example, the proper partitioning of processing tasks in the
algorithm, the coordination of all the computing devices being used, and the manual
management of communication between them [10]. Likewise, another challenge is to
correctly assign the parallel tasks for the different types of devices used, which have
different hardware and software components [11]. Furthermore, the programmer/end-user
must demonstrate knowledge and a degree of mastery regarding programming tools for
heterogeneous computing, the most popular being the OpenCL framework.

From the point of view of the programmer, who aims to implement an algorithm in
parallel, taking advantage of a heterogeneous platform that makes effective use of different
available computing resources (CPUs, GPUs, and FPGAs), the abovementioned issues
could slow down the adoption of truly heterogeneous computing.

In this paper, a computing platform is presented with the aim of minimizing the
complexity of implementing algorithms under the heterogeneous computing model. The
proposed platform is general in regards to the types of algorithms that it can execute as well
as the types and numbers of computing devices that can be used. It is also flexible, enabling
new computing devices to be added or changed quickly and easily without requiring any
algorithmic alterations by the end-user. The flexibility and generality of the proposed
platform are the key features that allow solutions to be scaled. These properties also allow
non-specialists to implement computationally demanding algorithms faster. We believe
that such a platform could promote the use of and increase interest in heterogeneous
computing as a potential alternative to parallel computing.

The platform for heterogeneous computing presented in this paper is based on the
OpenCL framework, which is the most popular framework for heterogeneous computing
development. The use of OpenCL makes our proposal general-purpose without compro-
mising on performance. We would like to stress that OpenCL is a framework that allows
one to execute code across heterogeneous platforms (CPUs, GPUs, DSPs, FPGAs, proces-
sors, and hardware accelerators). The proposed platform was validated and evaluated
using the Polybench/C suite (version 3.2), a benchmark suite of 30 numerical computations
representative of various application domains, such as linear algebra, image processing,
physics simulations, dynamic programming, and statistics. This benchmark is generally
used in parallel computing applications, and it was used in this work to show the generality

Computation 2023, 11, 97 3 of 15

of the proposed platform. The experiments and obtained results showed that our platform
is viable for practical applications, demonstrating accelerations of up to 270× in most cases.
The resources associated with the heterogeneous computing platform proposed herein are
publicly available [12], particularly the user manual and source code.

Our solution could allow the faster development of high-performance solutions and
still serve as a proof of concept for computationally demanding algorithms in order to
identify further optimizations that could be translated into ad hoc implementations for
custom devices and specialized frameworks if required by the end application.

The rest of this paper is organized as follows. Section 2 presents the work related to
this project. Section 3 describes the platform, its structure, and how it addressed certain
issues to achieve flexibility and generality. Section 4 describes the experiments carried
out to validate the correct functioning of the platform and the results obtained. Finally,
Section 5 concludes this work.

2. Related Work

Several issues are associated with the development of platforms for heterogeneous
computing. On the one hand, mapping an algorithm to a custom hardware platform or,
conversely, modifying an existing platform to meet the requirements of a given algorithm
is highly complex. This situation has contributed to a paucity of interest in heterogeneous
computing, despite its advantages. The literature provides solutions addressing these
problems, though only partially.

With libWater, the authors of [13] aimed at simplifying the complexity of algorithm
implementation for heterogeneous computing. This library abstracts the coding process in
heterogeneous computing using high-level functions for tasks such as the management of
the various devices being applied in a simpler manner than if using the OpenCL or CUDA
frameworks. The approach of PACXX [14], Hydra [15], and LogFit [16] is also to simplify the
implementation process using custom high-level functions, but these solutions also include
mechanisms to automate the task distribution among the underlying computing devices.
Thus, the coding complexity for the programmer is considerably reduced. However,
these solutions still assume that the user has a deep understanding of parallel computing,
because tasks such as the identification of parallel parts in the source code, the coordination
of execution among all the involved devices, and memory management are manually
implemented by the programmer. Flexibility is also not achieved by the abovementioned
solutions, as only certain devices are supported (CPU + GPU).

The tools H2TA [17] and FlexTensor [18] were recently proposed to simplify the com-
plexity of both the algorithm design and the management of devices. H2TA uses OpenCL as
the basis to support a wider variety of computing devices and applies high-level functions
to address the most complex tasks in the implementation process. However, this solution is
focused on a cluster platform, so many aspects of its implementation are closely related
to that infrastructure. FlexTensor uses Python as the underlying programming language
and employs a mechanism to automatically distribute tasks among the computing devices.
However, this solution is oriented towards tensor computing and is not general-purpose.

There is, in the literature, a lot of work about hand-crafted models for heterogeneous
computing. Although hand-crafted solutions may perform better, that approach is not
portable across architectures. It has been suggested that low-level programming mod-
els and expertly optimized libraries should be implemented without being exposed to
programmers [19].

3. Proposed Platform Architecture

The flexible and general-purpose heterogeneous computing platform presented in this
paper is a tool developed with the objective of addressing the two main problems that limit
the use of heterogeneous computing: the lack of generality and flexibility and the reduction
in the high complexity associated with the process of coding and executing algorithms that
exists in this environment.

Computation 2023, 11, 97 4 of 15

To address these issues, this paper presents a platform that fully automates the process
of coding and executing algorithms in heterogeneous computing, regardless of the type
of algorithm or the number and type of computing devices employed. This frees the
user from these tasks and allows the generation of heterogeneous solutions in a fast and
semi-automatic manner. The platform allows the execution of algorithms in the context of
heterogeneous computing with a level of transparency for the user, who only provides the
sequential version of the algorithm and selects the computing devices that will be used by
the platform to execute the algorithm. The platform automatically generates the parallel
versions of the algorithms as long as they comprise sections that can be executed in parallel.

With the automated generation of parallel codes, the platform allows the exploration
and rapid analysis of the possible acceleration of the entered algorithms, offering flexibility
in the direct selection of devices that enables one to observe the performance of all cases
without requiring any internal change to the input source code.

3.1. Platform Architecture

The automatic parallelization process performed internally by the proposed platform
is divided into multiple modules. Figure 1 provides an overview of the modules that make
up the platform and general descriptions of the tasks they perform internally.

Figure 1. Architecture of the proposed heterogeneous computing platform; general and flexible.

As can be seen, the platform architecture comprises three stages of execution: (a) the
reception and preprocessing of the files that will be analyzed by the platform; (b) the
transformation and adaptation process of the input source code; and (c) the execution of the
resulting codes, i.e., the OpenCL host and kernel codes, by the computer equipment. The
following section details the automatic parallelization process performed by the platform
in each of its modules.

3.2. Platform Configuration Module

This is the module in charge of preparing the platform execution environment. This
module verifies the sequential source code provided by the user, checking that it is correct
code written in the C programming language that can be compiled and executed correctly
for its subsequent analysis on the platform.

3.2.1. Preprocessing Module

This is the module in charge of preparing the sequential source code for its subsequent
analysis in the algorithm deployment module. Figure 2 presents the preprocessing module.
This module delimits the sequential code sections with parallel characteristics and inspects
if the sections are suitable for parallel execution with OpenCL. This process involves
searching section codes for instructions or functions that cause problems in a parallel
environment with OpenCL. The inspection is performed by searching for functions in the
analyzed code section and checking that they are supported by the OpenCL specification
(e.g., mathematical functions). User-defined functions can only be used if they do not cause
problems in a heterogeneous environment. In cases where the instructions of a possibly
parallel code section compromise the parallel execution of the algorithm, they are marked
as non-parallelizable and are not taken into account in further analyses.

Computation 2023, 11, 97 5 of 15

The correct delimitation of the parallel sections prevents the generated solutions from
presenting compilation and/or execution errors, which may cause erroneous execution results.

Figure 2. The sequence of tasks in the sequential source code preprocessing module.

3.2.2. Algorithm Deployment Module

Figure 3 shows an overview of the algorithm deployment module. This module is in
charge of transforming the sequential code entered into a parallel version. The transfor-
mation process is performed in multiple stages: first, an internal analysis is performed to
validate if the algorithm can be executed simultaneously without causing problems in the
execution of the algorithm in parallel; next, its parallel transformation is performed.

Figure 3. Algorithm deployment module task sequence.

Polyhedral Parallel Code Generation (PPCG)

PPCG [20] is a source-to-source compiler that enables parallel execution of sequential
codes written in the C programming language for architectures composed of multicore
CPUs and GPUs. This tool allows the acceleration of algorithms based on the analysis of
loops using the polyhedral method for the automatic generation of Kernel, which can be
from CUDA or OpenCL. PPCG implements a multilevel tiling strategy fitted to the levels of
parallelism of accelerators; the approach decouples multilevel parallelization from locality
optimization, allowing to select the block and thread count independently from the array
blocks allocated to on-chip shared memory and registers. Also, the imperfect loop nests
may be broken down into multiple GPU kernels. Affine partitioning heuristics and code
generation algorithms for locality enhancement specific to the registers and shared memory
are used to improve the performance.

Modifications to the PPCG Compiler on the Platform

On our platform, the PPCG compiler is used internally for the transformation of the
processed sequential code to its parallel version with OpenCL. For the integration of PPCG
into the platform, it was necessary to make multiple internal changes to the compiler
since PPCG only generates parallel codes for a single computing device, either a CPU
or GPU, which cannot be determined by the user but is decided by the tool itself based
on availability. Since the platform seeks flexibility in the use of algorithms, an internal
modification was made to PPCG so that the compiler generated host codes to be executed
on a variable set of computing devices.

Support for the simultaneous execution of the parallel sections on multiple computing
devices was added to the host codes. To enable this feature, an analysis is automatically
performed to determine whether or not a parallel section of the source code can be executed

Computation 2023, 11, 97 6 of 15

on multiple computing devices. Two rules must be met to confirm that a parallel section is
safe to be executed simultaneously. First, the operations must not modify values outside
the range of the array that corresponds to them in the execution stage. Second, they must
not alter other variables that other devices may require. If the necessary rules are not met,
the execution continues normally in parallel on each computing device, with each having
to wait for the completion of its predecessor’s work to proceed.

Because of these features, a set of modifications were made to the PPCG compiler. First,
we modified how the compiler configured and prepared the OpenCL environment. Second,
we modified how the device configuration instructions were ordered in OpenCL for the
host code. Third, the memory transfer process and device coordination were changed.
In the memory transfer process, each device is allocated a portion of an array, and only that
device can make changes to the values within that range. The range is determined to be
equal for all computing devices. All these modifications were necessary to enable the more
effective multi-device execution of a given algorithm.

Due to the problems introduced by the simultaneous execution, an internal platform
analyzer was included in the kernel writing process. This tool analyzes the code sections
involving loops that are suitable for simultaneous execution. This is achieved using
PET [21], a library that provides a representation of the iterations on the form of a polyhedral
model, revealing the relationships of the analyzed for cycles. This representation is used
for task distribution, since it allows one to observe the operations performed within the for
cycles that will be parallelized.

3.2.3. Algorithm Execution Module

This module is in charge of executing the resulting host and kernel codes in the
computer equipment. The module allows execution monitoring, revealing in real time
the performance of the computing devices. The data obtained from monitoring can be
displayed on the console or stored in the secondary memory. Figure 4 shows the tasks
performed by the Algorithm Execution Module.

Figure 4. Task sequence of the program execution module.

The compilation of the resulting codes is carried out using the GCC compiler [22],
which includes the files of the host code, the kernels, and the functions defined in its
execution. These files make it possible to generate an executable file compatible with the
configuration of computing devices defined in the platform and the operating system it
is running.

Once the executable is generated, the execution of the program begins. Various execu-
tion options are offered, such as execution monitoring, which allows real-time observation
of the computing devices’ performance.

3.3. Software Features of the Platform

The platform is written in the C programming language and receives as input se-
quential source codes written in C. A JSON configuration file is used to describe the
computing devices employed. The platform supports all OpenCL-compliant computing

Computation 2023, 11, 97 7 of 15

devices (version 1.0 and later), and the resulting host and kernel codes can be executed on
these computing devices.

4. Experimentation

To validate the capabilities of the platform in the automatic parallelization of sequen-
tial algorithms, multiple experiments were performed. These experiments allowed us to
validate the generality, flexibility, and feasibility of the platform for heterogeneous comput-
ing. The following section describes the experimental methodology used, the specifications
of each experiment, and the results obtained.

4.1. Hardware and Software Specifications

The evaluation was carried out using Intel i9-9920X computing equipment, 3.50 GHz,
32 GB DDR4, which is referred to in the following as CPU1. We also used Nvidia Quadro
P5000 16 GB and Nvidia GeForce GT 710 2 GB graphics cards, which are referred to as
GPU1 and GPU2, respectively. CPU1 used the Ubuntu Linux version 20.04.2.0 LTS with
390.87 server drivers for Linux and the OpenCL 2020.1.395 SDK for Intel CPUs.

In the OpenCL execution environment, two entities were defined, the host processor
and the computation devices. In all the experiments performed, the host device was CPU1.
Using this device, we executed the platform as well as the generated OpenCL host code; in
cases where the CPU was also used as an accelerator, the generated parallel code was also
executed on this device.

4.2. Specifications of the Parallelized Algorithms

In all the experiments, the 30 algorithms of the Polybench/C suite (version 3.2) [23]
were used for implementation on the proposed platform. This suite comprises a set of
algorithms written in the C language that are used to evaluate automatic parallelization
capabilities in a heterogeneous environment. It contains the sequential form of each
algorithm in a single source code file ready to be parallelized, explicitly delimiting the
parallelizable parts. Because one of the main functions of the platform proposed in this
work is the automatic identification of the parallelizable sections of a sequential source code,
each of the Polybench/C suite algorithms was adapted to have a formatting style similar
to a sequential code provided by a user, that is, the explicit definition of the parallelizable
sections in the input algorithms as provided in the benchmark was removed.

4.3. Experimental Results

This section describes and analyzes the execution results obtained from the parallel
codes automatically generated by the platform during three experiments. In the first experi-
ment, the generality and correct execution of the algorithms was validated by observing the
values resulting from their parallel execution. The second experiment validated the ability
of the platform to simultaneously execute algorithms in several computing devices, and
the third experiment evaluated the performance of the solutions generated by the platform.

4.3.1. Experiment 1: Validation of the Sequential Code Parallelization Capacity

The main objectives of this experiment were to verify the generality property of
the platform by evaluating its ability to automatically generate parallel code suitable
for OpenCL translation and to assess its flexibility in using different computing devices
as defined by the user. We verified that the generated solutions produced the correct
execution results.

The experiment comprised several tests that were performed for each algorithm of
the Polybench/C suite. Each test involved executing the algorithm in the heterogeneous
platform with the standard input sizes defined in the suite. To test the capacity of the plat-
form to use different devices and a combination of these, the execution process considered
the following combinations of computing devices for the heterogeneous platform: CPU1,
CPU1 + GPU1, and CPU1 + GPU1 + GPU2. The output was stored in a text file. This file

Computation 2023, 11, 97 8 of 15

was compared to the results obtained from the execution of the sequential version of the
algorithm under test. The content similarity percentage was computed using a text parser.
The test was evaluated as valid when the results matched completely.

In this experiment, all tests were performed successfully. We observed that the plat-
form generated valid source codes in OpenCL for all Polybench/C algorithms and that
these were correctly executed under several combinations of computing devices, producing
correct results in all cases. However, in the execution of the algorithms 2 mm, 3 mm, adi,
atax, covariance, fdtd-2d, gemver, symm, trmm, and floydwarshall, there was minimal
variation in the resulting values after the decimal point, since these were of the floating
type. This was due to the difference in the representation of floating numbers between
the C language and OpenCL. It should be noted that these variations did not occur in all
algorithms that used floating numbers, but were found only in certain cases. Because of
this characteristic, and the fact that no algorithm presented significantly modified final
values, the tests were considered valid.

From the results obtained in this experiment, we verified that the platform successfully
ran all Polybench/C algorithms under different combinations of computing devices and
produced correct results.

4.3.2. Experiment 2: Validation of the Simultaneous Use of Computing Devices

The purpose of this experiment was to validate the platform’s ability to generate paral-
lel code in OpenCL that was executed simultaneously on multiple computing devices. This
was an important feature of the platform, allowing it to support several devices of different
types, as expected in heterogeneous computing. Simultaneous execution is possible only
if one ensures that no inconsistencies in the results are generated due to synchronization,
memory transfer, or computation problems in the devices. This experiment validated the
ability of the platform to find codes in the input suitable for simultaneous execution.

Again, all the algorithms of the Polybench/C suite were parallelized on the platform
using the maximum input sizes allowed by the computing devices employed. Two combi-
nations of devices, CPU1 and GPU2, were used in all tests. The algorithms were executed
using the platform’s verbose option to display the information of the analyses performed
internally by the platform. Using this option, the platform indicated if any section of the
code presented a problem that would affect its simultaneous execution. We also used the
platform monitor to check the simultaneous use of the devices. For the test to be valid,
the algorithm had to be executed on more than one device simultaneously, on at least one
part of the algorithm.

The tests performed showed that all the algorithms in the Polybench/C suite were
parallelized to make use of multiple computing devices simultaneously for the execution of
at least one part of the algorithm. The algorithms that were fully executed simultaneously
on the defined computing devices were: 2 mm, 3 mm, doitgen, tdtd-2d, gemm, gemver,
gesummv, mvt, syr2k, and syrk. These algorithms had the necessary characteristics to avoid
problems during simultaneous execution. The other algorithms contained sections that did
not comply with these rules; nevertheless, in their sections that did comply, they achieved
simultaneous execution.

The results obtained in the second experiment revealed that the platform made ade-
quate use of the parallelization feature and that all the algorithms in the Polybench/C suite
contained at least one section that could be divided between multiple computing devices
for simultaneous execution.

4.3.3. Experiment 3: Acceleration Achieved

The purpose of this experiment was to determine the speedup levels achieved when
using the platform for execution of an algorithm in a heterogeneous environment. We
used the largest possible input sizes for the algorithms according to the limitations of the
hardware employed in the tests. The speed up obtained for each case is shown in Table 1.

Computation 2023, 11, 97 9 of 15

Table 1. Acceleration for the algorithms in the Polybench/C suite, for the different configurations of
the heterogeneous computing platform (first run).

Algorithm
Speedup

CPU CPU + GPU1 GPU1

1 2 mm 86.552 54.097 14.926
2 3 mm 76.292 45.774 16.954
3 adi 6.369 7.593 1.103
4 atax 0.428 0.321 0.183
5 bicg 0.649 0.520 0.260
6 cholesky 7.961 1.753 0.914
7 correlation 157.205 94.324 58.961
8 covariance 42.142 25.282 12.645
9 doitgen 0.070 0.035 0.023
10 durbin 0.047 0.047 0.039
11 dynprog 0.992 0.992 0.996
12 fdtd-2d 0.002 0.001 0.001
13 fdtd-apml 0.511 0.511 0.213
14 gemm 116.612 58.322 33.322
15 gemver 0.812 0.558 0.357
16 gesummv 0.485 0.485 0.277
17 gramschidt 12.841 13.517 4.428
18 jacobi-1d 2.814 5.170 2.443
19 jacobi-2d 3.855 4.961 0.985
20 lu 5.942 5.671 2.655
21 ludcmp 26.988 7.871 47.211
22 mvt 1.002 0.858 0.546
23 reg-detect 23.051 4.610 1.720
24 seidel 5.050 3.570 1.726
25 symm 17.717 3.743 0.526
26 syr2k 41.112 32.886 6.091
27 syrk 29.104 21.823 7.275
28 trisolv 0.129 0.159 0.138
29 trmm 0.001 0.002 0.003
30 floydwarshall 0.001 0.002 0.002

Figure 5 shows a comparison of all the speedup levels in Table 1 achieved by the
algorithms parallelized on the platform if compared to the implementation of the sequential
versions (baseline). The runs on CPU1, CPU1 + GPU1, and CPU1 + GPU1 + GPU2 were
compared. These combinations allowed us to observe and confirm that speedup is achieved
in most of the cases, using any of the three heterogeneous computing platform configuration,
and some configurations are more suitable for achieving a better acceleration.

The algorithm with the best speedup was correlation, which obtained an accelera-
tion of 157.20× when running on CPU1 only, 94.32× when using CPU1 + GPU1, and 58.96×
when running on a combination of all devices (CPU1 + GPU1 + GPU2). These results indi-
cated that the more available devices, the lower the speedup, since this phenomenon was
observed in many algorithms, with CPU1 achieving the shortest execution time. However,
we determined that this was not the case, as in the algorithm ludcmp, an acceleration
of 47.21× was achieved, which was the highest of all the tests executed using all three
computing devices. The speedup increased because this algorithm performed better when
run on a GPU; hence, the execution was faster when using both GPUs compared to CPU1
alone. Therefore, the speedup was not completely dependent on the number of available
devices, as it was also affected by the devices’ capabilities.

Computation 2023, 11, 97 10 of 15

2
m

m

3
m

m

a
d

i

a
ta

x

b
ic

g

c
h

o
le

s
k

y

c
o

rr
e

la
ti

o
n

c
o

v
a

r1
a

n
c

e

d
o

it
g

e
n

d
u

rb
in

d
y

n
p

ro
g

fd
td

-2
d

td
td

-a
p

m
l

g
e

m
m

g
e

m
v

e
r

g
e

s
u

m
m

v

g
ra

m
s

c
h

id
t

c
o

b
i-

l
d

-i
m

p
e

r

ja
c

o
b

i-
2

d

lu

lu
d

c
m

p

s
y

rk

s
y

r2
k

re
g

-d
e

te
c

t

s
e

id
e

l

s
y

m

m
v

t

tr
is

o
lv

tr
m

m

fl
o

y
d

-w
a

 rs
h

a
 11

t--1

t--1

o

o

1
1

w

�

A
c

c
e

le
ra

ti
on

t--1

o
t--1

t--1

t--1

1
O

O

O

t-J

o

t-J
�

n
n

n

-o

-o

-o

C
C

C

t-l

t-l

t-l

+

+

G)
G)

-o

-o

c
e

t-l

t-l

+

G)

-o

Figure 5. Acceleration of the Polybench/C suite algorithms by the proposed platform, using the
largest data size allowed by the capabilities of the computing devices employed: CPU1 (Intel i9-
9920X), GPU1 (Nvidia Quadro P5000), and GPU2 (Nvidia GeForce GT 710).

The algorithms dynprog and mvt did not achieve any speedup for two of the three
configurations of the heterogeneous computing platform, presenting practically the same
execution times. On the other hand, an increase in execution time was observed in the
algorithms adi, atax, doitgen, durbin, fdtd-2d, fdtd-ampl, gemver, gesummv, trisolv,
trmm, and floydwarshall, whose sequential versions ran faster than the parallel versions.
However, this problem arose because of the use of small input sizes due to the memory
limitations of GPU2, which meant that the input size could occupy no more than 2 GB
of memory. For this reason, a second series of tests was performed wherein GPU2 was
excluded and a comparison with GPU1 was added, increasing the input sizes.

A second round of experiments was run, now increasing the input sizes and also
using computing devices with more available memory (CPU1 and GPU1). The results
obtained are presented in Table 2 and graphically shown in Figure 6. In this second test,
we observed that most of the parallelized algorithms achieved a high speedup, with more
favorable results than in the previous test. The correlation algorithm again presented
the highest speedup of 278.95× when using only GPU1. The other algorithms that were
previously not accelerated or accelerated only slightly achieved improved speedups in this
run. For example, symm presented a speedup of 88.56× when using only GPU1 but was
previously slowed down when using all computational devices.

Table 2. Acceleration for the algorithms in the Polybench/C suite, for the different configurations of
the heterogeneous computing platform (second run).

Algorithm
Speedup

CPU CPU + GPU1 GPU1

1 2 mm 86.552 54.097 144.281
2 3 mm 76.292 45.774 152.575
3 adi 6.369 7.593 10.391
4 atax 0.980 0.952 1.851
5 bicg 0.672 0.597 1.194
6 cholesky 7.961 1.753 9.552
7 correlation 209.248 139.467 278.953
8 covariance 42.142 25.282 42.141
9 doitgen 1.848 1.422 1.848
10 durbin 0.311 0.212 0.350
11 dynprog 0.992 0.992 2.304
12 fdtd-2d 0.002 0.001 0.004
13 fdtd-apml 0.900 0.777 1.425
14 gemm 116.612 58.322 233.223
15 gemver 1.543 1.350 3.324

Computation 2023, 11, 97 11 of 15

Table 2. Cont.

Algorithm
Speedup

CPU CPU + GPU1 GPU1

16 gesummv 0.651 0.732 1.172
17 gramschidt 12.841 13.517 42.790
18 jacobi-1d 2.814 5.170 24.697
19 jacobi-2d 3.855 4.961 8.683
20 lu 5.942 5.671 12.478
21 ludcmp 27.452 7.877 50.977
22 mvt 1.539 1.539 3.498
23 reg-detect 23.051 4.610 2.590
24 seidel 5.116 3.574 17.422
25 symm 17.717 3.743 88.568
26 syr2k 41.112 32.886 54.795
27 syrk 29.104 21.823 43.634
28 trisolv 0.212 0.224 1.009
29 trmm 0.001 0.002 0.024
30 floydwarshall 0.001 0.002 0.065

2
m

m

3
m

m

a
d

i

a
ta

x

b
ic

g

c
h

o
le

s
k

y

c
o

rr
e

la
ti

o
n

c
o

v
a

r1
a

n
c

e

d
o

it
g

e
n

d
u

rb
in

d
y

n
p

ro
g

fd
td

-2
d

td
td

-a
p

m
l

g
e

m
m

g
e

m
v

e
r

g
e

s
u

m
m

v

g
ra

m
s

c
h

id
t

ja
c

o
b

i-
l

d

ja
c

o
b

i-
2

d

lu

lu
d

c
m

p

s
y

rk

s
y

r2
k

re
g

-d
e

te
c

t

s
e

id
e

l

s
y

m

m
v

t

tr
is

o
lv

tr
m

m

fl
o

y
d

-w
a

 rs
h

a
 11

A
c

c
e

le
ra

ti
on

1--1

1--1

1--1

o

o

o

1--1

1--1

1--1

1
1

1
O

O

O

w

�

1--1

o

1--1
�

G)
n

n

-o

-o

-o

c
c

c

t--J

t--J

t--J

+

G)

-o

e

t--J

Figure 6. Acceleration of the Polybench/C suite algorithms by the platform, using the largest
data size allowed by the computing devices employed: CPU1 (Intel i9-9920X) and GPU1 (Nvidia
Quadro P5000).

We also observed that the number of decelerated algorithms was significantly reduced,
with only durbin, fdtd-2d, trmm, and floydwarshall presenting no acceleration. This was
due to the internal structures of these algorithms.

The algorithms atax, bicg, dynprog, fdtd-apml, gesummv, and trisolv were not ac-
celerated when executed on CPU1 and CPU1 + GPU1, but were accelerated when executed
only on GPU1. This was due to the execution capabilities of the devices employed; for
example, GPU1 had more computational power for the execution of this type of algorithm
in parallel than CPU1.

This experiment showed that the platform generated solutions with high speedups for
most of the algorithms of the Polybench/C suite; speedups of 50× were achieved in most
cases, with 278.95× being the highest result. The speedup was limited by the capabilities
of the slowest device employed by the platform; the greater the input size, the greater the
speedup achieved. Another factor that influenced the speedup was the structure of the
algorithms themselves, some of which did not favor parallelism.

4.4. Comparison with Previous Works

To the best of our knowledge, this is the first platform aiming at achieving generality
and flexibility in high-performance heterogeneous computing for non-experts in either
specific programming languages or implementation frameworks (CUDA, HLS, VHDL,
and Verilog). Thus, we could not conduct a fair quantitative comparison with other works
that have used custom devices and implementation frameworks, sacrificing generality
for performance. Regardless, a qualitative comparison between our platform and several

Computation 2023, 11, 97 12 of 15

related works in the literature is shown in Table 3. This comparison was carried out in
terms of the most relevant characteristics that define the implementation of a platform.
The programming language used by the programmer is relevant as it provides flexibil-
ity and simplicity. The implementation framework is relevant as it allows generality or
specificity. The devices supported are crucial to achieving truly heterogeneous comput-
ing, taking advantage of available computing resources and allowing the implementer
to change (add/remove) the devices as convenient. Finally, the underlying algorithms
executed over the devices are relevant as they show the generality and reusability of the
computing platform. As indicated by the data in Table 3, our proposal relies on OpenCL to
guarantee interoperability and generality and on ANSI C to achieve flexibility and the easy
of programming for non-experts. Also, it was tested with representative programs (the
Polybench suite) in more than one domain (algebra, statistics, matrix multiplication, etc.).

Table 3. Qualitative comparison with previous works.

Ref.
Programming

Language
(End-User)

Implementation
Framework Devices Used

Algorithms/
Application

Domain

[6] Python HLS C FPGA Benchmark
(general-purpose)

[7] Python Cuda GPUs Matrix multiplica-
tion

[8] C/C++ HLS ASIC, FPGA Embedded applica-
tions benchmark

[9] C, C++

Multilevel
intermediate

representation
(MLIR)

ASIC, FPGA ML accelerators

This study C ANSI OpenCL CPU, GPUs Benchmark
(general-purpose)

An implementation using the platform proposed in this work may not achieve more
favorable results than one optimized by hand. However, our solution could allow faster
development times and still achieve considerable acceleration compared to a sequential
solution. Our system also serves as a proof of concept for computationally demanding
algorithms in order to identify further optimizations that could be translated to ad hoc
implementations using specific devices and frameworks by an experienced implementer,
if desired.

4.5. Limitations

Computing power is closer to programmers and users than before. Computing capabil-
ities are now available in several forms, from tiny devices to high-performance computers.
However, from the programmer’s point of view or from the user’s perspective, parallel
computing could suppose an advantage but also a challenge for mastering a design flow
for specific frameworks, such as CUDA, VHDL, and High-Level Synthesis, among others.
This is where our proposed platform may help programmers or users to explore speedups
in their implementations using the computing devices available as computing engines.
However, seeking simplicity and generality in favor of programmers or users, a cost is paid
in terms of performance compared to a custom parallel design for specific devices with
specific frameworks and design flows. Now, the performance obtained by the proposed
heterogeneous platform so far described depends strongly on the algorithm nature and the
efficiency of the model for parallel task mapping. But, despite this, the platform provides
the user with a framework to test different configurations based on the available computing
devices in a simple manner. This capability enables programmers and users to explore
speedup opportunities, make possible proof of concept implementations, and invest more
effort in obtaining custom designs if needed.

Computation 2023, 11, 97 13 of 15

Another limitation of the current platform is that it uses only one model for mapping
the parallel tasks, based on the polyhedral method for the automatic generation of Kernel,
which can be from CUDA or OpenCL. This critical part deserves a deeper study, and other
parallel models that can serve as the engine that generates executable code for effective
parallelism could also be explored and incorporated into the platform.

Finally, the platform does not infer its best configuration for achieving the best speedup
for a given input algorithm. This is a complex and challenging task that can be further
explored. Of course, there is room for improvement in reducing the gap in achieving two
main goals: on the one hand, having a significant speedup, and on the other, configuring,
at run time, the platform that allows achieving that speedup.

5. Conclusions

This paper presented a flexible, general-purpose, heterogeneous computing platform
that addressed existing development complexity issues in heterogeneous computing by
fully automating the process of coding and executing algorithms in a heterogeneous
environment with OpenCL. The automation capabilities of the platform as well as its
non-functional characteristics, such as its generality and flexibility, were validated with
three experiments, wherein Polybench/C 3.2 suite algorithms were used as input data
on a heterogeneous platform comprising a multicore CPU (Intel i9-9920X) and two GPUs
(Nvidia Quadro P5000 and Nvidia GeForce GT 710).

We verified the values resulting from the execution of each algorithm in the exper-
iments and observed that the platform generated solutions that provided correct values
in all cases, regardless of the number and/or type of devices used. Therefore, the plat-
form demonstrated flexibility, allowing one to select any available computing device for
execution of an algorithm.

The capacity for simultaneous execution across multiple devices is an important
characteristic of the platform that was tested using all Polybench/C algorithms. We
observed that for all algorithms, the simultaneous execution of at least one section of
the algorithm across multiple computing devices was achieved, resulting in considerable
accelerations. However, we also found that the acceleration was limited by the slowest
device used for the execution.

In general, we observed that the accelerations achieved were high, with an average
of 50× and a maximum of 270×. We also observed that the acceleration was dependent
on the amount of work performed internally by the algorithms. As some Polybench/C
algorithms performed little work with small input sizes, no speedups were achieved when
these were implemented in parallel, since their sequential execution was terminated earlier
than their parallel versions. However, we observed that after considerably increasing the
data input size, the parallel versions outperformed the sequential ones.

We proved that the platform allows the effective exploitation of the advantages of
heterogeneous computing, is flexible in terms of the devices used, and has sufficient gener-
ality to receive any algorithm for execution. For sequential implementation, the platform
generates the executable code and takes advantage of the parallel parts for deployment
on the available heterogeneous devices. The platform also offers a high level of usability
for the end-user, which allows the quick configuration of devices and the generation of
any algorithm in its parallel version. Immediate future work will include an evaluation of
the proposed platform in cases where high-computational-complexity algorithms are used,
such as homomorphic encryption, deep learning, and large-scale simulations, and in cases
that involve more computing devices, such as FPGAs or ASICs.

Computation 2023, 11, 97 14 of 15

Author Contributions: Conceptualization, J.J.G.-H. and M.M.-S.; methodology, J.J.G.-H. and M.M.-S.; soft-
ware, E.E.-R.; validation, E.E.-R., J.J.G.-H. and M.M.-S.; formal analysis, E.E.-R., J.J.G.-H. and M.M.-S.; in-
vestigation, E.E.-R., J.J.G.-H. and M.M.-S.; resources, J.J.G.-H. and M.M.-S.; writing—original draft
preparation, J.J.G.-H., M.M.-S. and E.E.-R.; writing—review and editing, J.J.G.-H. and M.M.-S.; visual-
ization, J.J.G.-H. and M.M.-S.; supervision, J.J.G.-H. and M.M.-S.; project administration, J.J.G.-H. and
M.M.-S.; funding acquisition, J.J.G.-H. and M.M.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by PRODEP, grant number 30526.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CPU Central processing unit
GPU Graphical processing unit
FPGA Field-programmable gate array
CUDA Compute unified device architecture
HPC High-performance computing
OpenCL Open computing language
HLS High-level synthesis
VHDL Very-high-speed integrated circuit hardware description language
ASIC Application-specific integrated circuit
PPCG Polyhedral parallel code generation
JSON Javascript object notation

References
1. Alzeini, H.I.; Hameed, S.A.; Habaebi, M.H. Optimizing OLAP heterogeneous computing based on Rabin-Karp Algorithm. In

Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA),
Kuala Lumpur, Malaysia, 25–27 November 2013; pp. 1–6.

2. Yoo, K.H.; Leung, C.K.; Nasridinov, A. Big Data Analysis and Visualization: Challenges and Solutions. Appl. Sci. 2022, 12, 8248.
[CrossRef]

3. Ben-Nun, T.; Hoefler, T. Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. ACM Comput.
Surv. 2019, 52, 65. [CrossRef]

4. Liu, Q.; Qin, Y.; Li, G. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing. Water 2018, 10, 589. [CrossRef]
5. Numan, M.W.; Phillips, B.J.; Puddy, G.S.; Falkner, K. Towards automatic high-level code deployment on reconfigurable platforms:

A survey of high-level synthesis tools and toolchains. IEEE Access 2020, 8, 174692–174722. [CrossRef]
6. Huang, S.; Wu, K.; Jeong, H.; Wang, C.; Chen, D.; Hwu, W.M. PyLog: An Algorithm-Centric Python-Based FPGA Programming

and Synthesis Flow. IEEE Trans. Comput. 2021, 70, 2015–2028. [CrossRef]
7. Marowka, A. Python accelerators for high-performance computing. J. Supercomput. 2018, 74, 1449–1460. [CrossRef]
8. Zacharopoulos, G.; Ferretti, L.; Giaquinta, E.; Ansaloni, G.; Pozzi, L. RegionSeeker: Automatically Identifying and Selecting

Accelerators From Application Source Code. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 741–754. [CrossRef]
9. Curzel, S.; Agostini, N.B.; Castellana, V.G.; Minutoli, M.; Limaye, A.; Manzano, J.; Zhang, J.; Brooks, D.; Wei, G.Y.; Ferrandi, F.;

et al. End-to-End Synthesis of Dynamically Controlled Machine Learning Accelerators. IEEE Trans. Comput. 2022, 71, 3074–3087.
[CrossRef]

10. Wang, S.; Prakash, A.; Mitra, T. Software support for heterogeneous computing. In Proceedings of the 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 8–11 July 2018; pp. 756–762.

11. Ivutin, A.N.; Voloshko, A.G.; Novikov, A.S. Optimization Problem for Heterogeneous Computing Systems. In Proceedings of the
2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020; pp. 1–4.

12. Garcia-Hernandez, J.J.; Morales-Sandoval, M.; Elizondo-Rodriguez, E. A Flexible and General-Purpose Platform for Heterogeneous
Computing, version 1.0; Zenodo: Honolulu, HI, USA, 2023. [CrossRef]

13. Grasso, I.; Pellegrini, S.; Cosenza, B.; Fahringer, T. A uniform approach for programming distributed heterogeneous computing
systems. J. Parallel Distrib. Comput. 2014, 74, 3228–3239. [CrossRef]

http://doi.org/10.3390/app12168248
http://dx.doi.org/10.1145/3320060
http://dx.doi.org/10.3390/w10050589
http://dx.doi.org/10.1109/ACCESS.2020.3024098
http://dx.doi.org/10.1109/TC.2021.3123465
http://dx.doi.org/10.1007/s11227-017-2213-5
http://dx.doi.org/10.1109/TCAD.2018.2818689
http://dx.doi.org/10.1109/TC.2022.3211430
http://dx.doi.org/10.5281/zenodo.7689320
http://dx.doi.org/10.1016/j.jpdc.2014.08.002

Computation 2023, 11, 97 15 of 15

14. Haidl, M.; Gorlatch, S. PACXX: Towards a unified programming model for programming accelerators using C++ 14. In
Proceedings of the 2014 LLVM Compiler Infrastructure in HPC, New Orleans, LA, USA, 16–21 November 2014; pp. 1–11.

15. Diener, M.; Kale, L.V.; Bodony, D.J. Heterogeneous computing with OpenMP and Hydra. Concurr. Comput. Pract. Exp. 2020,
32, e5728. [CrossRef]

16. Navarro, A.; Corbera, F.; Rodriguez, A.; Vilches, A.; Asenjo, R. Heterogeneous parallel_for template for CPU–GPU chips. Int. J.
Parallel Program. 2019, 47, 213–233. [CrossRef]

17. Viñas, M.; Fraguela, B.B.; Andrade, D.; Doallo, R. Heterogeneous distributed computing based on high-level abstractions. Concurr.
Comput. Pract. Exp. 2018, 30, e4664. [CrossRef]

18. Zheng, S.; Liang, Y.; Wang, S.; Chen, R.; Sheng, K. FlexTensor: An Automatic Schedule Exploration and Optimization Framework
for Tensor Computation on Heterogeneous System. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 859–873.

19. Fang, J.; Huang, C.; Tang, T.; Wang, Z. Parallel programming models for heterogeneous many-cores: A comprehensive survey.
CCF Trans. High Perform. Comput. 2020, 2, 382–400. [CrossRef]

20. Verdoolaege, S.; Carlos Juega, J.; Cohen, A.; Ignacio Gomez, J.; Tenllado, C.; Catthoor, F. Polyhedral parallel code generation for
CUDA. ACM Trans. Archit. Code Optim. TACO 2013, 9, 54. [CrossRef]

21. Verdoolaege, S.; Grosser, T. Polyhedral extraction tool. In Proceedings of the Second International Workshop on Polyhedral
Compilation Techniques (IMPACT’12), Paris, France, 23–25 January 2012; Volume 141.

22. Free Software Foundation, Inc. GCC, the GNU Compiler Collection. 2021. Available online: https://gcc.gnu.org/ (accessed on
21 September 2021).

23. Pouchet, L.N.; Yuki, T. Polybench: The Polyhedral Benchmark Suite. 2012. Available online: https://github.com/
MatthiasJReisinger/PolyBenchC-4.2.1 (accessed on 9 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/cpe.5728
http://dx.doi.org/10.1007/s10766-018-0555-0
http://dx.doi.org/10.1002/cpe.4664
http://dx.doi.org/10.1007/s42514-020-00039-4
http://dx.doi.org/10.1145/2400682.2400713
https://gcc.gnu.org/
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

	Introduction
	Related Work
	Proposed Platform Architecture
	Platform Architecture
	Platform Configuration Module
	Preprocessing Module
	Algorithm Deployment Module
	Algorithm Execution Module

	Software Features of the Platform

	Experimentation
	Hardware and Software Specifications
	Specifications of the Parallelized Algorithms
	Experimental Results
	Experiment 1: Validation of the Sequential Code Parallelization Capacity
	Experiment 2: Validation of the Simultaneous Use of Computing Devices
	Experiment 3: Acceleration Achieved

	Comparison with Previous Works
	Limitations

	Conclusions
	References

