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Abstract: This study focuses on the topological optimization of adhesive overlap joints for structures
subjected to longitudinal mechanical loads. The aim is to reduce peak stresses at the joint interface of
the elements. Peak stresses in such joints can lead to failure of both the joint and the structure itself.
A new approach based on Rational Approximation of Material Properties (RAMP) and the Finite
Element Method (FEM) has been proposed to minimize peak stresses in multi-layer composite joints.
Using this approach, the Mises peak stresses of the optimal structural joint have been significantly
reduced by up to 50% under mechanical loading in the longitudinal direction. The paper includes
numerical examples of different types of structural element connections.

Keywords: topological optimization; RAMP; adhesive joints; finite element method; mises stresses;
shear stresses

1. Introduction

In various industrial and technological applications, joining elements of composite
structures using a third phase is common due to its ease and durability [1–4]. These
methods include traditional adhesive bonding, soldering, brazing, welding, riveting, and
others. Recent developments in vehicle design, particularly in automobiles and aircraft,
aim to create products with low weight and high durability, leading to increased interest in
adhesive bonding. However, under longitudinal and transverse loads, the joints experience
peak stresses that can cause them to fail. To overcome this problem, overlap joints are
commonly used due to their manufacturability, and the reliability of such joints can be
increased by changing the thickness of the adhesive, its composition, the type of joint, or
the shape of the outer surface of the adhesive layer at the edges of the joint.

One of the most important geometric factors is the thickness of the adhesive layer be-
tween the joints, as it significantly affects the stress-strain state of the joints. Kahraman et al. [5]
report on a study of the effects of adhesive thickness and aluminum filler content on the
mechanical performance of aluminum joints bonded with epoxy resin and aluminum
powder. The authors investigated, both experimentally and numerically using FEM, the
influence of adhesive thickness and aluminum filler content on the bond strength of the
joints. They showed that, in general, the bond strength decreases with increasing adhesive
thickness. The joints failed in the cohesive mode (adhesive failed) due to the high stress
level generated by the adhesive. This indicates that the adhesion to the metal surface is
stronger than the adhesion to the inside of the adhesive. Grant et al. [6] described lap
joints of two steel parts joined by epoxy and investigated the problems of structural tension
(which creates shear along the joint line), pure bending, and bending plus shear. They
considered the influence of various parameters on the strength of the joint, including the
length of the overlap, the thickness of the bonding line, and the change in the shape of
the outer surface of the adhesive layer at the edges of the joint. M.N. Vinay [7] carried
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out experimental studies on the effect of adhesive layer thickness, overlap length, and
surface roughness on the strength of a double symmetric overlap joint. It was shown
that the thickness of the adhesive layer was the most important parameter and that the
strength of the bond decreased when the thickness was reduced or increased beyond the
optimum level.

The stiffness of adhesive joints has been studied for static loads, dynamic loads, and
impact. Yaman et al. [8] studied the effect of adhesive thickness, overlap length, number of
layers, and orientation of adhesive fibers on the natural frequency and damping of two-
and three-part adhesive joints. They compared the FEM results with the experimental
analysis data. The studies showed that the thickness and orientation angle of the adhesive
fibers were the main parameters that changed the position of the resonant frequency of
the structure. In the study by Kemiklioglu et al. [9], the authors investigated the effect of
different vibration loads on the failure mechanisms of adhesive composites. The study
found that the strength of adhesive joints under vibration was lower than that of non-
vibration joints. Yaman et al. [10] conducted an experimental study to investigate the
natural frequencies and damping coefficients of adhesive single strap joints (SSJ) and
double strap joints (DSJ). The results indicated that DSJ had better damping properties
than single-lap joints (SLJ) and SSJ. Moreover, the thickness of the adhesive had a more
pronounced effect on the damping properties than the overlap length. Almitani et al. [11]
proposed a solution for determining the effect of dynamic loading on the adhesive bond
using an improved dissipation model. They compared the analytical solution obtained
in the paper with the results of the finite element method. It was concluded that the
eigen-frequencies are mainly influenced by the damping coefficient of the substrates rather
than the damping coefficient of the adhesive joint. Machado et al. [12] investigated the
strength and fracture resistance of single-layer overlap joints under impact loading. The
study was carried out on two types of adhesive with high stiffness and high ductility. They
investigated the effect of the cohesive parameters of the adhesive by varying each of these
parameters while maintaining the others.

Dragoni et al. [13] derived analytical formulae for the relative stiffness of the beam—
adhesive—beam, which were used to find the optimum joint parameters. The finite element
method was used to verify the relationships obtained for three types of connections between
two beams. The analytical formulae for optimization by fitting determine the dimensions
of the multilayer beam that maximize either the stress uniformity along the bond line or the
test sensitivity to the shear modulus of the adhesive. It was shown that the two conditions
cannot be achieved simultaneously.

It should be noted that no optimization procedures were used in all the work, and the
joint strength improvement was completed with a simple overshoot. However, numerical
optimization techniques, particularly topological optimization, are not used.

Fedorov et al. [14] proposed a method for selecting the mechanical characteristics
and geometric parameters of an interlayer bond of two similar or different materials to
avoid significant stress concentrations near the edges of both interfaces. They solved a
number of model examples to optimize the characteristics and geometry of the adhesive
layer to minimize stress concentration at the interface. The proposed approach is more
intuitive and allows a mathematical theory to be constructed. Valente et al. [15] determined
the maximum load values at which a lap joint breaks on impact using cohesive zone
models. They performed modifications of the lap joint geometry by introducing external
and internal chamfers in the adhesives, as well as adding adhesive ridges, to observe the
effects of these modifications with different types of adhesives. In this way, the optimum
type of adhesive joint was obtained by simple overshooting, which is not optimal from a
design point of view. The study by the same authors [16], with a similar approach to joint
optimization, is devoted to a numerical study of the cohesive zone of tensile-loaded lap
joints in impact scenarios with three adhesives with different properties.

The analysis of the above studies shows that the problem of smoothing the peak
stresses at the joints of structural elements has not been solved yet. Available experimental
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studies have shown that the failure of structures occurs at the joints. This problem can be
solved using numerical optimization algorithms, in particular topological optimization.

Ejaza et al. [17] used a nonparametric optimization algorithm to optimize the structure
of three types of overlap girder joints to reduce peak stresses in the adhesive layer. Topolog-
ical optimization of the selected adhesive joints was carried out to determine the optimum
topology and shape of the adhesives and side bevels. To solve the optimization problems,
the approach of minimizing the yield strength was used, which, in terms of energy, is equiv-
alent to minimizing the total energy of deformation. A standard topological optimization
procedure in the Abaqus module was used. The gain from the optimization was up to 38%
for shear stress. Vicente et al. [18,19] used topological optimization of the adhesive used as
a joint for the elements used in the construction of ship hulls. In ref. [18], the behavior of
overlap joints of metal-hybrid panels with primary structural elements in a ship’s structure
was investigated. Topological optimization was applied to minimize the Mises solder stress.
In ref. [19], the joint geometry is optimized by topological optimization of a symmetrical
steel part in the form of a clamp, attaching a hybrid panel using structural adhesive. The
objective function of the optimization problem to be solved is defined as the total mass of
the steel part, which should be as light as possible. The geometric shape resulting from this
optimization is analyzed using finite elements by simulating a non-linear cohesive zone
model, minimizing von Mises stresses. The weight of the structure, after applying the opti-
mization procedure, is 16.4% less than that of the original design. Kim et al. [20] propose
a method to prevent the separation of adhesive bonds between different material phases
while optimizing the topology. The interfacial tension energy density (ITED) is introduced
into the target function to limit the formation of areas where the material interface with the
adhesive is subjected to tensile stress. Optimization examples for different types of beams
loaded with concentrated forces at the free end are considered. Results for topological
optimization with and without ITED consideration are compared. Consideration of ITED
gives a greater load carrying capacity of the beam.

Note that the paper does not provide a comparison with results obtained by other authors.
Arhore et al. [21] investigated the effect of external adhesive geometry on the strength

of an adhesively bonded joint using two different numerical optimization methods: genetic
algorithm (GA) and topology optimization (TOP). The joint consisted of composite inner
and outer fasteners. The results also showed that the strength of the connection subjected
to bending loads is independent of the external connection geometry, thus minimizing its
weight. A comparison of different approaches to joint optimization in terms of solution
time and quality is presented. The Mallick monograph [22] provides background infor-
mation on various aspects of optimal design and performance improvement of adhesive
joints in building structures. These include joint configurations, joint design parameters,
substrate properties, and adhesive selection. Methods to improve joint performance by
modifying the adhesive layer, shaping the substrate, and hybrid jointing are presented.
Hamdia et al. [23] optimized a flexoelectric composite composed of flexoelectric and purely
elastic building blocks. The direct problem was solved using isogeometric analysis (IGA)
with a Non-Uniform Rational B-Spline (NURBS). The optimization problem was solved
using a multilevel Monte Carlo (MLMC) method based on genetic algorithms (GA). The
results showed that the proposed method reduced computational costs in numerical experi-
ments without any loss of accuracy. Krysko et al. [24,25] have proposed an approach based
on methods for topological optimization of adhesive joints in order to minimize stresses
in the adhesive layer and the structure itself. The study [24] proposed and substantiated
an approach to obtaining an optimal structure and distribution of gradient material prop-
erties to reduce stress levels in a brazed joint. The approach is based on a combination of
topological optimization methods (moving asymptote method) and finite element methods.
Several examples have been considered that confirm the performance of the proposed
approach. Study [25] is devoted to the problem of the strength of two overlapping elements
glued together under mechanical loads, based on Solid Isotropic Material with Penalty
(SIMP) and finite element methods, where the design variable is the material density of the
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structure. The results were compared with those obtained using engineering calculations
and were optimized by 20%.

In engineering practice, an experimental approach is often used for calculating joints
in multilayer composite structures. This approach involves selecting different connection
options and adhesives with the best physical and chemical properties, which has yielded
positive results. However, there is still an issue with optimizing these joints to reduce
peak Mises and shear stresses. A review of the scientific literature reveals that there are
publications based on genetic algorithms [17–21] addressing this issue.

It should be noted that it is practically possible to create an optimum design of welded
joints obtained by topological optimization by means of a 3D printer. There are several
studies in the scientific literature on the use of topological optimization to create optimal
structures’ designs, which can be printed on a 3D printer. For instance, [26] presents a
topological optimization-based design structure for multifunctional 3D printing and notes
that the Center for Innovative Additive Manufacturing at the University of Nottingham
and Loughborough, UK, has as one of its primary goals to develop multifunctional 3D
printing processes. In addition to this article, references can be made to [27,28].

There is a lack of scientific literature on the optimization of adhesive bonds that are
subject to structural failure. However, notable works include those of Krysko et al. [24,25],
who developed an approach to reduce peak stresses at joints using a combination of finite
element and moving asymptote methods. In this paper, we present a further development
of this approach, using the RAMP method and FEM to join multilayer composites. This
new approach resulted in a reduction in peak Mises stresses of up to 50%. On the other
hand, the classical engineering approach did not result in any reduction of the peak stresses
in the Mises joint.

The paper is structured as follows: Section 2 describes the formulation of the topologi-
cal optimization problem, including the forward problem and the inverse solder optimiza-
tion problem. Section 3 presents and discusses the numerical results of the implementation.
Finally, Section 4 of the paper discusses some results and concludes the study.

2. Peak Stress Minimization Based on RAMP and FEM Techniques for Multilayer
Composite Joints
2.1. Statement of the Direct Problem

Consider an area Ω consisting of three sub-areas Ωi, i = 1, 2, 3 (Figure 1), which are
interconnected. One of the sub-areas Ω3 is the solder layer. We denote Ei(x), x = {x1, x2},
i = 1, 2, 3 the Young’s modulus of elasticity in the subdomains Ωi, respectively. The two-
dimensional elastic region Ω is bounded by a closed surface Γ = Γ1 ∪ Γ2 ∪ Γ3, and it is
assumed that the material is isotropic and linearly elastic.
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Boundary conditions: At the boundary Γ1 ∈ Ω2—a fixed support boundary condition
{ui(x) = 0, i = 1, 2} is defined. At the boundary Γ2 ∈ Ω1 a load of intensity F is applied.
The boundary Γ3 is free from loads.
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The relationship between deformations and displacements is determined by:

εij =
1
2
(
ui, j + uj, i

)
, i, j = 1, 2 (1)

.
The stress-strain relation for a plane stress state is written as follows

σ11 = E(x)ε11, σ12 = 2G(x)ε12 (2)

The equilibrium equation is as follows:

σij, j = 0, (i, j = 1, 2) in Ω, (3)

where σij is the stress tensor.

2.2. Statement of the Topological Optimization Problem

Experimental analysis of brazed joints has shown that the highest shear stresses occur
in the solder due to its small thickness. The maximum shear stresses are present at the ends
of the solder layer and are minimal in the middle of the solder layer. Therefore, the goal of
the optimization problem of topological optimization of the interconnection of multilayer
composite structures is to reduce the peak shear stresses in the solder layer. Among the
algorithms used for topological optimization, such as homogenization [29], SIMP [30],
ESO [31], and the RAMP approach [32], SIMP and RAMP methods are the most popular.
While the SIMP method implies high efficiency in a narrow range of problems, the RAMP
method is a stable method that can be used in a wider class of problems [33]. Therefore,
the authors of this paper used the RAMP method. The choice of the RAMP method is
also determined by the fact that the RAMP interpolation scheme is able to ease the issues
associated with the formation of “gray material” compared with the SIMP scheme. “Gray
material” appears in many topological optimization results when using density-based
methods as a region of intermediate gray material. In practical applications, these areas
cannot be physically realized. It is necessary to achieve a clearer phase separation of the
materials used. In contrast to SIMP, RAMP interpolation has a sensitivity other than zero at
a density of zero. RAMP is used in combination with the finite element method to solve the
direct problem of elasticity theory, but with one modification: For each finite element in the
partitioning area, only one design variable is defined, denoting the material density of the
current element.

The power-law interpolation function for regions containing voids and one phase of
the material has the form:

Ee(ρe) = ρ
p
e E0

e , 0 < ρmin ≤ ρe ≤ 1, (4)

where Ee is the modulus of elasticity of the material in the finite element, E0
e —modulus

of elasticity of the base (originally specified) material, p ≥ 1—a penalty parameter, and
increasing it leads to a better solution to the optimization problem. The p-value was chosen
to be either 4 or 5, according to the recommendations given in Bendsøe [34]. The design
variable ρe is bounded from below by a constant ρmin, introduced to prevent degeneracy of
the finite element matrix.

Note that for the values of ρmin ≤ ρe ≤ 1, the modulus Ee(ρe) is limited to the lower
threshold of the density ρe = ρmin and the value of Young’s modulus of the phase of the
base material E0

e , for ρe = 1 .
In the topological optimization phase, the structure with the highest stiffness must

be obtained by changing the geometry of the “optimization areas” and the amount of
material bonded by the adhesive layer accordingly, without changing the original material.
A change in the amount of material in a finite element (or group of elements) should result
in a reduction of stresses both in the optimization areas and in the adhesive area, which is
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most susceptible to fracture. In order to obtain the design with the highest stiffness, the
RAMP method minimizes the strain energy Ws by increasing the density in the areas with
more pronounced sensitivity. The strain energy determines the target function:

ft =
1

Ws0

∫
Ω

Ws(x)dΩ (5)

where Ω—area of the structure considered (merging areas Ω1 and Ω2), Ws0—normalizing factor.
At the same time, restrictions on the amount of material for the modelling must be

met in the area where the optimization problem is solved

0 ≤
∫
Ω

ρ(x)dΩopt ≤ γA, (6)

where: A—optimized area Ωopt, γ—material volumetric ratio.
Experimental analysis of brazed joints has shown that the highest shear stresses occur

in the solder due to its small thickness. The maximum shear stresses are present at the ends
of the solder layer and are minimal in the middle of the solder layer. Therefore, the goal of
the optimization problem is to reduce the peak shear stresses in the solder layer.

The numerical interpretation of the topological optimization problem leads to two
issues: the “checkerboard” problem and the problem of dependence of the optimal solution
on the grid. Mesh dependency, which arises from the fact that a finer mesh allows for
sharper optimal designs, can be mitigated by increasing the number of partitions. The
authors of this work addressed this issue in their studies on the optimization of struc-
tures [24,25,35,36] as well as the identification of holes/inclusions [37,38].

The “checkerboard” problem refers to the formation of adjacent elements with high
and low density, arranged in a checkerboard pattern. To mitigate the checkerboard effect in
the optimal structure, a penalty function is typically introduced in the form

fp =
h0hmax

A

∫
Ω

|∇ρ(x)|
2
dΩ, (7)

where: h0—initial grid size, which controls the size of the elements in the split, hmax—the
current size of the element at the given level. The penalty function is dimensionless and
typically has a value of the order of unity for the worst possible solution. Dimensionless
target function ft (5) and penalty function fp (7) must be consistent, for example, in the
form of a linear combination (5) and (7) with a given parameter q, i.e., we have

f =
1− q
Ws0

∫
Ω

Ws(x)dΩ + q
∫
Ω

|∇ρ(x)|2dΩ. (8)

Value 0 ≤ q ≤ 1 allows balance the goal function and the penalty function with
each other.

Below, the effectiveness of the proposed new algorithm for the numerical implemen-
tation of minimizing peak stresses in multilayer composite structures using the finite
element method (FEM) is demonstrated through simulations conducted with the Comsol
Multiphysics package.

3. Numerical Results
3.1. Case Study 1. Optimization of the Lap Joint of a Two-Layer Package

Consider a scarf joint, a technique where two areas are joined, overlapping at an angle,
and glued together. In our case, let’s study a two-layer isotropic package (Ω1, Ω2) with an
adhesive layer Ω3, the dimensions and boundary conditions of which are shown in Figure 2.
Dimensions are given in mm. Area Ω1 filled with duralumin with a Young modulus equal



Computation 2023, 11, 87 7 of 15

to E1 = 73.1 × 106 Pa, Ω2—the solution area of the topological optimization problem
involves finding the optimum microstructure for the distribution of a given amount of
duralumin also with a Young modulus equal to E1 = 73.1× 109 Pa and Ω3—area of evenly
distributed adhesive solder with E2 = 2.26× 109 Pa. Mechanical load acting on the right
F = 100, 000 H

m2 , the left border is fixed.
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Figure 3 illustrates the three-layer structures commonly found in practical applications
(Figure 3a,b). The structure shown in Figure 3a is characterized by the beveled corners
of the elements being joined, which is a classic engineering technique for reducing shear
stresses. It is worth noting that the amount of duralumin and silver solder material in the
structures shown in Figure 3a,b and the design in Figure 2 is the same, with the coefficient
γ set to 0.5 when solving the optimization problem.

The results of topological optimization are shown in Figures 4 and 5, which display
the distributions of shear stress σ12 and Mises stress σMis, respectively, in the adhesive layer
for the A, B, and C design cases. It should be noted that all plots for σMis and σ12 hereafter
are given for the line passing through the center of the adhesive layer.
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The results of the optimization of the two-layer composite package showed that the
peak Mises stresses at the edges of the adhesive were significantly reduced for the optimal
design (A) compared with the stresses for (B) and (C), as shown in Figures 4 and 5. Since
peak shear stresses at the edges of the adhesive can cause joint failure and ultimately lead
to failure of the entire structure, stress reduction at these locations is a critical engineering
application of the approach proposed by the authors.

Table 1 shows the maximum Mises stresses in the solder layer and the maximum shear
stresses in the solder layer for the three Designs (A)–(C).
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Table 1. Values of maximum stress for Case Study 1.

Construction Maximum Value σMis in Solder Maximum Shear Stresses σ12 in Solder

Topologically optimal construction (A) 225,356 121,540
Bevel (engineering option to reduce the shear
stress) (B) 279,400 144,320

Straight (initial design) (C) 279,250 143,941

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the
values of σMis and σ12 are greater than those of the original design. For the topologically
optimal design, the maximum values σMis are reduced by almost 20%. Therefore, we can
conclude that the proposed stress minimization algorithm is versatile for different types
of solder.

As the optimization problem is based on the numerical finite element method, the
reliability of the results is an important consideration. The convergence of the optimization
results, depending on the number of finite elements, is investigated in Table 2 and Figure 6
using Runge’s principle with a doubling of the number of finite elements. To obtain reliable
results, it is necessary to use 3.94× 103 finite elements, as the difference from the results at
6.96× 103 is 0.06%. This conclusion is confirmed by the points on curves I and III, where
the solution stabilizes. For the middle of the joint (point II), convergence is observed at
6× 103 finite elements. The number of iterations needed to reach a solution is practically the
same. With an increasing number of finite elements, the quality of optimization improves
considerably, as evidenced by the “smoothing” of shear stress values at the joint points.
With a small number of partitions, the stress in the middle of the joint (point II) differs from
the stress at the extreme points by almost seven times in the optimal design. However,
increasing the number of finite element partitions leads to the equalization of stresses in
the optimum design, with a difference of less than 39.2%.

Table 2. Dependence maxσ12 from number of iterations n and σk
12 from number N for FE.
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3.2. Case Study 2: Optimization of a Design Consisting of Three Parts Connected with an Overlap

Consider a three-layer elastic structure, the dimensions and boundary conditions for
which are given in Figure 6. Region Ω1 is filled with duralumin with Young’s modulus
equal to E1 = 73.1× 106 Pa, Ω2 is the area of the topological optimization problem. It
requires the optimal microstructure of the distribution of a given amount of duralumin,
Ω3 is the area of evenly distributed silver solder with E2 = 2.26× 106 Pa. Mechanical load
acting on the right F = 100, 000 H

m2 , the left border is fixed.
Figure 7 displays the three-layer structures commonly used in engineering practice.

The construction shown in Figure 7a is similar to Figure 7a and represents an engineering
solution for reducing solder stresses. The amount of duralumin and silver solder material
used in the constructions depicted in Figure 7a,b is identical to that in the design presented
in Figure 7.

Computation 2023, 11, x FOR PEER REVIEW 10 of 16 
 

 

 
1.0 1.541 61 1.541 0.235 1.411 

 
Figure 6. Dependence of shear stresses 12σ  at points I, II, III on the number FE problem 1.  
optimal design,  Classic type of connection with bevel,  Classic type of connection without 
bevel. 

3.2. Case Study 2: Optimization of a Design Consisting of Three Parts Connected with  
an Overlap 

Consider a three-layer elastic structure, the dimensions and boundary conditions for 
which are given in Figure 6. Region 1Ω  is filled with duralumin with Young’s modulus 
equal to 6

1 73.1 10 ?PaЕ = × , 2Ω  is the area of the topological optimization problem. It re-
quires the optimal microstructure of the distribution of a given amount of duralumin, 3Ω  
is the area of evenly distributed silver solder with 6

2 2 .26 10 ?PaЕ = × . Mechanical load 

acting on the right 2

Н100,000
m

F = , the left border is fixed. 

Figure 7 displays the three-layer structures commonly used in engineering practice. 
The construction shown in Figure 7a is similar to Figure 7a and represents an engineering 
solution for reducing solder stresses. The amount of duralumin and silver solder material 
used in the constructions depicted in Figure 7a,b is identical to that in the design presented 
in Figure 7. 

 
(a) 

Computation 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
(b) 

Figure 7. Three-layer constructions with an adhesive layer: (a)  Classic type of connection with 
bevel (B); (b)  Classical connection without bevel (C). 

Figures 8 and 9 show the distribution of shear stress 12σ  and Mises stress Misσ , re-
spectively, in the adhesive layer that connects the middle and upper parts of the structure 
for cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer 
that connects the lower and middle structures. The graphs depict the stress distribution 
along the lines that pass through the center of the adhesive layer. 

 
Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)  optimal design I, (B) 

 Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

 
Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)  optimal design I, 
(B)  Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

The peak stresses 12σ   and M isσ  , at the ends of the adhesive for the two types of 
optimal design (A) and (C) are significantly lower than those of the original design (B) and 
the beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the 
optimal design (A) are lower than for all other designs along the entire length of the 

Figure 7. Three-layer constructions with an adhesive layer: (a)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

Classic type of connection with
bevel (B); (b)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

Classical connection without bevel (C).



Computation 2023, 11, 87 11 of 15

Figures 8 and 9 show the distribution of shear stress σ12 and Mises stress σMis, respec-
tively, in the adhesive layer that connects the middle and upper parts of the structure for
cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer that
connects the lower and middle structures. The graphs depict the stress distribution along
the lines that pass through the center of the adhesive layer.

Computation 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
(b) 

Figure 7. Three-layer constructions with an adhesive layer: (a)  Classic type of connection with 
bevel (B); (b)  Classical connection without bevel (C). 

Figures 8 and 9 show the distribution of shear stress 12σ  and Mises stress Misσ , re-
spectively, in the adhesive layer that connects the middle and upper parts of the structure 
for cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer 
that connects the lower and middle structures. The graphs depict the stress distribution 
along the lines that pass through the center of the adhesive layer. 

 
Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)  optimal design I, (B) 

 Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

 
Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)  optimal design I, 
(B)  Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

The peak stresses 12σ   and M isσ  , at the ends of the adhesive for the two types of 
optimal design (A) and (C) are significantly lower than those of the original design (B) and 
the beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the 
optimal design (A) are lower than for all other designs along the entire length of the 

Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)

Computation 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
(b) 

Figure 7. Three-layer constructions with an adhesive layer: (a)  Classic type of connection with 
bevel (B); (b)  Classical connection without bevel (C). 

Figures 8 and 9 show the distribution of shear stress 12σ  and Mises stress Misσ , re-
spectively, in the adhesive layer that connects the middle and upper parts of the structure 
for cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer 
that connects the lower and middle structures. The graphs depict the stress distribution 
along the lines that pass through the center of the adhesive layer. 

 
Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)  optimal design I, (B) 

 Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

 
Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)  optimal design I, 
(B)  Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

The peak stresses 12σ   and M isσ  , at the ends of the adhesive for the two types of 
optimal design (A) and (C) are significantly lower than those of the original design (B) and 
the beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the 
optimal design (A) are lower than for all other designs along the entire length of the 

optimal design I, (B)

Computation 2023, 11, x FOR PEER REVIEW 7 of 16 
 

 

area of evenly distributed adhesive solder with 9
2 2 .26 10 ?PaЕ = × . Mechanical load act-

ing on the right 2

Н100,000
m

F = , the left border is fixed. 

 
Figure 2. Case study 1. Design and boundary conditions, optimization (A).  1Ω —nonoptimi-
zated area,  2Ω —optimizated area,  3Ω —adhesive. 

In overlap bonding, there are discontinuities at the ends of the bond line [1–4]. These 
inhomogeneities lead to bending moments due to eccentric loading and uneven moment 
distribution around the adhesive layer, which can cause destructive stresses in the adhe-
sive layer. Breaking the connection geometry can also produce high shear stresses in the 
adhesive. However, there are ways to reduce this eccentric loading in lap joints. For ex-
ample, it has been shown [17] that narrowing the edges of the bonded layers is effective 
in reducing these stresses (Figure 3a). In addition, increasing the length of the joint, the 
thickness of the solder, and the thickness of the layers being joined can reduce the maxi-
mum shear and peel stresses. In our case, all geometric and physical parameters of the 
braze remain constant, and the reduction in maximum stresses at the ends of the braze is 
achieved by topological optimization of the microstructure of the layers to be joined. 

 
(a) 

 

Classic type of connection without bevel, (C)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

optimal design II, (D)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

Classic type of connection
with bevel.

Computation 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
(b) 

Figure 7. Three-layer constructions with an adhesive layer: (a)  Classic type of connection with 
bevel (B); (b)  Classical connection without bevel (C). 

Figures 8 and 9 show the distribution of shear stress 12σ  and Mises stress Misσ , re-
spectively, in the adhesive layer that connects the middle and upper parts of the structure 
for cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer 
that connects the lower and middle structures. The graphs depict the stress distribution 
along the lines that pass through the center of the adhesive layer. 

 
Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)  optimal design I, (B) 

 Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

 
Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)  optimal design I, 
(B)  Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

The peak stresses 12σ   and M isσ  , at the ends of the adhesive for the two types of 
optimal design (A) and (C) are significantly lower than those of the original design (B) and 
the beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the 
optimal design (A) are lower than for all other designs along the entire length of the 

Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)

Computation 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

 
(b) 

Figure 7. Three-layer constructions with an adhesive layer: (a)  Classic type of connection with 
bevel (B); (b)  Classical connection without bevel (C). 

Figures 8 and 9 show the distribution of shear stress 12σ  and Mises stress Misσ , re-
spectively, in the adhesive layer that connects the middle and upper parts of the structure 
for cases A, B, C, and D. Qualitatively similar results were obtained for the adhesive layer 
that connects the lower and middle structures. The graphs depict the stress distribution 
along the lines that pass through the center of the adhesive layer. 

 
Figure 8. Shear stress (Pa) along the central axis of the solder region. (A)  optimal design I, (B) 

 Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

 
Figure 9. Von Mises stress (Pa) along the central axis of the solder region. (A)  optimal design I, 
(B)  Classic type of connection without bevel, (C)  optimal design II, (D)  Classic type of 
connection with bevel. 

The peak stresses 12σ   and M isσ  , at the ends of the adhesive for the two types of 
optimal design (A) and (C) are significantly lower than those of the original design (B) and 
the beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the 
optimal design (A) are lower than for all other designs along the entire length of the 

optimal design
I, (B)

Computation 2023, 11, x FOR PEER REVIEW 7 of 16 
 

 

area of evenly distributed adhesive solder with 9
2 2 .26 10 ?PaЕ = × . Mechanical load act-

ing on the right 2

Н100,000
m

F = , the left border is fixed. 

 
Figure 2. Case study 1. Design and boundary conditions, optimization (A).  1Ω —nonoptimi-
zated area,  2Ω —optimizated area,  3Ω —adhesive. 

In overlap bonding, there are discontinuities at the ends of the bond line [1–4]. These 
inhomogeneities lead to bending moments due to eccentric loading and uneven moment 
distribution around the adhesive layer, which can cause destructive stresses in the adhe-
sive layer. Breaking the connection geometry can also produce high shear stresses in the 
adhesive. However, there are ways to reduce this eccentric loading in lap joints. For ex-
ample, it has been shown [17] that narrowing the edges of the bonded layers is effective 
in reducing these stresses (Figure 3a). In addition, increasing the length of the joint, the 
thickness of the solder, and the thickness of the layers being joined can reduce the maxi-
mum shear and peel stresses. In our case, all geometric and physical parameters of the 
braze remain constant, and the reduction in maximum stresses at the ends of the braze is 
achieved by topological optimization of the microstructure of the layers to be joined. 

 
(a) 

 

Classic type of connection without bevel, (C)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

optimal design II, (D)

Computation 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

to failure of the entire structure, stress reduction at these locations is a critical engineering 
application of the approach proposed by the authors. 

Table 1 shows the maximum Mises stresses in the solder layer and the maximum 
shear stresses in the solder layer for the three Designs (A)–(C). 

Table 1. Values of maximum stress for Case Study 1. 

Construction 
Maximum Value 

Misσ  in Solder 
Maximum Shear 

Stresses 12σ  in Solder 
Topologically optimal construction (A) 225,356 121,540 
Bevel (engineering option to reduce the
shear stress) (B) 

279,400 144,320 

Straight (initial design) (C) 279,250 143,941 

Table 1 demonstrates that for the engineered version of shear stress reduction (B), the 
values of Misσ  and 12σ  are greater than those of the original design. For the topologically 
optimal design, the maximum values Misσ  are reduced by almost 20%. Therefore, we can 
conclude that the proposed stress minimization algorithm is versatile for different types 
of solder. 

As the optimization problem is based on the numerical finite element method, the 
reliability of the results is an important consideration. The convergence of the optimiza-
tion results, depending on the number of finite elements, is investigated in Table 2 and 
Figure 6 using Runge’s principle with a doubling of the number of finite elements. To 
obtain reliable results, it is necessary to use 33.94 10×  finite elements, as the difference 
from the results at 36.96 10×   is 0.06%. This conclusion is confirmed by the points on 
curves I and III, where the solution stabilizes. For the middle of the joint (point II), con-
vergence is observed at 36 10×  finite elements. The number of iterations needed to reach 
a solution is practically the same. With an increasing number of finite elements, the quality 
of optimization improves considerably, as evidenced by the “smoothing” of shear stress 
values at the joint points. With a small number of partitions, the stress in the middle of the 
joint (point II) differs from the stress at the extreme points by almost seven times in the 
optimal design. However, increasing the number of finite element partitions leads to the 
equalization of stresses in the optimum design, with a difference of less than 39.2%. 

Table 2. Dependence 12maxσ  from number of iterations n and 12
kσ  from number N for FE.  op-

timal design,  Classic type of connection with bevel,  Classic type of connection within bevel. 

Visualisation of the FE Approximation of 
an Overlapping Joint between Two Beams

 

Number of Ele-
ments 

N 
310×  

Maximum 
Stress 

12maxσ
510×  

Number of It-
erations 

n 

I 
12
Iσ  
510×  

II 
12
IIσ  
510×  

III 
12
IIIσ 510×  

 
6.96 1.214 83 1.214 0.739 1.202 

 
3.94 1.215 82 1.215 0.693 1.192 

 
2.31 1.399 71 1.399 0.45 1.345 

Classic type of
connection with bevel.

The peak stresses σ12 and σMis, at the ends of the adhesive for the two types of optimal
design (A) and (C) are significantly lower than those of the original design (B) and the
beveled design (D) (Figures 8 and 9). It is worth noting that the shear stresses for the optimal
design (A) are lower than for all other designs along the entire length of the adhesive layer,
indicating the best load-bearing capacity of this design compared with the others.

Table 3 shows the numerical results: Maximum values of Mises stresses in the solder
layer, maximum values of shear stresses in the solder layer.

Table 3. Values of maximum stress for Case Study 2.

Construction Maximum Value σMis in Solder Maximum Shear Stresses σ12 in Solder

Straight (initial design) (B) 479,365 243,695

Bevel (engineering option to reduce to shear
stresses) (D) 479,840 244,341

Topologically optimal design II (C) 325,920 221,236

Topologically optimal design I (A) 247,865 134,625
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The results presented in Table 3 indicate that the maximum values of Mises stresses
and shear stresses in the adhesive layer are significantly reduced for the topologically opti-
mal designs (A) and (C) compared with the original design and the beveled design. For the
topologically optimal design (C), the maximum values of Mises stresses are reduced by ap-
proximately 38%, and the maximum values of shear stresses are reduced by approximately
9%. The topologically optimal design (A) shows even better performance, with a reduction
of approximately 49% in the maximum values of Mises stresses and approximately 45%
in the maximum values of shear stresses, indicating its superior load-bearing capacity.
Regarding problem 1 (Table 1), it should be noted that the engineering option (Table 2,
Option D) of reducing shear stresses not only fails to improve the carrying capacity of the
original structure but even worsens it (Table 3, Option B). Therefore, the proposed method
of minimizing peak Mises and shear stresses (Table 3, Options A and C) is universal and
can automatically minimize stresses without the need for manual enumeration of variants.
This approach improves the bearing capacity of multilayer composite structures.

In the study, similarly to problem 1, the influence of the number of FEs on the results
of solving the optimization problem was investigated in order to justify the validity of
the obtained results. The results are given in Table 4 and Figure 10. For maximum shear
stress σ12, the difference between result values with the number of FEs 5.18× 103 and
11.2× 103 is 0.2%, which confirms the reliability of optimization results. The results shown
in Figure 10 show that the stress convergence at the midpoints of the solder solution occurs
with number FEs equal to 4.8× 103. The stress σ12 at the extreme points I and VI is also
stabilized with a number of FEs equal to 5.8× 103, and at the points (II, IV) the solution is
stabilized with a number of FEs equal to 3.8× 103. Thus, as in Problem 1, the shear stresses
at the solder endpoints (I, III, IV, and VI), both top and bottom, converge faster than for
the central points (II,V). The difference from problem 1 is in the other character of stress
“equalization”—this process proceeds in pairs. Stresses at the extreme points (I-IV), (III–IV),
and at the central points (II–V) are equalized.

Table 4. Dependence maxσ12 from number of iterations n and σk
12 from number N for FE.
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4. Conclusions

A new algorithm (RAMP and FEM method) for topological optimization in order to
reduce peak Mises stresses is developed and used to optimize structures with adhesive
layers under longitudinal mechanical loads.

It has been revealed that the algorithm of stress minimization in the adhesive layer,
which is based on topological optimization methods, can be used for various geometries
of fastened structures and the geometry of the adhesive layer. The universality of the
suggested approach will allow its application in a wide area of new engineering soldered
structure creation. This approach will allow engineering practice to significantly increase
the reliability of developed structures.

The proposed algorithm is shown to be effective in reducing peak Mises stresses in
the adhesive layer of multilayer composite joints. The results indicate a reduction of up to
50% in peak stresses compared with the initial design.

The reliability of the obtained optimization results, depending on the number of
elements, was investigated. The results shown in Tables 2 and 4 and Figures 6 and 10 are
based on the Runge principle a the doubling of the number of elements. The difference in
maximum shear stress of the two last finite element partitions for the first problem is 0.06%,
while for the second problem it is 0.2%. An increase in the number of finite elements leads
to the equalization of joint stresses in the first problem, whereas in the second problem,
equalization occurs in pairs.

The use of RAMP interpolation in the optimization phase helps to eliminate the
checkerboard effect and improve the quality of the optimal design. The proposed approach
can be further extended to include additional design constraints, such as weight or manufac-
turing constraints, in order to provide more practical designs for engineering applications.
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